
Math 10360 Example Set 15A
Sections 10.7 & 10.8 Taylor Polynomials & Taylor Series

A function f(x) is said to be analytic if it has a (convergent) power series representation for each c i.e.

(1) f(x) = a0 + a1(x− c) + a2(x− c)2 + · · · + an(x− c)n + · · · for − r < (x− c) < r.

where the coefficients ai and radius of convergent r are to be determined. We can this series The Taylor
Series of the function f(x) centered at x = c

For the special case of c = 0, we get:

(2) f(x) = a0 + a1x+ a2x
2 + · · · + anx

n + · · · for − r < x < r.

We call (2) the Maclaurin Series for f(x) or the Taylor Series for f(x) centered at x = 0.

The geometric series summation formula give us an example of the Taylor series of f(x) =
1

1 − x
center at

x = 0:
1

1 − x
= 1 + x+ x2 + · · · + xn + · · · for −1 < x < 1.

We will discuss in the next few lessons how to find the Taylor Series and its partial sums the Taylor Polynomials.
The interval of convergence of Taylor Series are found using the Ratio Test.

1. (Formula for Taylor Series) Using repeated differentiation, show that the coefficients a0, a1, a2, ... an,
... in the Taylor series for f(x) centered at x = c:

a0 = f(c), an =
f (n)(c)

n!

This gives us the following formula for the Taylor series for f(x) centered at x = c.

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · · +

f (n)(c)

n!
(x− c)n + · · ·

Remark: The Nth partial sum of the Taylor series is often used to estimate the value of f(x). Specifically, we
have:

f(x) ≈ f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · · +

f (N)(c)

N !
(x− c)N

for x near to c.

The Nth partial sums of Taylor series for f(x) centered at x = c are called the Nth Taylor Polynomials of
f(x) centered at x = c. This polynomial is denoted TN (x). In the special case, when c = 0, we also call TN the
N -th Maclaurin Polynomial for f(x).

(a) The 1st Taylor polynomial for f(x) centered at c is T1(x) = .

(Linear Approximation of f(x) at x = c)

(b) The 2nd Taylor polynomial for f(x) centered at c is T2(x) = .

(c) The 3rd Taylor polynomial for f(x) centered at c is T3(x) = .
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We have the following theorem:

Theorem. If f(x) is analytic then there exists some r such that for some interval c− r < x < c+ r containing
c, we have:

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · · +

f (n)(c)

n!
(x− c)n + · · ·

(a) For c− r < x < c+ r (especially for those x near c), we have the approximation

f(x) ≈ Tn(x) = f(c) +
f ′(c)

1!
(x− c) +

f (2)(c)

2!
(x− c)2 + · · · +

f (n)(c)

n!
(x− c)n

(b) The accuracy of the approximation in (a) improves as n increases. More specifically,

f(x) = lim
n→∞

Tn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · · +

f (n)(c)

n!
(x− c)n

Remark: For the special case where x = 0, the Taylor series for the function f(x) centered at x = 0 is also
call the Maclaurin series for f(x). This is simply the power series representation of f(x) in x:

f(x) = f(0) +
f ′(0)

1!
x+

f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 + · · · +

f (n)(0)

n!
xn + . . .

1a. Find the Talyor Series centered at x = 0 for f(x) = ex. What is the interval of convergence for this power
series?

1b. Using the Maclaurin polynomial T4(x) for ex, estimate e0.2.

1c. Write down the error of your estimate for e0.2 in Q2(b) as a series. Explain your answer.

1d. Estimate the value of

∫ 0.2

0
e−x

2
dx using T4(x) for ex.

2. Find the 3rd Taylor polynomial for the function ln(x+ 2) centered at −1, and estimate ln(0.8).
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Math 10360 Example Set 15B

Application of Taylor polynomial and Taylor Series

1a. Find the 3rd-degree Taylor polynomial of y(t) centered at zero, where y(t) is the solution of the initial
value problem

y′ = y2 + ty, y(0) = −1

Use your result to estimate y(0.3).

1b. Find the 3rd-degree Taylor polynomial of y(t) centered at 1, where y(t) is the solution of the initial value
problem

y′ = y2 + ty, y(1) = −1

Use your result to estimate y(0.8).

2. Using the Taylor series for
1

1 + x2
centered at x = 0 and differentiation, find the Maclaurin series for

2x

(1 + x2)2
.

3a. Using the Taylor series for
1

1 + x2
centered at x = 0 and integration, show that the Taylor series for

arctanx at 0 is:

arctanx =
∞∑
k=0

(−1)k
x2k+1

2k + 1
for − 1 < x < 1

3b. Write down the 7th Taylor series for arctanx at 0. Estimate the value of arctan(0.5). Write down the
error for the estimate you found as an infinite series using summation notation.

3c. Write down the Taylor series for f(x) = arctan(1 − x) centered at 1, giving the values of x for which the
series is convergent.
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Math 10360 – Example Set 15C
Section 14.8

Topic: Optimization with a Constraint Using Lagrange Multipliers

Idea: Recall that for a continuous function y = f(x) on a closed and bounded interval a ≤ x ≤ b, we optimize
f(x) with the following two facts:

(a) f(x) must attain it minimum and maximum for some values of x in the interval a ≤ x ≤ b.

(b) The minimum and maximum of f(x) occurs at the end points (i) x = a, b or at (ii) critical points in
a < x < b.

The range a ≤ x ≤ b of values of x is the constraint on which f(x) is optimized. However for multivariable
functions the constraint may be some complicated relation satisfied by the indecent variables. For example,
in the hiking exercise you did you are reading the highest point on your path above sea level and the lowest
point on your path below sea level. In that context, the constraint is the hiking path on the xy−plane while
the function you are optimizing is the height function.
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Let the height function be given by z = f(x, y) and the equation of the (projected) path be g(x, y) = 0.

From geometric considerations, we see that the constraint curve and the contour curve at a possible

min or max must share the same .

Therefore the critical points on the path are given by the equations:

∂f

∂x
(x, y) = λ

∂g

∂x
(x, y) (1)

∂f

∂y
(x, y) = λ

∂g

∂y
(x, y) (2)

g(x, y) = 0 (3)

where x, y, and λ are to be determined. Here (x, y) are the critical points. Note that Equation (3) ensures the
solution is on the constraint curve. The first two equations are called Lagrange Multipliers.

If the constraint path is closed and bounded (either a closed loop or curve including end points without self
crossings) then the function f(x, y) must attain minimum and maximum at some points on the path.
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1a. The height of the slanted roof a house is given h(x, y) = 2x+4y+20. A spider on the roof is observed from
the top view crawling on the closed path x2 + y2 = 4. What is the minimum and maximum height attained by
the spider?

In this context, the function we need to optimize is the height h(x, y) = 2x+4y+20 with constraint x2+y2−4 =
0.

Can you roughly draw a picture to depict the path of the spider on the roof showing where the graph of
x2 + y2 = 4 is in relation to the actual path of the spider? Use Lagrange multipliers to find the minimum and
maximum heights of the spider.

1b. How would you change your answer if the spider only crawled on the path that tracks the upper semi-
circular part of the curve x2 + y2 = 4?
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