

Application of Taylor polynomial and Taylor Series

- **1a.** Find the Talyor Series centered at x = 0 for $f(x) = e^x$. What is the interval of convergence for this power series?
- **1b.** Using the Maclaurin polynomial $T_4(x)$ for e^x , estimate $e^{0.2}$.
- 1c. Write down the error of your estimate for $e^{0.2}$ in Q2(b) as a series. Explain your answer.
- **1d.** Estimate the value of $\int_0^{0.2} e^{-x^2} dx$ using $T_4(x)$ for e^x .
- **2a.** Find the 3rd-degree Taylor polynomial of y(t) centered at zero, where y(t) is the solution of the initial value problem

$$y' = y^2 + ty$$
, $y(0) = -1$

Use your result to estimate y(0.3).

2b. Find the 3rd-degree Taylor polynomial of y(t) centered at 1, where y(t) is the solution of the initial value problem

$$y' = y^2 + ty$$
, $y(1) = -1$

Use your result to estimate y(0.8).

- 3. Using the Taylor series for $\frac{1}{1+x^2}$ centered at x=0 and differentiation, find the Maclaurin series for $\frac{2x}{(1+x^2)^2}$.
- **4a.** Using the Taylor series for $\frac{1}{1+x^2}$ centered at x=0 and integration, show that the Taylor series for $\frac{1}{1+x^2}$ arctan x at 0 is:

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$
 for $-1 < x < 1$

- **4b.** Write down the 7th Taylor polynomial for $\arctan x$ at 0. Estimate the value of $\arctan(0.5)$. Write down the error for the estimate you found as an infinite series using summation notation.
- **4c.** Write down the Taylor series for $f(x) = \arctan(1-x)$ centered at 1, giving the values of x for which the series is convergent.
- **5.** The 3rd Maclaurin Polynomial of f(x) is given by $T_3(x) = 1 x^2 + 4x^3$.
- **a.** Find the values f(0), f'(0), f''(0), and f'''(0). What could you say about the point (0, f(0)) on the graph of f(x)?
- **b.** Find the Taylor polynomial of $g(x) = e^{f(x)}$ centered at x = 0 of degree 2.