
There are generally three ways to estimate the derivative of a function \(f(x) \) at \(x = a \).

All three ways uses:

(a) points (or values \(\{b\} \)) \(x \) near to \(a \).

(b) secant lines (chords) estimate the tangent line to \(f(x) \) at \(x = a \).

(1) **Forward Difference Estimate.**

If \(B \) is close to \(A \), then the secant line \(AB \) is almost parallel to the tangent line at \(x = a \).

So \(f'(a) \approx \frac{f(b) - f(a)}{b - a} \)

slope at \(x = a \)

slope of the secant \(AB \).
This estimate is called the forward difference estimate since \(b \) is \(> a \). If we write \(b = a + h \),

Then \(f'(a) \approx \frac{f(b) - f(a)}{b - a} \)

\[= \frac{f(a+h) - f(a)}{a+h - a} \]

so \(f'(a) \approx \frac{f(a+h) - f(a)}{h} \)

\[\overbrace{\text{forward difference formula}} \]
(2) \textbf{Backward Difference Estimate}

If \(C \) is close to \(A \) then the secant line \(AC \) is almost parallel to the tangent line of \(f(x) \) at \(x = a \).

\[
\text{So } f'(a) \approx \frac{f(a) - f(c)}{a - c}
\]

\[\text{slope at } \ x = a \quad \text{slope of the secant line } AC.\]

This estimate is called the backward difference estimate since \(C \) is \(< A \).

If we write \(C = a - h \), then

\[
\text{then } f'(a) \approx \frac{f(a) - f(a-h)}{a - (a-h)}
\]

\[
= \frac{f(a) - f(a-h)}{a - (a-h)}
\]

\[
\text{So } f'(a) \approx \frac{f(a) - f(a-h)}{h}
\]

\[\text{backward difference formula}\]
Central Difference Estimates.

If both \(B \) and \(C \) are close to \(A \) then the slope of the tangent line at \(x = a \) is almost the slope of chord \(BC \).

So \(f'(a) \approx \frac{f(b) - f(c)}{b - c} \)

This estimate is called the central difference estimate since \(a \) is between \(b \) and \(c \).

If \(a \) is exactly at the midpoint between \(b \) and \(c \),

Then \(b = a + h \) and \(c = a - h \).
Then we have:

\[f'(a) \approx \frac{f(b) - f(c)}{b - c} \]

\[= \frac{f(a+h) - f(a-h)}{a+h - (a-h)} \]

\[= \frac{f(a+h) - f(a-h)}{a+h - a - h} \]

\[f'(a) \approx \frac{f(a+h) - f(a-h)}{2h} \]

central difference formula

This only works if both \(b \neq c \)

are equidistance from \(a \)

If not we just use the slope of chord BC at the beginning.