\qquad

1. For each complex numbers below find its modulus and argument $(0 \leq \theta \leq 2 \pi)$. Draw the complex number in the Argand plane provided indicating its modulus and argument.

1a. $z_{1}=1-i$.

Modulus of z_{1} is \qquad
1b. $z_{2}=\sqrt{3}+i$.

Modulus of z_{2} is \qquad Argument of z_{2} is \qquad

Math 20480 Exercise 03

Name \qquad
1c. (Continue...) $z_{3}=-2-2 \sqrt{3} i$.

Modulus of z_{3} is \qquad Argument of z_{3} is \qquad
2. Referring to Q 1 above, write each complex numbers z_{1}, z_{2}, and z_{3} and its conjugate in both polar form $r(\cos \theta+i \sin \theta)$ and in the form $r e^{i \theta}$.
$z_{1}=$
$=$
$z_{2}=$
\qquad
$=$
$z_{3}=$
\qquad
$=$
$=$ \qquad
3. Evaluate the following powers of a complex numbers. Give your answer in the form $a+b i$. You must give the value of a and b exactly.

3a. $(\sqrt{3}+i)^{41}$

3b. $\left(\frac{-1+3 i}{1+2 i}\right)^{57}$

