\qquad

1. Suppose a 3×3 matrix A has eigenvalues 2,3 , and 3 . Let J be the (real) canonical form associated to A. In each of the following cases, write down e^{J}.

1a. The eigenvectors for $\lambda=2$ has the form $k \cdot \vec{u}$ and the eigenvectors for $\lambda=3$ has the form $m \cdot \vec{v}+n \cdot \vec{w}$ where k, m, and n are real constants.

1b. The eigenvectors for $\lambda=2$ has the form $k \cdot \vec{u}$ and the eigenvectors for $\lambda=3$ has the form $m \cdot \vec{v}$ where k, and m are real constants.
2. Suppose a 3×3 matrix A has eigenvalues $-1,3 \pm 4 i$. Write down the (real) canonical form J associated to A. There are several possible answer depending on your construction, write down all of them. Also give the corresponding e^{J}.
3. Solve the system of equations:

$$
\begin{aligned}
& x^{\prime}=2 x \\
& y^{\prime}=-5 x+\quad 5 z \\
& z^{\prime}=-2 x-y+4 z
\end{aligned}
$$

4.

$$
M=\left(\begin{array}{rrrr}
2 & 1 & -2 & 0 \\
0 & -1 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

4a. Find the canonical form J associated to M.

4b. Let P be a matrix such that $M=P J P^{-1}$. Find exactly (every entry of) the matrices S_{1} and S_{2} as defined below. (Hint: It is not necessary that you know what P is)

4b. (i) $T(M)=P S_{1} P^{-1}$ where $T(x)$ is the polynomial $3-x^{2}+2 x^{5}$.

4b. (ii) $e^{M}=P S_{2} P^{-1}$
5. Evaluate each of the matrix exponentials. Here $\operatorname{Exp}(A)=e^{A}$.
$\operatorname{Exp}\left(\begin{array}{rrrr}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & -3\end{array}\right) \stackrel{?}{=}$
$\operatorname{Exp}\left(\begin{array}{llll}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3\end{array}\right) \stackrel{?}{=}$
$\operatorname{Exp}\left(\begin{array}{rrrr}2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & 3 & -2\end{array}\right) \stackrel{?}{=}$
6.

$$
M=\left(\begin{array}{rrr}
0 & -2 & 2 \\
3 & 5 & -6 \\
2 & 2 & -3
\end{array}\right)
$$

6a. The characteristic polynomial of M is $\lambda^{3}-2 \lambda^{2}-\lambda+2$. Find all eigenvalues of M.

6b. Can M be diagonalized? If so write down the diagonal matrix J associated to M. If not, write down a more general canonical form J associated to M.

6c. Solve the system of differential equations:

$$
\begin{aligned}
x^{\prime} & =-2 y+2 z \\
y^{\prime} & =3 x+5 y-6 z \\
z^{\prime} & =2 x+2 y-3 z
\end{aligned}
$$

7.

$$
Q=\left(\begin{array}{lll}
-4 & -5 & 5 \\
-2 & -3 & 5 \\
-4 & -5 & 7
\end{array}\right)
$$

The eigenvalues and their associate eigenvectors of Q are given below

$$
\lambda_{1}=2: \quad \vec{u}=\left(\begin{array}{l}
0 \\
r \\
r
\end{array}\right) ; \quad \quad \lambda_{2}=-1+i: \quad \vec{v}=\left(\begin{array}{c}
5 s \\
(-1-2 i) s \\
(2-i) s
\end{array}\right)
$$

Solve the system of differential equations:

$$
\begin{aligned}
x^{\prime} & =-4 x-5 y+5 z \\
y^{\prime} & =-2 x-3 y+5 z \\
z^{\prime} & =-4 x-5 y+7 z
\end{aligned}
$$

8. The eigenvalues of $B=\left(\begin{array}{rrr}5 & 4 & -4 \\ 0 & 3 & 0 \\ 1 & 2 & 1\end{array}\right)$ is $\lambda=3,3$, and 3 . Moreover the formulas of the eigenvectors \vec{u} and generalized eigenvector \vec{w} of B showing the JOrdan chain relation are given below

$$
\vec{u}=\left(\begin{array}{c}
-2 r+2 s \\
r \\
s
\end{array}\right) \quad \vec{w}=\left(\begin{array}{c}
s-2 t+2 w \\
t \\
w
\end{array}\right)
$$

where r, s, t and w are any real number.
Solve the system of differential equations with given initial conditions

$$
\begin{array}{rl}
x^{\prime} & =5 x+4 y-4 z \\
y^{\prime} & =3 y \\
z^{\prime} & =x+2 y=1 \\
y(0)=-1 \\
y & z(0)=-2
\end{array}
$$

9. Solve the system of differential equations with given initial conditions

$$
\begin{array}{rlr}
x^{\prime}(t) & =x(t)-y(t) & x(0)=1 \\
y^{\prime}(t) & =2 x(t)+3 y(t) & y(0)=2
\end{array}
$$

10. Solve the system of differential equations with given initial conditions

$$
\begin{aligned}
x^{\prime}(t) & =-4 x(t)+6 y(t) & x(0)=-1 \\
y^{\prime}(t) & =-3 x(t)+5 y(t) & y(0)=1
\end{aligned}
$$

11.

A (undamped) double spring system is set up as shown below. The spring constants and masses are as labelled. The mass m_{1} is displaced to the left $1 / 2$ meters and the mass m_{2} is displaced to the right $1 / 3$ meters. Then m_{1} and m_{2} are released from rest. Write down the equations of motion that govern the resulting motion.

11a. Write down the equations of motion for the system above

11b. Rewrite your equations in Q11(a) as a linear first order system of equations.
12. The MatLab output for the Lefkovitch matrix M given in the attached page is for an animal having five growth stages: Eggs, Juveniles, Sub-Adult A, Sub-Adult B, and Adult.
(a) Estimate the continuous grow rate of the population after a long time. Is the population increasing or decreasing after a long time?

Continuous grow rate $=$ \qquad

Circle One: Population Increases Population Decreases
(b) Find the stable population vector for the population. Your entries should be round to four decimal places.
(c) What is the population distribution in percentages after a long time? Give your answer round to two decimal places.

Eggs $=$

Juvenile stage $=$ \qquad

Sub-adult A stage $=$ \qquad

Sub-adult B stage $=$ \qquad

Adult stage $=$ \qquad
13. Solve the following system of equations:

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t)+4 ; & & x(0)=1 \\
y^{\prime}(t) & =-x(t)+3 y(t)+8 ; & & y(0)=1
\end{aligned}
$$

You should know all these formulas for the exam.
Powers of 2×2 Canonical Forms

$$
\begin{aligned}
& \left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)^{n}=\left(\begin{array}{ll}
\lambda^{n} & 0 \\
0 & \mu^{n}
\end{array}\right) ; \quad\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)^{n}=\left(\begin{array}{ll}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right) \\
& \left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)^{n}=\left(\begin{array}{rr}
R \cos (\theta) & R \sin (\theta) \\
-R \sin (\theta) & R \cos (\theta)
\end{array}\right)^{n}=\left(\begin{array}{rr}
R^{n} \cos (n \theta) & R^{n} \sin (n \theta) \\
-R^{n} \sin (n \theta) & R^{n} \cos (n \theta)
\end{array}\right)
\end{aligned}
$$

Powers of Larger Jordan Matrices

$$
\begin{aligned}
& \left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)^{n}=\left(\begin{array}{ccc}
\lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} \\
0 & \lambda^{n} & n \lambda^{n-1} \\
0 & 0 & \lambda^{n}
\end{array}\right) \quad \operatorname{Here}\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2} \\
& \left(\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right)^{n}=\left(\begin{array}{cccc}
\lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} & \binom{n}{3} \lambda^{n-3} \\
0 & \lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} \\
0 & 0 & \lambda^{n} & n \lambda^{n-1} \\
0 & 0 & 0 & \lambda^{n}
\end{array}\right) \quad \text { Here }\binom{n}{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Exponential of 2×2 Canonical Forms

$$
\left.\begin{array}{l}
\exp \left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right) ; \\
\exp \left[\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & 0 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right) \\
0 t
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right) ;, \begin{aligned}
& \exp \left[\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & t \\
0 & \lambda t
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
\end{aligned}
$$

Here $\exp (A)=e^{A}$ where A is any square matrix.

Matrix Exponential Formulas (Real Eigenvalue Case).

$$
\begin{aligned}
& \exp \left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right) ; \\
& \exp \left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & 0 \\
0 & \mu t
\end{array}\right)=\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right) ; \\
& \exp \left[\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & t \\
0 & \lambda t
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right) \\
& \exp \left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda_{1}} & 0 & 0 \\
0 & e^{\lambda_{2}} & 0 \\
0 & 0 & e^{\lambda_{3}}
\end{array}\right) ; \quad \exp \left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda} & e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda} & e^{\lambda} \\
0 & 0 & e^{\lambda}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)\right] \cdot t=\exp \left(\begin{array}{ccc}
\lambda_{1} t & 0 & 0 \\
0 & \lambda_{2} t & 0 \\
0 & 0 & \lambda_{3} t
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{ccc}
\lambda t & t & 0 \\
0 & \lambda t & t \\
0 & 0 & \lambda t
\end{array}\right)=\left(\begin{array}{lll}
e^{\lambda t} & t e^{\lambda t} & t^{2} e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & e^{\lambda t}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cccc}
\lambda t & t & 0 & 0 \\
0 & \lambda t & t & 0 \\
0 & 0 & \lambda t & t \\
0 & 0 & 0 & \lambda t
\end{array}\right)=\left(\begin{array}{llll}
e^{\lambda t} & t e^{\lambda t} & t^{2} e^{\lambda t} & t^{3} e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} & t^{2} e^{\lambda t} \\
0 & 0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & 0 & e^{\lambda t}
\end{array}\right)
\end{aligned}
$$

Matrix Exponential Formulas (Complex Eigenvalue Case).

$$
\begin{aligned}
& \exp \left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{rr}
e^{a} \cos (b) & e^{a} \sin (b) \\
-e^{a} \sin (b) & e^{a} \cos (b)
\end{array}\right) \\
& \exp \left[\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{rr}
a t & b t \\
-b t & a t
\end{array}\right)=\left(\begin{array}{rr}
e^{a t} \cos (b t) & e^{a t} \sin (b t) \\
-e^{a t} \sin (b t) & e^{a t} \cos (b t)
\end{array}\right)
\end{aligned}
$$

Remark 1. Let J be the canonical form of square matrix A and non-singular P such that $A=P J P^{-1}$. Then $e^{A}=P \cdot e^{J} \cdot P^{-1}$.

Remark 2. If $D=\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ where A_{i} is a square matrix of size n_{i} so D is a square matrix of size $N=\sum n_{i}$. Then we have:

$$
e^{D}=\operatorname{diag}\left(e^{A_{1}}, e^{A_{2}}, \ldots, e^{A_{k}}\right)
$$

MatLab Output for Lefkovitch Matrix M in Question 12

$0 \quad 0$	2.2500	$39.2000 \quad 64.0000$		
$0.4000 \quad 0.4500$	0	$0 \quad 0$		
$0 \quad 0.0500$	0.2550	0		
0 0	0.0450	0.5600 0		
$0 \quad 0$	0	$0.1400 \quad 0.8000$		
>> [P, J] = jordan(M)				
$\mathrm{P}=$				
$4.0800+0.0000 \mathrm{i}$	-1.0577-0.9203i	$-1.0577+0.9203 i$	$-0.0094+0.0000 i$	$1.2714+0.0000 \mathrm{i}$
$-3.6267+0.0000 \mathrm{i}$	1.7498-0.4864i	$1.7498+0.4864 i$	$-0.0306+0.0000 \mathrm{i}$	$1.0551+0.0000 \mathrm{i}$
$0.7111+0.0000 \mathrm{i}$	$0.1259+0.3274 i$	i 0.1259-0.3274i	$-0.0048+0.0000 i$	$0.0779+0.0000 \mathrm{i}$
$-0.0571+0.0000 \mathrm{i}$	$-0.0372-0.0184 i$	$-0.0372+0.0184 i$	$-0.0162+0.0000 \mathrm{i}$	$0.0094+0.0000 \mathrm{i}$
$0.0100+0.0000 \mathrm{i}$	$0.0100+0.0000 i$	$\mathrm{i} \quad 0.0100+0.0000 \mathrm{i}$	$0.0100+0.0000 \mathrm{i}$	$0.0100+0.0000 \mathrm{i}$
$\mathrm{J}=$				
$0.0000+0.0000 i$	$0.0000+0.0000 \mathrm{i}$	$0.0000+0.0000 i$	$0.0000+0.0000 i$	$0.0000+0.0000 \mathrm{i}$
$0.0000+0.0000 \mathrm{i}$	0.2798-0.2577i	$0.0000+0.0000 i$	$0.0000+0.0000 \mathrm{i}$	$0.0000+0.0000 \mathrm{i}$
$0.0000+0.0000 i$	$0.0000+0.0000 \mathrm{i}$	$0.2798+0.2577 \mathrm{i}$	$0.0000+0.0000 \mathrm{i}$	$0.0000+0.0000 \mathrm{i}$
$0.0000+0.0000 \mathrm{i}$	$0.0000+0.0000 \mathrm{i}$	$0.0000+0.0000 i$	$0.5734+0.0000 \mathrm{i}$	$0.0000+0.0000 \mathrm{i}$
$0.0000+0.0000 \mathrm{i}$	$0.0000+0.0000 i$	$0.0000+0.0000 i$	$0.0000+0.0000 i$	$0.9320+0.0000 \mathrm{i}$

1. Suppose a 3×3 matrix A has eigenvalues 2,3 , and 3 . Let J be the (real) canonical form associated to A. In each of the following cases, write down e^{J}.

La. The eigenvectors for $\lambda=2$ has the form $k \cdot \vec{u}$ and the eigenvectors for $\lambda=3$ has the form $m \cdot \vec{v}+n \cdot \vec{w}$ where k, m, and n are real constants.

$$
J=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

$$
\Rightarrow e^{J}=\left(\begin{array}{ccc}
e^{2} & 0 & 0 \\
0 & e^{3} & 0 \\
0 & 0 & e^{3}
\end{array}\right)
$$

1b. The eigenvectors for $\lambda=2$ has the form $k \cdot \vec{u}$ and the eigenvectors for $\lambda=3$ has the form $m \cdot \vec{v}$ where k, and m are real constants. Need generalized eigenvector fo $2=3$

$$
J=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right) \Rightarrow e^{J}=\left(\begin{array}{lll}
e^{2} & 0 & 0 \\
0 & e^{3} & e^{3} \\
0 & 0 & e^{3}
\end{array}\right)
$$

2. Suppose a 3×3 matrix A has eigenvalues $-1,3 \pm 4 i$. Write down the (real) canonical form J associated to A. There are several possible answer depending on your construction, write down all of them. Also give the corresponding e^{J}.

$$
\begin{aligned}
& J=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & 4 \\
0 & -4 & 3
\end{array}\right) ;\left(\begin{array}{ccc}
3 & 4 & 0 \\
-4 & 3 & 0 \\
0 & 0 & -1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & -4 \\
0 & 4 & 3
\end{array}\right) \\
& e^{J}=\left(\begin{array}{ccc}
3 & -4 & 0 \\
4 & 3 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \left(\begin{array}{ccc}
e^{-1} & 0 & 0 \\
0 & e^{3} \cos 4 & e^{3} \sin 4 \\
0 & -e^{3} \sin 4 & e^{3} \cos 4
\end{array}\right),\left(\begin{array}{ccc}
e^{3} \cos 4 & e^{3} \sin 4 & 0 \\
-e^{3} \sin 4 & e^{3} \cos 4 & 0 \\
0 & 0 & 0 \\
0 & e^{3} \cos 4 & -e^{3} \sin 4 \\
e^{3} \sin 4 & e^{3} \cos 4
\end{array}\right),\left(\begin{array}{ccc}
e^{3} \cos 4 & e^{3} \sin 4 & 0 \\
e^{3} \sin 4 & e^{3} \cos 4 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

3. Solve the system of equations:

$$
\begin{aligned}
& x^{\prime}=2 x \\
& y^{\prime}=-5 x+5 \\
& z^{\prime}=-2 x-y+4 z
\end{aligned}
$$

$$
\vec{X}^{\prime}(t)=\underbrace{\left(\begin{array}{ccc}
2 & 0 & 0 \\
-5 & 0 & 5 \\
-2 & -1 & 4
\end{array}\right)}_{A} \stackrel{\rightharpoonup}{X}(t)
$$

$$
|A-\lambda I|=\left|\begin{array}{ccc}
A & & 0 \\
2-\lambda & 0 & 0 \\
-2 & -\lambda & 5 \\
-2 & -1 & 4-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
-\lambda & 5 \\
-1 & 4-\lambda
\end{array}\right|
$$

$$
=(2-\lambda)\left(\lambda^{2}-4 \lambda+5\right)=0
$$

$$
\begin{aligned}
\lambda=2 ; \lambda^{2}-4 \lambda+5=0 & \Rightarrow(\lambda-2)^{2}+1=0 \\
& \Rightarrow \lambda=2 \pm i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 入=2, } \quad(A-2 I) \vec{u}=0 \Rightarrow\left(\begin{array}{ccc:c}
0 & 0 & 0 & 0 \\
-5 & -2 & 5 & 0 \\
-2 & -1 & 2 & 0
\end{array}\right) \\
& r_{2}-2 r_{3}\left(\begin{array}{ccc:c}
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-2 & -1 & 2 & 0
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
-u_{1}+u_{3}=0 \Rightarrow u_{1}=u_{3} \\
-u_{1}-u_{2}+2 u_{3}=-u_{2}=0
\end{array}\right. \\
& \vec{u}=\left(\begin{array}{l}
u_{1} \\
0 \\
u_{1}
\end{array}\right) \\
& \begin{array}{c}
\lambda=2+i \\
(A-(2+i) I) \vec{r}=0 ;
\end{array}\left(\begin{array}{ccc:c}
-i & 0 & 0 & 0 \\
-5 & -(2+i) & 5 & 0 \\
-2 & -1 & 2-i & 0
\end{array}\right) \\
& -i v_{1}=0 \Rightarrow v_{1}=0 \quad \vec{v}=\left(\begin{array}{c}
0 \\
(2-i) v_{3} \\
v_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 v_{3} \\
v_{3}
\end{array}\right)+i\left(\begin{array}{c}
0 \\
-v_{3} \\
0
\end{array}\right) \\
& -(2+i) v_{2}{ }^{2}+5 v_{3}=0 \\
& -v_{2}+(2-i) v_{3}=0 \text { - } \\
& \rightarrow v_{2}=(2-i) v_{3}
\end{aligned}
$$

$$
\begin{aligned}
& P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & -1 \\
1 & 1 & 0
\end{array}\right] ; J=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & -1 & 2
\end{array}\right] \\
& \vec{X}(t)=e^{A \cdot t} \vec{X}(0)=P e^{J \cdot t} P^{-1} \vec{X}(0) \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{2 t} \cos t & e^{2 t} \sin t \\
0 & -e^{2 t} \sin t & e^{2 t} \cos t
\end{array}\right]\left[\begin{array}{l}
\text { whene } A \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
c_{1} e^{2 t} \\
c_{2} e^{2 t} \cos t+c_{3} e^{2 t} \sin t \\
-c_{2} e^{2 t} \sin t+c_{3} e^{2 t} \cos t
\end{array}\right] \\
& x(t)=c_{1} e^{2 t} \\
& y(t)=\left(2 c_{2}-c_{3}\right) e^{2 t} \cos t+\left(2 c_{3}+c_{2}\right) e^{2 t} \sin t \\
& Z(t)=c_{1} e^{2 t}+c_{2} e^{2 t} \cos t+c_{3} e^{2 t} \sin t \cdot
\end{aligned}
$$

4.

$$
M=\left(\begin{array}{cccc}
2 & 1 & -2 & 0 \\
0 & -1 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad J=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{l}
\left.\left.|M-\lambda I|=\left|\begin{array}{cccc}
2-\lambda & 1 & -2 & 0 \\
0 & -1-\lambda & 1 & 0 \\
0 & -2 & 1-\lambda & 0 \\
0 & 0 & 0 & -1-\lambda
\end{array}\right| \right\rvert\, \begin{array}{ccc}
0 & 0 & -1
\end{array}\right]
\end{array}\right]
$$

$$
=(2-\lambda)(-1-\lambda)\left(-\left(1-\lambda^{2}\right)+2\right)=(2-\lambda)(-1-\lambda)\left(\lambda^{2}+1\right)=0
$$

$$
\lambda=-1,2, \pm i
$$

4b. Let P be a matrix such that $M=P J P^{-1}$. Find exactly (every entry of) the matrices S_{1} and S_{2} as defined below. (Hint: It is not necessary that you know what P is)
Ab. (i) $T(M)=P S_{1} P^{-1}$ where $T(x)$ is the polynomial $3-x^{2}+2 x^{5}$.

$$
\begin{aligned}
& T(M)=3 I_{4}-M^{2}+2 M^{5}=3 P \cdot P^{-1}-P J^{2} P^{-1}+2 P J^{5} P^{-1} \\
& =P\left(3 I-J^{2}+2 J^{5}\right) P^{-1} \quad J=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & \cos \pi / 2 & \sin \pi / 2 \\
0 & 0 & -\sin \pi / 2 & \cos \pi / 2
\end{array}\right] \\
& S_{0} S_{7}=3 I_{4}-J^{2}+2 J^{5} \quad-J^{2}=\operatorname{digg}(-1,-4,1,1) \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 69 & 0 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & -2 & 4
\end{array}\right] \quad 2 J^{5}=\left[\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & 64 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right] \\
& \text { db. (ii) } e^{M}=P S_{2} P^{-1} \\
& =e^{P J P^{-1}}=p e^{J} P^{-1}=\left[\begin{array}{cccc}
e^{-1} & 0 & 0 & 0 \\
0 & e^{2} & 0 & 0 \\
0 & 0 & \cos 1 & \sin 1 \\
0 & 0 & -\sin 1 & \cos 1
\end{array}\right]
\end{aligned}
$$

5. Evaluate each of the matrix exponentials. Here $\operatorname{Exp}(A)=e^{A}$.

$$
\operatorname{Exp}\left(\begin{array}{rrrr}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & -3
\end{array}\right)=\left[\begin{array}{ccc}
e^{3} & e^{3} & 0
\end{array}\right] 0
$$

$$
\begin{aligned}
& \operatorname{Exp}\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 3
\end{array}\right) \stackrel{?}{=}=x p\left[\begin{array}{cccc}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & \frac{3}{2} & 2 \\
0 & 0 & 0 & \frac{3}{2}, 2
\end{array}\right] \\
& =\left[\begin{array}{cccc}
e^{3} & e^{3} & 0 & 0 \\
0 & e^{3} & 0 & 0 \\
0 & 0 & e^{3} & 2 \cdot e^{3} \\
0 & 0 & 0 & e^{3}
\end{array}\right] \\
& \operatorname{Exp}\left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & -3 \\
0 & 0 & 3 & -2
\end{array}\right) \stackrel{?}{=}\left[\begin{array}{ccc}
e^{2} & 0 & 0 \\
0 & e^{-2} & 0
\end{array}\right] 0
\end{aligned}
$$

6.

$$
M=\left(\begin{array}{rrr}
0 & -2 & 2 \\
3 & 5 & -6 \\
2 & 2 & -3
\end{array}\right)
$$

6a. The characteristic polynomial of M is $\lambda^{3}-2 \lambda^{2}-\lambda+2$. Find all eigenvalues of M.

$$
\begin{aligned}
& \lambda=1: \lambda-2 \neq 1+y=0 \\
& \Delta(\lambda)=(\lambda-1)\left(\lambda^{2}-\lambda-2\right) \\
& =(\lambda-1)(\lambda+1)(\lambda-2) \\
& \lambda=1,-1,2 .
\end{aligned}
$$

bb. Can M be diagonalized? If so write down the diagonal matrix J associated to M. If not, write down a more general canonical form J associated to M.

Yes, there 3 distinct eigenvalues.

$$
J=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

bc. Solve the system of differential equations:

$$
\begin{align*}
& x=-2 y+2 z \\
& y^{\prime}=3 x+5 y-6 z \\
& z^{\prime}=2 x+2 y-3 z \\
& \vec{X}^{\prime}=\underbrace{\left[\begin{array}{ccc}
0 & -2 & 2 \\
3 & 5 & -6 \\
2 & 2 & -3
\end{array}\right] \stackrel{\rightharpoonup}{X}}_{M} \Rightarrow \vec{X}=e^{M \cdot t} \cdot \vec{X} 0) \\
& \lambda=-1:(M+I) \stackrel{\rightharpoonup}{u}=\left[\begin{array}{ccc:c}
+1 & -2 & 2 & 0 \\
3 & 6 & -6 & 0 \\
2 & 2 & -2 & 0
\end{array}\right] \\
& \left.\Rightarrow\left[\begin{array}{rrr|r}
-1 & -2 & 2 & 0 \\
1 & 2 & -2 & 0 \\
3 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{rrr:}
-1 & -2 & 2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{c}
u_{1}=0 \\
-2 u_{2}+2 u_{3}=0 \\
\\
0
\end{array}\right] \quad u_{3}=u_{2} \\
& \vec{u}=\left[\begin{array}{l}
0 \\
u_{2} \\
u_{2}
\end{array}\right] \text {. } \\
& \lambda=1:(M-I) \vec{v}=0 \Rightarrow\left[\begin{array}{ccc:c}
-1 & -2 & 2 & 0 \\
3 & 4 & -6 & 0 \\
2 & 2 & -4 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc:c}
-1 & -2 & 2 & 0 \\
3 & 4 & -6 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]_{r_{2}+3 r_{1}}^{\Gamma_{1}+\Gamma_{3}}\left[\begin{array}{ccc:c}
0 & -1 & 0 & 0 \\
0 & -2 & 0 & 0 \\
1 & -2 & 0
\end{array}\right] \\
& v_{2}=0 ; v_{1}-2 v_{3}=0 \Rightarrow v_{1}=2 v_{3} \\
& \begin{array}{l}
\vec{v}=\left(\begin{array}{c}
2 \sqrt{3} \\
0 \\
\sqrt{3}
\end{array}\right) \\
\lambda=2:(M-2 I) \vec{w}=0 \quad \Rightarrow\left[\begin{array}{ccc:c}
-2 & -2 & 2 & 0 \\
3 & 3 & -6 & 0 \\
2 & 2 & -5 & 0
\end{array}\right]
\end{array} \\
& {\left[\begin{array}{ccc:c}
-1 & -1 & 1 & 0 \\
1 & 1 & -2 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc:c}
-1 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
\omega_{3}=0 \\
\omega_{1}+\omega_{2}=0 \\
\omega_{2}=-\omega_{1}
\end{array}} \\
& \vec{\omega}=\left(\begin{array}{c}
w_{1} \\
-w_{j} \\
0
\end{array}\right) \tag{6}
\end{align*}
$$

$$
\begin{aligned}
P & =\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right] ; J=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \\
\vec{X} & =P e^{J \cdot t} \cdot \rho^{-1} \vec{X}(0) \\
& =\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} e^{-t} \\
c_{2} e^{t} \\
c_{3} e^{2 t}
\end{array}\right] \\
x(t) & =2 c_{2} e^{t}+c_{3} e^{2 t} \\
y(t) & =c_{1} e^{-t}-c_{3} e^{2 t} \\
z(t) & =c_{1} e^{-t}+c_{2} e^{t}
\end{aligned}
$$

7.

$$
Q=\left(\begin{array}{lll}
-4 & -5 & 5 \\
-2 & -3 & 5 \\
-4 & -5 & 7
\end{array}\right)
$$

The eigenvalues and their associate eigenvectors of Q are given below

$$
\lambda_{1}=2: \quad \vec{u}=\left(\begin{array}{c}
0 \\
r \\
r
\end{array}\right) ; \quad \lambda_{2}=-1+i: \quad \vec{v}=\left(\begin{array}{c}
5 s \\
(-1-2 i) s \\
(2-i) s
\end{array}\right)
$$

Solve the system of differential equations:

$$
\begin{aligned}
& x^{\prime}=-4 x-5 y+5 z \\
& y^{\prime}=-2 x-3 y+5 z \\
& z^{\prime}=-4 x-5 y+7 z \\
& \vec{X}^{\prime}(t)=\underbrace{\left[\begin{array}{ccc}
-4 & -5 & 5 \\
-2 & -3 & 5 \\
-4 & -5 & 7
\end{array}\right]}_{Q} \vec{X}(t) \Rightarrow \vec{X}(t)=e^{Q \cdot t} \vec{X}(0) \\
& Q=P J P^{-1} \text { where } P=\left[\begin{array}{ccc}
0 & 5 & 0 \\
1 & -1 & -2 \\
1 & 2 & -1
\end{array}\right] \\
& J=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right] \\
& \vec{x}=P e^{J \cdot t} P^{-1} \vec{X}(0) \\
& =\left[\begin{array}{ccc}
0 & 5 & 0 \\
1 & -1 & -2 \\
1 & 2 & -1
\end{array}\right]\left[\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{-t} \cos t & e^{-t} \sin t \\
0 & -e^{-t} \sin t & e^{-t} \cos t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 5 & 0 \\
1 & -1 & -2 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} e^{2 t} \\
c_{2} e^{-t} \cos t+c_{3} e^{-t} \sin t \\
-c_{2} e^{-t} \sin t+c_{3} e^{-t} \cos t
\end{array}\right] \\
& =\left[\begin{array}{l}
5 c_{2} e^{-t} \cos t+5 c_{3} e^{-t} \sin a t \\
c_{1} e^{2 t}-\left(c_{2}+2 c_{3}\right) e^{-t} \cos t+\left(2 c_{2}-c_{3}\right) e^{-t} \sin t \\
c_{1} e^{2 t}+\left(2 c_{2}-c_{3}\right) e^{-t} \cos t+\left(c_{2}+2 c_{3}\right) e^{-t} \sin t
\end{array}\right]
\end{aligned}
$$

8. The eigenvalues of $B=\left(\begin{array}{rrr}5 & 4 & -4 \\ 0 & 3 & 0 \\ 1 & 2 & 1\end{array}\right)$ is $\lambda=3,3$, and 3. Moreover the eigenvectors \vec{u} and generalized eigenvector \vec{w} of B are given below

$$
\vec{u}=\binom{-2 r+2 s}{r}
$$

$$
w=\left(\begin{array}{c}
s+2 t \\
0 \\
t
\end{array}\right)
$$

where r, s and t are any real number.
Solve the system of differential equations with given initial conditions

$$
\begin{aligned}
& x^{\prime}=5 x+4 y-4 z \quad x(0)=1 \\
& y^{\prime}=\quad 3 y \quad y(0)=-1 \\
& z^{\prime}=x+2 y+z z(0)=-2 \\
& \vec{u}=r\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{c}
2 \\
0 \\
1
\end{array}\right): \quad \vec{w}=s\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+t\binom{2}{0} \\
& \text { Pick: } \vec{\omega}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) ; \quad S=1, t=0 \\
& \vec{u}, \overrightarrow{1} \quad r=0 \\
& \frac{s}{u_{2}}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \quad r=1, \quad s=0 \\
& P=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] ; \vec{J}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right] \\
& \vec{x}^{\prime}=B \cdot \vec{x} \Rightarrow \vec{x}=e^{B \cdot t} \cdot \vec{x}(0)=P e^{J \cdot t} \cdot P^{-1} \vec{x}(0) \\
& \frac{y}{X}=\left[\begin{array}{rcc}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
0 & e^{3 t} & t e^{3 t} \\
0 & 0 & e^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& \vec{X}(0)=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+2 c_{2}+c_{3} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right] \\
& c_{1}=-1 ; c_{2}=-2 ; c_{3}=1+2 c_{1}-2 c_{2}=1-2+4=3
\end{aligned}
$$

8. The eigenvalues of $B=\left(\begin{array}{rrr}5 & 4 & -4 \\ 0 & 3 & 0 \\ 1 & 2 & 1\end{array}\right)$ is $\lambda=3,3$, and 3 . Moreover the formulas of the eigenvectors \vec{u} and generalized eigenvector \vec{w} of B showing the JOrdan chain relation are given below

$$
\vec{u}=\left(\begin{array}{c}
-2 r+2 s \\
r \\
s
\end{array}\right)
$$

$$
\vec{w}=\left(\begin{array}{c}
s-2 t+2 w \\
t \\
w
\end{array}\right)
$$

where r, s, t and w are any real number.
Solve the system of differential equations with given initial conditions

$$
\begin{aligned}
& x^{\prime}=5 x+4 y-4 z \quad x(0)=1 \\
& y^{\prime}=3 y \quad y(0)=-1 \\
& z^{\prime}=x+2 y+z \quad z(0)=-2 \\
& \vec{u}=r\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) ; \quad \vec{w}=s\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \\
& \text { Pick : } \vec{\omega}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad S=1, t=0=w \\
& \vec{u}, \quad\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \quad r=0 \\
& \stackrel{\Delta}{u_{2}}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \quad r=1, \quad s=0 \\
& P=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] ; \vec{J}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right] \\
& \vec{x}^{\prime}=B \cdot \vec{x} \Rightarrow \vec{x}=e^{B \cdot t} \cdot \vec{x}(0)=P e^{J \cdot t} \cdot P^{-1} \vec{x}(0) \\
& \frac{\Delta}{x}=\left[\begin{array}{rcc}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
0 & e^{3 t} & t e^{3 t} \\
0 & 0 & e^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& \vec{X}(0)=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+2 c_{2}+c_{3} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right] \\
& c_{1}=-1 ; c_{2}=-2 ; \quad c_{3}=1+2 c_{1}-2 c_{2}=1-2+4=3
\end{aligned}
$$

$$
\begin{aligned}
& \vec{X}=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
0 & e^{3 t} & t e^{3 t} \\
0 & 0 & e^{3 t}
\end{array}\right]\left[\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{lll}
-2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
-e^{3 t} \\
-2 e^{3 t}+3 t e^{3 t} \\
3 e^{3 t}
\end{array}\right] \\
& x(t)=2 e^{3 t}-4 e^{3 t}+6 t e^{3 t}+3 e^{3 t}=e^{3 t}+6 t e^{3 t} \\
& y(t)=-e^{3 t} \\
& z(t)=-2 e^{3 t}+3 t e^{3 t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q9. } \\
& x^{\prime}=x-y ; x(0)=1 \\
& y^{\prime}=2 x+3 y ; y(0)=2 \\
& \Rightarrow \vec{X}^{\prime}=\underbrace{\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right)}_{A} \vec{x} ; \vec{x}(0)=\binom{1}{2} \\
& |A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & -1 \\
2 & 3-\lambda
\end{array}\right|=(1-\lambda)(3-\lambda)+2 \\
& =3-4 \lambda+\lambda^{2}+2=\lambda^{2}-4 \lambda+5=\lambda^{2}-4 \lambda+4+1 \\
& =(\lambda-2)^{2}+1=0 \Rightarrow \lambda=2 \pm i \\
& (A-(2+i) I) \vec{u}=\overrightarrow{0} \Rightarrow\left(\begin{array}{cc:c}
-1-i & -1 & 0 \\
2 & 1-i & 0
\end{array}\right) \\
& \Rightarrow-(1+i) u_{1}-u_{2}=0 \Rightarrow u_{2}=(-1-i) u_{1} \\
& \Rightarrow \vec{u}=\binom{u_{1}}{(-1-i) u_{1}}=\underbrace{\binom{1}{-1} u_{1}}_{\vec{p}}+\underbrace{\binom{0}{-1}}_{\overrightarrow{\vec{q}}} u_{1} \\
& \underline{P}=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right) ; \quad J=\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) \leftarrow \text { fermonioul } \\
& \left.\begin{array}{l}
\text { So } \vec{X}(t)=e^{A t} \cdot \vec{X}(0)=P e^{J t} \underbrace{P^{-1} \cdot \vec{X}(0)}_{\binom{c_{1}}{c_{2}}} \\
=\left(\begin{array} { c c }
{ 1 } & { 0 }
\end{array} \left(e^{2 t} \cos t \quad e^{2 t} \sin t\right.\right.
\end{array}\right)\left(\begin{array}{l}
c_{1}
\end{array}\right) \quad l
\end{aligned}
$$

$$
\begin{aligned}
& \vec{X}(0)=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{2} \\
& C_{1}=1 \quad ;-c_{1}-c_{2}=2 \Rightarrow c_{2}=-2-c_{1}=-3 \\
& \vec{X}(t)=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
e^{2 t} \cos t & e^{2 t} \sin t \\
-e^{2 t} \sin t & e^{2 t} \cos t
\end{array}\right)\binom{1}{-3} \\
&=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)\binom{e^{2 t} \cos t-3 e^{2 t} \sin t}{-e^{2 t} \sin t+3 e^{2 t} \cos t} \\
& x(t)=e^{2 t} \cos t-3 e^{2 t} \sin t \\
& y(t)=-e^{2 t} \cos t+3 e^{2 t} \sin t+e^{2 t} \sin t-3 e^{2 t} \cos t \\
&=-4 e^{2 t} \cos t+4 e^{2 t} \sin t .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q10. } x^{\prime}(t)=-4 x(t)+6 y(t) ; x(0)=-1 \\
& y^{\prime}(t)=-3 x(t)+5 y(t) ; y(0)=1 \\
& \vec{X}^{\prime}=\underbrace{\left(\begin{array}{ll}
-4 & 6 \\
-3 & 5
\end{array}\right)}_{A} \vec{X} ; \vec{X}(0)=\binom{-1}{1} \\
& |A-\lambda I|=\left|\begin{array}{cc}
-4-\lambda & 6 \\
-3 & 5-\lambda
\end{array}\right|=(-4-\lambda)(5-\lambda)+18 \\
& =\lambda^{2}-5 \lambda+4 \lambda-20+18=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)=0 \\
& \Rightarrow \lambda=-1,2 \\
& \lambda=-1:(A+I) \vec{u}=\overrightarrow{0} \Rightarrow\left(\begin{array}{ll|l}
-3 & 6 & 0 \\
-3 & 6 & 0
\end{array}\right) \\
& \Rightarrow-3 u_{1}+6 u_{2}=0 \Rightarrow u_{1}=2 u_{2} \Rightarrow \vec{u}=\binom{2}{1} u_{2} \\
& \lambda=2:(A-2 I) \vec{v}=0 \Rightarrow\left(\begin{array}{cc|c}
-6 & 6 & 0 \\
-3 & 3 & 0
\end{array}\right) \\
& \Rightarrow-6 v_{1}+6 v_{2}=0 \Rightarrow v_{1}=v_{2} \Rightarrow \vec{v}=\binom{1}{1} v_{1} \\
& P=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] ; \quad J=\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right) \leftarrow \begin{array}{c}
\text { Canonical foom } \\
\text { of } A
\end{array} \\
& \text { So } \vec{X}(t)=e^{A t} \cdot \vec{X}(0)=P e^{J t} \underbrace{P^{-1} \vec{X}(0)}_{\binom{c_{1}}{c_{2}}} \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\vec{X}(0) & =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{-1}{1} \\
2 c_{1} & +c_{2}=-1-(1) \\
c_{1} & +c_{2}=1-(2)
\end{array}\right\} \Rightarrow \begin{aligned}
& 11-(2): c_{1}=-2 \\
& \begin{aligned}
\vec{X}(t) & = \\
& \Rightarrow\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-2}{3} \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{-2 e_{1}=3}{3 e^{2 t}} \\
x(t) & =-4 e^{-t}+3 e^{2 t} \\
y(t) & =-2 e^{-t}+3 e^{2 t}
\end{aligned}
\end{aligned}
$$

11.

A (undamped) double spring system is set up as shown below. The spring constants and masses are as labelled. The mass m_{1} is displaced to the left $1 / 2$ meters and the mass m_{2} is displaced to the right $1 / 3$ meters. Then m_{1} and m_{2} are released from rest. Write down the equations of motion that govern the resulting motion.

11a. Write down the equations of motion for the system above

$$
\begin{array}{rl|l}
m_{1} \ddot{x}=-2 x-3 x+3 y & \ddot{x}=-x+\frac{3}{5} y \\
m_{1} \ddot{x}=-5 x+3 y & \ddot{y}=\frac{1}{2} x-\frac{7}{6} y \\
m_{2} \ddot{y}=+3 x-3 y-4 y & x(0)=-1 / 2 \\
=3 x-7 y & y(0)=1 / 3
\end{array}
$$

11b. Rewrite your equations in Q11(a) as a linear first order system of equations.

$$
\begin{aligned}
& u=\dot{x} \Rightarrow \dot{u}=\ddot{x}=-x+\frac{3}{5} y \\
& v=\dot{y} \Rightarrow \dot{v}=\ddot{y}=\frac{1}{2} x-\frac{7}{6} y \\
& \begin{cases}\dot{x}=u & x(0)=-1 / 2 \\
\dot{y}=v \\
\dot{x}=-x+\frac{3}{5} y & y(0)=1 / 3 \\
\dot{v}=\frac{1}{2} x-\frac{7}{6} y \quad\left\{\begin{array}{l}
u(0)=-\dot{x}(0)=0 \\
v(0)=\dot{y}(0)=0
\end{array}\right. \\
>\text { at rest at } t=0\end{cases}
\end{aligned}
$$

12. The MatLab output for the Lefkovitch matrix M given in the attached page is for an animal having five growth stages: Eggs, Juveniles, Sub-Adult A, Sub-Adult B, and Adult.
(a) Estimate the continuous grow rate of the population after a long time. Is the population increasing or decreasing after a long time?

Dominant eigenvalue 之
Continuous grow rate $=\frac{\ln (0.932)}{} \quad=0.932$

Circle One:
Population Increases
Population Decreases since $0.932<1$
(b) Find the stable population vector for the population. Your entries should be round to four decimal places.

$$
\begin{aligned}
S & =1.2714+1.0581+0.0779+0.0094+0.01 \\
& =2.4238
\end{aligned}
$$

$$
\begin{aligned}
& \text { stable } \\
& \text { population } \\
& \text { vector }
\end{aligned}=\frac{1}{s}\left[\begin{array}{c}
1.2714 \\
1.0551 \\
0.0779 \\
0.0094 \\
0.01
\end{array}\right]=\left[\begin{array}{c}
0.5245 \\
0.4353 \\
0.0321 \\
0.0039 \\
0.0041
\end{array}\right]
$$

(c) What is the population distribution in percentages after a long time? Give your answer round to two decimal places.

Eggs $=\frac{52.45 \%}{\text { Juvenile stage }=43.53 \%}$
Sub-adult A stage $=3.21 \%$

Sub-adult B stage $=0.39 \%$

Adult stage $=0.41 \%$
13. Solve the following system of equations:

$$
\begin{aligned}
& x^{\prime}(t)=x(t)+y(t)+4 ; \quad x(0)=1 \\
& y^{\prime}(t)=-x(t)+3 y(t)+8 ; \quad y(0)=1 \\
& \begin{aligned}
& \vec{X}^{\prime}(t)=\underbrace{\left(\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right)}_{A} \vec{X}(t)+\underbrace{\binom{4}{8}}_{\vec{B}}=A \vec{x}+A A^{-1} \vec{B} \\
&=A\left(\vec{X}+A^{-1} \vec{B}\right) \quad \\
& A^{-1} \vec{B}=\frac{1}{4}\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
8
\end{array}\right] \\
&=\left[\begin{array}{rr}
3 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Let $\vec{y}=\vec{x}+\binom{1}{3}$

$$
S_{0} \vec{y}^{\prime}=A \vec{y} \Rightarrow \vec{y}(t)=e^{A t} \cdot \vec{y}(0)
$$

Eigenvalues and Egenspaces of A.

$$
\begin{aligned}
& \left|\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right|=(1-\lambda)(3-\lambda)+1=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0 \\
& \Rightarrow \lambda=2,2
\end{aligned}
$$

Ecgenspace for $\lambda=2$

$$
\begin{aligned}
& (A-\lambda I) \vec{u}=\overrightarrow{0} \Rightarrow\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0} \\
& \Rightarrow-u_{1}+u_{2}=0 \\
& \vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{1}
\end{array}\right] ; u_{1} \in \mathbb{R}
\end{aligned}
$$

Generalized eyeuspace for $\lambda=2$

$$
\begin{aligned}
&(A-\lambda I) \vec{v}=\vec{u} \Rightarrow\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{u_{1}}{u_{1}} \Rightarrow-v_{1}+v_{2}=u_{1} \\
& \Rightarrow v_{2}=v_{1}+u_{1} \\
& \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{1}+u_{1}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+u_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; u_{1}, v_{1} \in \mathbb{R}
\end{aligned}
$$

Pick $u_{1}=, v_{1}=0$ so $P=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], J=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
So $A=P J P^{-1} \Rightarrow A t=P \cdot J_{t} \cdot P^{-1}$

$$
\begin{aligned}
& e^{A t}=P \cdot e^{J \cdot t} \cdot P^{-1} \quad ; J_{t}=\left(\begin{array}{cc}
2 t & t \\
0 & 2 t
\end{array}\right) \\
& \vec{Y}(t)=e^{A t} \cdot \vec{Y}(0)=P \cdot e^{J t} \cdot P^{-1} \vec{Y}(0) \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{2 t} & t e^{2 t} \\
0 & e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{c_{1} e^{2 t}+c_{2} t e^{2 t}}{c_{2} e^{2 t}} \\
& =\binom{c_{1} e^{2 t}+c_{2} t e^{2 t}}{\left(c_{1}+c_{2}\right) e^{2 t}+c_{2} t e^{2 t}} \\
& \vec{y}=\vec{x}+\binom{1}{3} \Rightarrow \vec{x}=\vec{Y}-\binom{1}{3} \\
& \Rightarrow\left\{\begin{array}{l}
x(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}-1 \\
y(t)=\left(c_{1}+c_{2}\right) e^{2 t}+c_{2} t e^{2 t}-3
\end{array}\right. \\
& x(0)=1=c_{1}-1 \Rightarrow c_{1}=2 \\
& y(0)=1=c_{1}+c_{2}-3 \Rightarrow c_{2}=-c_{1}+4=2 \\
& x(t)=2 e^{2 t}+2 t e^{2 t}-1 \\
& y(t)=4 e^{2 t}+2 t e^{2 t}-3
\end{aligned}
$$

Math 20480 - Matrix Formulas

You should know all these formulas for the exam.
Powers of 2×2 Canonical Forms

$$
\begin{aligned}
& \left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)^{n}=\left(\begin{array}{ll}
\lambda^{n} & 0 \\
0 & \mu^{n}
\end{array}\right) ;
\end{aligned}\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)^{n}=\left(\begin{array}{ll}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right), ~\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)^{n}=\left(\begin{array}{cc}
R \cos (\theta) & R \sin (\theta) \\
-R \sin (\theta) & R \cos (\theta)
\end{array}\right)=\left(\begin{array}{cc}
R^{n} \cos (n \theta) & R^{n} \sin (n \theta) \\
-R^{n} \sin (n \theta) & R^{n} \cos (n \theta)
\end{array}\right) .
$$

Powers of Larger Jordan Matrices

$$
\begin{aligned}
& \left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)^{n}=\left(\begin{array}{ccc}
\lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} \\
0 & \lambda^{n} & n \lambda^{n-1} \\
0 & 0 & \lambda^{n}
\end{array}\right) \quad \text { Here }\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2} \\
& \left(\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right)^{n}=\left(\begin{array}{llll}
\lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} & \binom{n}{3} \lambda^{n-3} \\
0 & \lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} \\
0 & 0 & \lambda^{n} & n \lambda^{n-1}
\end{array}\right) \quad \operatorname{Here}\binom{n}{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Exponential of 2×2 Canonical Forms

$$
\begin{aligned}
& \exp \left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right) ; \quad \exp \left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & 0 \\
0 & \mu t
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & t \\
0 & \lambda t
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
\end{aligned}
$$

Here $\exp (A)=e^{A}$ where A is any square matrix.

Matrix Exponential Formulas (Real Eigenvalue Case).

$$
\begin{aligned}
& \exp \left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right) ; \quad \exp \left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & 0 \\
0 & \mu t
\end{array}\right)=\left(\begin{array}{ll}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right) ; \\
& \exp \left[\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{cc}
\lambda t & t \\
0 & \lambda t
\end{array}\right)=\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right) \\
& \exp \left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda_{1}} & 0 & 0 \\
0 & e^{\lambda_{2}} & 0 \\
0 & 0 & e^{\lambda_{3}}
\end{array}\right) ; \exp \left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda} & e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda} & e^{\lambda} \\
0 & 0 & e^{\lambda}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)\right] \cdot t=\exp \left(\begin{array}{ccc}
\lambda_{1} t & 0 & 0 \\
0 & \lambda_{2} t & 0 \\
0 & 0 & \lambda_{3} t
\end{array}\right)=\left(\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 \\
0 & 0 & e^{\lambda_{3} t}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{ccc}
\lambda t & t & 0 \\
0 & \lambda t & t \\
0 & 0 & \lambda t
\end{array}\right)=\left(\begin{array}{lll}
e^{\lambda t} & t e^{\lambda t} & t^{2} e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & e^{\lambda t}
\end{array}\right) \\
& \exp \left[\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{ccc}
\lambda t & t & 0 \\
0 & \lambda t & t \\
0 & 0 & \lambda t
\end{array}\right)=\left(\begin{array}{lll}
e^{\lambda t} & t e^{\lambda t} & t^{2} e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & e^{\lambda t}
\end{array}\right)
\end{aligned}
$$

Matrix Exponential Formulas (Complex Eigenvalue Case).

$$
\begin{aligned}
& \exp \left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
e^{a} \cos (b) & e^{a} \sin (b) \\
-e^{a} \sin (b) & e^{a} \cos (b)
\end{array}\right) \\
& \exp \left[\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) \cdot t\right]=\exp \left(\begin{array}{rr}
a t & b t \\
-b t & a t
\end{array}\right)=\left(\begin{array}{cc}
e^{a t} \cos (b t) & e^{a t} \sin (b t) \\
-e^{a t} \sin (b t) & e^{a t} \cos (b t)
\end{array}\right)
\end{aligned}
$$

Remark 1. Let J be the canonical form of square matrix A and non-singular P such that $A=P J P^{-1}$. Then $e^{A}=P \cdot e^{J} \cdot P^{-1}$.

Remark 2. If $D=\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ where A_{i} is a square matrix of size n_{i} so D is a square matrix of size $N=\sum n_{i}$. Then we have:

$$
e^{D}=\operatorname{diag}\left(e^{A_{1}}, e^{A_{2}}, \ldots, e^{A_{k}}\right)
$$

