Math 20480 - Example Set 02A

1a. Use Gaussian elimination to find the inverse of the following matrix:

$$
A=\left(\begin{array}{rrr}
2 & 3 & -5 \\
-3 & 1 & 4 \\
5 & -4 & 6
\end{array}\right)
$$

1b. Using your answer in (a), find the solution of the system of equations:

$$
\begin{aligned}
2 x+3 y-5 z & =1 \\
-3 x+y+4 z & =0 \\
5 x-4 y+6 z & =-1
\end{aligned}
$$

2a. Find a formula for the inverse of a 2×2 (non-singular) matrix.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=
$$

2b. Define the determinant of a 2×2 matrix and explain its significance in solving a system of linear equations with two variables.

Math 20480 - Example Set 02B

1. Find the determinant of the following matrices:
a. $\left(\begin{array}{cc}3 & 5 \\ 5 & -1\end{array}\right)$
b. $\left(\begin{array}{ccc}1 & 1 & 2 \\ 1 & -2 & -1 \\ 1 & -1 & 1\end{array}\right)$
c. $\left(\begin{array}{cccc}1 & -2 & -1 & 3 \\ -1 & 2 & 0 & -1 \\ 0 & 1 & -2 & 2 \\ 3 & -1 & 2 & -3\end{array}\right)$
2. Without solving explicitly, determine if the following systems of equations have a unique solution.
a.

$$
\begin{aligned}
x+y+2 z & =8 \\
x-2 y-z & =-1 \\
x-y+z & =4
\end{aligned}
$$

b.

$$
\begin{aligned}
x+y-2 z & =3 \\
-2 x+z & =-3 \\
-5 x+y+z & =-6
\end{aligned}
$$

