Determinant of A Square Matrices.

Case: 2×2 Matrices.

The determinant of
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is
$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = _$$

For matrices with size larger than 2, we need to use cofactor expansion to obtain its value.

Case: 3×3 Matrices.

The determinant of
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 is $det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

(Cofactor expansion along the 1st row)

 $=a_{11} \left| \begin{array}{c} - a_{12} \\ + a_{13} \\ \end{array} \right|$

(Cofactor expansion along the 2nd row)

=

(Cofactor expansion along the 1st column)

=

(Cofactor expansion along the 2nd column)

=

Example 1:

$$\begin{vmatrix} 1 & 1 & 2 \\ 1 & -2 & -1 \\ 1 & -1 & 1 \end{vmatrix} \stackrel{?}{=}$$

Case: 4×4 Matrices.

(Cofactor expansion along the 1st row)

(Cofactor expansion along the 2nd column)

=

=

Example 2:

1	-2	-1	3	
-1	2	0	-1	?
0	1	-2	2	=
3	-1	2	-3	

Theorem 1: Let A be a square $n \times n$ matrix. Then the A has an inverse if and only if $det(A) \neq 0$. We call a matrix A with inverse a ______ matrix.

Theorem 2: Let A be a square $n \times n$ matrix and \vec{b} be any $n \times 1$ matrix. Then the equation

 $A\vec{x}=\vec{b}$

has a ______ solution for \vec{x} if and only if ______.

Proof:

Remark: If A is **non-singular** then the only solution of $A\vec{x} = 0$ is $\vec{x} =$ _____.

3. Without solving explicitly, determine if the following systems of equations have a **unique** solution.

a.

x	+		y	+	2z	=	8
x	_	2	y	_	z	=	-1
x	_		y	+	z	=	4
5	r	+	y	—	2z	=	3
-23	r			+	z	=	-3
-53	r	+	y	+	z	=	-6

b.

Geometric Interpretation of *n*-tuples

Case: 2 -tuples
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 or $\begin{pmatrix} x & y \end{pmatrix}$
There are two geometric interpretations of 2-tuples:
(A) ______ or (B) ______
Position Vectors
Each tuple $\begin{pmatrix} x \\ y \end{pmatrix}$ can be used to locate a ______ on plane relative to the ______.
Position vectors are always based at the ______.
(1) Concept of direction from the origin
(2) Concept of distance

Direction Vectors

Each tuple $\begin{pmatrix} x \\ y \end{pmatrix}$ can also be used to indicate the a direction.

(1) Direction vectors are	free.	y	
(2) Parallel vectors are identified.			
		0	x

The xy-plane as a Two Dimension Vector Space

Interpret each tuple $\begin{pmatrix} x \\ y \end{pmatrix}$ as a matrix. Then we may write the sum:

We call this sum a ______ of $\begin{pmatrix} 1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1 \end{pmatrix}$ We can interpret the vectors $\begin{pmatrix} 1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1 \end{pmatrix}$ as ______ for the two-dimensional coordinate space. We call the set $\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$ the ______. **Example 4:** Can the set $\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1 \end{pmatrix} \right\}$ form a basis for the two-dimensional coordinate space? Explain. If yes, write the $\begin{pmatrix} 2\\0 \end{pmatrix}$ as a linear combination of $\begin{pmatrix} 1\\1 \end{pmatrix}$ and $\begin{pmatrix} -1\\1 \end{pmatrix}$. Illustrate your answer in a diagram.

Basis for The Two Dimensional Space \mathbb{R}^2

The two-dimensional coordinate space is often denoted by \mathbb{R}^2 . We have seen that all vectors $\begin{pmatrix} x \\ y \end{pmatrix}$ can be ______ written as a linear combination of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$: $\mathbb{R}^2 = \left\{ x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} : x, y \text{ are real numbers} \right\}$ =

We observe that \mathbb{R}^2 is "built up" by _____ $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0\\ 1 \end{pmatrix}$ We need exact two vectors to span the space \mathbb{R}^2 .

No more: What if we use three vectors to span: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} a \\ b \end{pmatrix}$?

No less: What if only have one vector to span: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} a \\ b \end{pmatrix}$?

Example 5: Can any vector in \mathbb{R}^2 be uniquely written as a linear combination of $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$? Explain.

Theorem 3: Two vectors $\vec{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} c \\ d \end{pmatrix}$ forms a basis for \mathbb{R}^2 if and only if $\begin{vmatrix} a & c \\ b & d \end{vmatrix} \neq 0$.

Theorem 4: *n* vectors $\vec{u_1}, \vec{u_2}, ..., \vec{u_n}$ forms a basis in \mathbb{R}^n if and only if the determinant

 $|\vec{u}_1:\vec{u}_2:\cdots:\vec{u}_n|\neq 0.$

Example 6: Which of the sets below form a basis for \mathbb{R}^3 ?

(a)
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\1 \end{pmatrix} \right\}$$
 (b) $\left\{ \begin{pmatrix} 1\\-2\\-5 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\1 \end{pmatrix} \right\}$

Formal Definition of A Vector Space A vector space V over the real numbers is a set with two operations + (addition) and \cdot (scalar multiplication) with the following properties:

(1) V is an non-empty set whose members are called ______. Moreover, V is ______ under addition and scalar multiplications.

(2) Transitivity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for any members $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of V.

(3) Zero Vector: There is a vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$ for any \mathbf{u} in V.

(4) **Negative Vector:** For each **u** in V, there is a vector in V, denoted $-\mathbf{u}$, called the negative of **u** such that

$$u + (-u) = 0 = (-u) + u.$$

(5) Commutative: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any \mathbf{u}, \mathbf{v} in V.

(6) Scalar multiplication 1: For any real number (scalar) k, and any \mathbf{u}, \mathbf{v} in V,

$$k \cdot (\mathbf{u} + \mathbf{v}) = k \cdot \mathbf{u} + k \cdot \mathbf{v}$$

(7) Scalar multiplication 2: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$(a+b)\cdot\mathbf{u} = a\cdot\mathbf{u} + b\cdot\mathbf{u}$$

(8) Scalar multiplication 3: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

 $(ab) \cdot \mathbf{u} = a \cdot (b \cdot \mathbf{u})$

(9) Unit Scalar: There is a unit scalar, denoted 1, such that for any **u**,

 $1 \cdot \mathbf{u} = \mathbf{u}.$

Examples of Vector Spaces over \mathbb{R} .

(1) The *n*-dimensional real coordinate space \mathbb{R}^n with the usual vector addition and scaling by real numbers. It standard basis is:

(2) The space of all real 2×2 matrices with the usual matrix addition and scaling by real numbers. It standard basis is:

(3) The space of all real 2×3 matrices with the usual matrix addition and scaling by real numbers. It standard basis is:

(4) The space of all quadratic polynomials with real coefficients with usual matrix addition and scaling by real numbers. It standard basis is:

(5) The solution space of $A\vec{x} = 0$ where A is any $n \times n$ real matrix (System of homogeneous solution).

Example 6: Consider the system of linear homogeneous equations:

Verify that the solutions of these equations forms a vector space. Find a basis for its solution space V. (1) V is an non-empty set closed under addition and scalar multiplications.

(2) Transitivity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for any members $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of V.

(3) Zero Vector: There is a vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$ for any \mathbf{u} in V.

(4) **Negative Vector:** For each \mathbf{u} in V, there is a vector in V, denoted $-\mathbf{u}$, called the negative of \mathbf{u} such that

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0} = (-\mathbf{u}) + \mathbf{u}.$$

(5) Commutative: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any \mathbf{u}, \mathbf{v} in V.

(6) Scalar multiplication 1: For any real number (scalar) k, and any \mathbf{u}, \mathbf{v} in V,

$$k \cdot (\mathbf{u} + \mathbf{v}) = k \cdot \mathbf{u} + k \cdot \mathbf{v}$$

(7) Scalar multiplication 2: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$(a+b)\cdot\mathbf{u} = a\cdot\mathbf{u} + b\cdot\mathbf{u}$$

(8) Scalar multiplication 3: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$(ab) \cdot \mathbf{u} = a \cdot (b \cdot \mathbf{u})$$

(9) Unit Scalar: There is a unit scalar, denoted 1, such that for any **u**,

$$1 \cdot \mathbf{u} = \mathbf{u}.$$

To find a basis for the solution space we need to find the solution using Gaussian elimination.

Linear Independence

Example 7: Describe the (linear) span of the following set of vectors in \mathbb{R}^3 ?

$\left(\right)$	$\begin{pmatrix} 1 \end{pmatrix}$		(1)		(-2))
{	-2	,	0	,	1	}
U	$\left(-5\right)$		1		$\begin{pmatrix} 1 \end{pmatrix}$	']

Definition (Linear Dependence: A set of vectors $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ is said to be linearly dependent if

there are scalars a_1, a_2, \dots, a_n , ______, such that

Otherwise, we say that $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ is ______.

Give some examples of a linearly independent set and a linearly dependent set.

Example 8: Is the set $\{(1, -2, 5, -3); (2, 3, 1, -4); (3, 8, -3, -5)\}$ linearly independent in \mathbb{R}^4 ?