Math 20480 - Example Set 03A

Determinant of A Square Matrices.

Case: 2×2 Matrices.
The determinant of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=
$$

\qquad
For matrices with size larger than 2 , we need to use cofactor expansion to obtain its value.
Case: 3×3 Matrices.
The determinant of $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ is $\operatorname{det}(A)=|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
(Cofactor expansion along the 1st row)

$$
=a_{11}|\quad| \quad-a_{12}|\quad|+a_{13} \mid
$$

(Cofactor expansion along the 2nd row)

$$
=
$$

(Cofactor expansion along the 1st column)

$$
=
$$

(Cofactor expansion along the 2nd column)
$=$

Example 1:

$\left|\begin{array}{rrr}1 & 1 & 2 \\ 1 & -2 & -1 \\ 1 & -1 & 1\end{array}\right| \stackrel{?}{=}$

Case: 4×4 Matrices.
$\left|\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right|$
(Cofactor expansion along the 1st row)
$=$
(Cofactor expansion along the 2nd column)
$=$

Example 2:

$\left|\begin{array}{rrrr}1 & -2 & -1 & 3 \\ -1 & 2 & 0 & -1 \\ 0 & 1 & -2 & 2 \\ 3 & -1 & 2 & -3\end{array}\right| \stackrel{?}{=}$

Theorem 1: Let A be a square $n \times n$ matrix. Then the A has an inverse if and only if $\operatorname{det}(A) \neq 0$. We call a matrix A with inverse a \qquad matrix.

Theorem 2: Let A be a square $n \times n$ matrix and \vec{b} be any $n \times 1$ matrix. Then the equation

$$
A \vec{x}=\vec{b}
$$

has a \qquad solution for \vec{x} if and only if \qquad .

Proof:

Remark: If A is non-singular then the only solution of $A \vec{x}=0$ is $\vec{x}=$ \qquad .
3. Without solving explicitly, determine if the following systems of equations have a unique solution.
a.

$$
\begin{aligned}
x+y+2 z & =8 \\
x-2 y-z & =-1 \\
x-y+z & =4
\end{aligned}
$$

b.

$$
\begin{aligned}
x+y-2 z & =3 \\
-2 x+z & =-3 \\
-5 x+y+z & =-6
\end{aligned}
$$

Geometric Interpretation of n-tuples

Case: 2 -tuples $\binom{x}{y}$ or $\left(\begin{array}{ll}x & y\end{array}\right)$
There are two geometric interpretations of 2-tuples:
(A) \qquad
(B) \qquad

Position Vectors

Each tuple $\binom{x}{y}$ can be used to locate a \qquad on plane relative to the \qquad .
Position vectors are always based at the \qquad .

Direction Vectors

Each tuple $\binom{x}{y}$ can also be used to indicate the a direction.
(1) Direction vectors are \qquad free.
(2) Parallel vectors are identified.
(1) Direction vectors are

The $x y$-plane as a Two Dimension Vector Space
Interpret each tuple $\binom{x}{y}$ as a matrix. Then we may write the sum:

We call this sum a \qquad of $\binom{1}{0}$ and $\binom{0}{1}$

We can interpret the vectors $\binom{1}{0}$ and $\binom{0}{1}$ as \qquad for the two-dimensional coordinate space.

We call the set $\left\{\binom{1}{0},\binom{0}{1}\right\}$ the
Example 4: Can the set $\left\{\binom{1}{1},\binom{-1}{1}\right\}$ form a basis for the two-dimensional coordinate space? Explain. If yes, write the $\binom{2}{0}$ as a linear combination of $\binom{1}{1}$ and $\binom{-1}{1}$. Illustrate your answer in a diagram.

Basis for The Two Dimensional Space \mathbb{R}^{2}

The two-dimensional coordinate space is often denoted by \mathbb{R}^{2}. We have seen that all vectors $\binom{x}{y}$ can be \qquad written as a linear combination of $\binom{1}{0}$ and $\binom{0}{1}$:

$$
\begin{aligned}
\mathbb{R}^{2} & =\left\{x\binom{1}{0}+y\binom{0}{1}: x, y \text { are real numbers }\right\} \\
& =
\end{aligned}
$$

We observe that \mathbb{R}^{2} is "built up" by $\quad\binom{1}{0}$ and $\binom{0}{1}$
We need exact two vectors to span the space \mathbb{R}^{2}.
No more: What if we use three vectors to span: $\binom{1}{0},\binom{0}{1}$ and $\binom{a}{b}$?

No less: What if only have one vector to span: $\binom{1}{0}$ or $\binom{0}{1}$ or $\binom{a}{b}$?

Example 5: Can any vector in \mathbb{R}^{2} be uniquely written as a linear combination of $\binom{-1}{-2}$ and $\binom{2}{1}$? Explain.

Theorem 3: Two vectors $\vec{u}=\binom{a}{b}$ and $\vec{v}=\binom{c}{d}$ forms a basis for \mathbb{R}^{2} if and only if $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right| \neq 0$.

Theorem 4: n vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ forms a basis in \mathbb{R}^{n} if and only if the determinant

$$
\left|\vec{u}_{1}: \vec{u}_{2}: \cdots: \vec{u}_{n}\right| \neq 0 .
$$

Example 6: Which of the sets below form a basis for \mathbb{R}^{3} ?
(a) $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ -2 \\ -1\end{array}\right),\left(\begin{array}{r}2 \\ -1 \\ 1\end{array}\right)\right\} \quad$ (b) $\left\{\left(\begin{array}{r}1 \\ -2 \\ -5\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)\right\}$

Formal Definition of A Vector Space A vector space V over the real numbers is a set with two operations + (addition) and \cdot (scalar multiplication) with the following properties:
(1) V is an non-empty set whose members are called \qquad . Moreover, V is \qquad under addition and scalar multiplications.
(2) Transitivity: $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for any members $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of V.
(3) Zero Vector: There is a vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}$ for any \mathbf{u} in V.
(4) Negative Vector: For each \mathbf{u} in V, there is a vector in V, denoted $-\mathbf{u}$, called the negative of \mathbf{u} such that

$$
\mathbf{u}+(-\mathbf{u})=\mathbf{0}=(-\mathbf{u})+\mathbf{u}
$$

(5) Commutative: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for any \mathbf{u}, \mathbf{v} in V.
(6) Scalar multiplication 1: For any real number (scalar) k, and any \mathbf{u}, \mathbf{v} in V,

$$
k \cdot(\mathbf{u}+\mathbf{v})=k \cdot \mathbf{u}+k \cdot \mathbf{v}
$$

(7) Scalar multiplication 2: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$
(a+b) \cdot \mathbf{u}=a \cdot \mathbf{u}+b \cdot \mathbf{u}
$$

(8) Scalar multiplication 3: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$
(a b) \cdot \mathbf{u}=a \cdot(b \cdot \mathbf{u})
$$

(9) Unit Scalar: There is a unit scalar, denoted 1 , such that for any \mathbf{u},

$$
1 \cdot \mathbf{u}=\mathbf{u}
$$

Examples of Vector Spaces over \mathbb{R}.

(1) The n-dimensional real coordinate space \mathbb{R}^{n} with the usual vector addition and scaling by real numbers. It standard basis is:
(2) The space of all real 2×2 matrices with the usual matrix addition and scaling by real numbers. It standard basis is:
(3) The space of all real 2×3 matrices with the usual matrix addition and scaling by real numbers. It standard basis is:
(4) The space of all quadratic polynomials with real coefficients with usual matrix addition and scaling by real numbers. It standard basis is:
(5) The solution space of $A \vec{x}=0$ where A is any $n \times n$ real matrix (System of homogeneous solution).

Example 6: Consider the system of linear homogeneous equations:

$$
\begin{aligned}
x+y-2 z & =0 \\
-2 x+z & =0 \\
-5 x+y+z & =0
\end{aligned}
$$

Verify that the solutions of these equations forms a vector space. Find a basis for its solution space V.
(1) V is an non-empty set closed under addition and scalar multiplications.
(2) Transitivity: $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for any members $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of V.
(3) Zero Vector: There is a vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}$ for any \mathbf{u} in V.
(4) Negative Vector: For each \mathbf{u} in V, there is a vector in V, denoted $-\mathbf{u}$, called the negative of \mathbf{u} such that

$$
\mathbf{u}+(-\mathbf{u})=\mathbf{0}=(-\mathbf{u})+\mathbf{u}
$$

(5) Commutative: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for any \mathbf{u}, \mathbf{v} in V.
(6) Scalar multiplication 1: For any real number (scalar) k, and any \mathbf{u}, \mathbf{v} in V,

$$
k \cdot(\mathbf{u}+\mathbf{v})=k \cdot \mathbf{u}+k \cdot \mathbf{v}
$$

(7) Scalar multiplication 2: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$
(a+b) \cdot \mathbf{u}=a \cdot \mathbf{u}+b \cdot \mathbf{u}
$$

(8) Scalar multiplication 3: For any real numbers (scalars) a and b, and any \mathbf{u} in V,

$$
(a b) \cdot \mathbf{u}=a \cdot(b \cdot \mathbf{u})
$$

(9) Unit Scalar: There is a unit scalar, denoted 1, such that for any u,

$$
1 \cdot \mathbf{u}=\mathbf{u}
$$

To find a basis for the solution space we need to find the solution using Gaussian elimination.

Linear Independence

Example 7: Describe the (linear) span of the following set of vectors in \mathbb{R}^{3} ?

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
-5
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right)\right\}
$$

Definition (Linear Dependence: A set of vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ is said to be linearly dependent if
there are scalars $a_{1}, a_{2}, \ldots, a_{n}$, \qquad , such that

Otherwise, we say that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ is \qquad .

Give some examples of a linearly independent set and a linearly dependent set.

Example 8: Is the set

$$
\{(1,-2,5,-3) ; \quad(2,3,1,-4) ; \quad(3,8,-3,-5)\}
$$

linearly independent in \mathbb{R}^{4} ?

