Math 20480 - Example Set 05A

1. Consider the matrix $A=\left(\begin{array}{lll}3 & 0 & 0 \\ 1 & 4 & 4 \\ 0 & 0 & 5\end{array}\right)$.

Find the following

1a. The characteristic polynomial.

1b. The eigenvectors.

1c. Diagonalize A.

Math 20480 - Example Set 05B

(Jordan Matrix). We call any matrix in the form $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ a Jordan matrix. It could be thought of as an "almost diagonal" matrix
(Repeated Real Eigenvalues). In the case when a 2×2 matrix A has one eigenvalue λ and only one representative for the eigenvector can be found, then A cannot be diagonalized. When this happens we associate A to a Jordan matrix $J=\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ such that $A=P J P^{-1}$.

Here $P=(\vec{u} \mid \vec{v})$ where \vec{u} is an eigenvector of A and \vec{v} is such that $(A-\lambda I) \vec{v}=\vec{u}$. We say that J is the Jordan normal form of A.

We note that $(A-\lambda I)^{2} \vec{v}=(A-\lambda I) \vec{u}=0$. Because of this, we call such \vec{v} a generalized eigenvector of A corresponding to λ.

1a. Find the eigenvalues of the matrix

$$
A=\left(\begin{array}{rr}
5 & -1 \\
4 & 1
\end{array}\right)
$$

1b. Find an eigenvector corresponding to each of the above eigenvalues.
1c. Find a 2×2 matrix P such that

$$
A=P\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right) P^{-1}
$$

1d. Solve the system of difference equations

$$
\begin{aligned}
x(n) & =5 x(n-1)-y(n-1) & x(0)=1 \\
y(n) & =4 x(n-1)+y(n-1) & y(0)=-2
\end{aligned}
$$

(Complex Number). A number of the form $z=a+b i$ where a and b are real numbers and $i=\sqrt{-1}$ is called a complex number. The complex number $z=a+b i$ can be represented as a point on the complex plane (or Argand plane) with coordinates (a, b).
(Modulus of a Complex Number). The length or modulus $|z|$ of the complex number $z=a+b i$ is given by the distance of the point (a, b) from the origin in the complex plane. So we have the formula

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

(Polar Form of a Complex Number). Consider the complex number $z=a+b i$. Its coordinates (a, b) in the complex plane can be written in polar coordinates $(|z| \cos \theta,|z| \sin \theta)$ where $0 \leq \theta \leq 2 \pi$ such that $\tan \theta=\frac{b}{a}$. Therefore we may write

$$
z=|z|(\cos \theta+i \sin \theta)
$$

Using the Maclaurin series of $\cos x, \sin x$, and e^{x}, we may show that

$$
e^{i \theta}=\cos \theta+i \sin \theta \quad \text { (Euler's Formula) }
$$

Therefore we have

$$
z=a+b i=|z| e^{i \theta}
$$

where $|z|=\sqrt{a^{2}+b^{2}}$ and $0 \leq \theta \leq 2 \pi$ such that $\tan \theta=\frac{b}{a}$.
(Conjugate of a Complex Number). The conjugate \bar{z} of the complex number $z=a+b i$ is defined as $\bar{z}=a-b i$. Note that $|\bar{z}|=|z|$.

1. For the complex numbers below (i) draw them in the complex plane, (ii) find their modulus, (iii) give their polar form, and (iv) find their conjugates.
(a) $-3 i$
(b) $-1+i$
(c) $-1-\sqrt{3} i$
(d) $e^{i \frac{\pi}{6}}$
