1. Consider the matrix
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 4 & 4 \\ 0 & 0 & 5 \end{pmatrix}$$
.

Find the following

- **1a.** The characteristic polynomial.
- **1b.** The eigenvectors.
- **1c.** Diagonalize *A*.

Math 20480 – Example Set 05B

(Jordan Matrix). We call any matrix in the form $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ a Jordan matrix. It could be thought of as an "almost diagonal" matrix

(Repeated Real Eigenvalues). In the case when a 2×2 matrix A has one eigenvalue λ and only one representative for the eigenvector can be found, then A cannot be diagonalized. When this happens we associate A to a Jordan matrix $J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ such that $A = PJP^{-1}$.

Here $P = (\vec{u}|\vec{v})$ where \vec{u} is an eigenvector of A and \vec{v} is such that $(A - \lambda I)\vec{v} = \vec{u}$. We say that J is the Jordan normal form of A.

We note that $(A - \lambda I)^2 \vec{v} = (A - \lambda I)\vec{u} = 0$. Because of this, we call such \vec{v} a generalized eigenvector of A corresponding to λ .

1a. Find the eigenvalues of the matrix

$$A = \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}$$

- **1b.** Find an eigenvector corresponding to each of the above eigenvalues.
- 1c. Find a 2×2 matrix P such that

$$A = P \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix} P^{-1}$$

1d. Solve the system of difference equations

$$\begin{aligned} x(n) &= 5x(n-1) - y(n-1) & x(0) &= 1 \\ y(n) &= 4x(n-1) + y(n-1) & y(0) &= -2 \end{aligned}$$

(Complex Number). A number of the form z = a + biwhere a and b are real numbers and $i = \sqrt{-1}$ is called a complex number. The complex number z = a + bi can be represented as a point on the complex plane (or Argand plane) with coordinates (a, b).

(Modulus of a Complex Number). The length or modulus |z| of the complex number z = a + bi is given by the distance of the point (a, b) from the origin in the complex plane. So we have the formula

$$|z| = \sqrt{a^2 + b^2}$$

(Polar Form of a Complex Number). Consider the complex number z = a + bi. Its coordinates (a, b) in the complex plane can be written in polar coordinates $(|z|\cos\theta, |z|\sin\theta)$ where $0 \le \theta \le 2\pi$ such that $\tan \theta = \frac{b}{a}$. Therefore we may write

$$z = |z|(\cos\theta + i\sin\theta)$$

Using the Maclaurin series of $\cos x$, $\sin x$, and e^x , we may show that

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 (Euler's Formula)

Therefore we have

$$z = a + bi = |z|e^{i\theta}$$

where $|z| = \sqrt{a^2 + b^2}$ and $0 \le \theta \le 2\pi$ such that $\tan \theta = \frac{b}{a}$.

(Conjugate of a Complex Number). The conjugate \bar{z} of the complex number z = a + bi is defined as $\bar{z} = a - bi$. Note that $|\bar{z}| = |z|$.

1. For the complex numbers below (i) draw them in the complex plane, (ii) find their modulus, (iii) give their polar form, and (iv) find their conjugates.

- (a) -3i
- (b) -1 + i
- (c) $-1 \sqrt{3}i$
- (d) $e^{i\frac{\pi}{6}}$