Math 20480 - Example Set 06A

Complex Eigenvalues). In the case when a 2×2 matrix A has eigenvalues $\alpha \pm \beta i$ with eigenvectors $\vec{p} \pm \vec{q} i$, then A be diagonalized but with complex numbers as entries in $P D P^{-1}$ in the usual way.

This is not very helpful in our case as we are working with real values only. When this happens we associate A to a real-entry normal matrix $S=\left(\begin{array}{rr}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$ such that $A=P S P^{-1}$.

Here $P=(\vec{p} \mid \vec{q})$ where $\vec{p}+\vec{q} i$ is an eigenvector of A corresponding to $\alpha \pm \beta i$.

1a. Find the eigenvalues of the matrix

$$
A=\left(\begin{array}{rr}
-7 & -6 \\
15 & 11
\end{array}\right)
$$

1b. Find an eigenvector corresponding to each of the above eigenvalues.

1c. Find a 2×2 matrix P such that

$$
A=P\left(\begin{array}{rr}
2 & 3 \\
-3 & 2
\end{array}\right) P^{-1}
$$

Math 20480 - Example Set 06B

1a. Write the matrix $S=\left(\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right)$ in the form $\left(\begin{array}{rr}r \cos \theta & r \sin \theta \\ -r \sin \theta & r \cos \theta\end{array}\right)$.

1b. Solve the system of difference equations

$$
\begin{aligned}
x(n)=-7 x(n-1)-6 y(n-1) & x(0)=-1 \\
y(n)=15 x(n-1)+11 y(n-1) & y(0)=1
\end{aligned}
$$

2a. Consider the matrix

$$
B=\left(\begin{array}{rrr}
-3 & -1 & 1 \\
2 & 1 & -2 \\
2 & 4 & -4
\end{array}\right)
$$

Find the invertible matrix P such that $B=P C P^{-1}$ where C is a canonical form of B.

2b. Solve the system of difference equations

$$
\begin{aligned}
& x(n)=-3 x(n-1)-y(n-1)+z(n-1) \\
& y(n)=2 x(n-1)+y(n-1)-2 z(n-1) \\
& z(n)=2 x(n-1)+4 y(n-1)-4 z(n-1)
\end{aligned}
$$

