Math 20480 – Example Set 12A

1. Find the exponential of the matrix

$$
A = \begin{pmatrix} -3 & -4 \\ 2 & 1 \end{pmatrix}
$$

by the following steps.

1a. Find the **complex** canonical form J associated to A including the transition matrix Q .

1b. Find the kth power of A in terms of Q and J .

1c. Let $T_k(x)$ be the kth Maclaurin's polynomial of e^x :

$$
T_k(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!}
$$

Find a formula for $T_k(A)$ in terms of Q and J.

1d. By taking limit of your answer in (c), find e^A in terms of Q and J. Extract a real form for the exponential e^A .

2. Discuss the solution of the system of differential equations:

$$
x'(t) = -3x(t) - 4y(t); \t x(0) = 1
$$

$$
y'(t) = 2x(t) + y(t); \t y(0) = 2
$$

3. Solve for the general solution of the system of differential equation:

$$
x' = -7x - 10y + 10z \n y' = 2x + y - 2z \n z' = -2x - 4y + 3z
$$

Non-homogeneous Linear System of Differential Equations with Constant Coefficients. A system of differential equations takes the form

$$
\vec{X}'(t) = A \cdot \vec{X}(t) + \vec{B}(t)
$$

where A is a $n \times n$ real-valued matrix and $\vec{B}(t)$ is a $n \times 1$ vector-valued function. In two dimensions, we explicitly have

$$
x'(t) = a x(t) + b y(t) + f(t)
$$

$$
y'(t) = c x(t) + d y(t) + g(t)
$$

where $A =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\vec{B}(t) = \begin{pmatrix} f(t) \\ g(t) \end{pmatrix}$ $g(t)$ \setminus .

Such equations are solved using an integrating (matrix) factor $e^{-A \cdot t}$. Multiply the equation by $e^{-A \cdot t}$ and discuss how the system may be solved.

1. Recall Richardson's Theory of Conflict for two people groups G_1 and G_2 . Let $x(t)$ be the potential for war (armament) for G_1 and $y(t)$ be the potential for war for G_2 . Then we have:

$$
\frac{dx}{dt} = ky - \alpha x + g
$$

$$
\frac{dy}{dt} = l x - \beta y + h
$$

Richardson estimated that for the two allies G_1 : Germany-Austria-Hungary and G_2 : France-Russia that $k = 0.9 = l$ and $\alpha = 0.2 = \beta$. Here α^{-1} is the lifetime of the parliament so in this case we are taking the lifetime of the parliament (governing body) to be 5 years for both groups. Also k is proportional to the amount of industry a nation has. Germany grew its armament to level of its neighboring countries over the period of 1933-1936 so $k \approx 0.3$. Since both allies are about the same size (about three times that of Germany), we take $k = 0.9 = l$. If $q = 1.4 = h$, the system is:

$$
\frac{dx}{dt} = -0.2x + 0.9y + 1.4
$$

$$
\frac{dy}{dt} = 0.9x - 0.2y + 1.4
$$

Find x and y and interpret your results.

Matrix Exponential Formulas (Real Eigenvalue Case).

$$
exp\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} e^{\lambda} & 0 \\ 0 & e^{\mu} \end{pmatrix}; \qquad exp\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} e^{\lambda} & e^{\lambda} \\ 0 & e^{\lambda} \end{pmatrix}
$$

\n
$$
exp\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \cdot t = exp\begin{pmatrix} \lambda t & 0 \\ 0 & \mu t \end{pmatrix} = \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\mu t} \end{pmatrix};
$$

\n
$$
exp\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} = \begin{pmatrix} e^{\lambda_1} & 0 & 0 \\ 0 & e^{\lambda_2} & 0 \\ 0 & 0 & e^{\lambda_3} \end{pmatrix}; \qquad exp\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} e^{\lambda} & e^{\lambda} & e^{\lambda} \\ 0 & e^{\lambda} & e^{\lambda} \\ 0 & 0 & e^{\lambda} \end{pmatrix}
$$

\n
$$
exp\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \cdot t = exp\begin{pmatrix} \lambda_1 t & 0 & 0 \\ 0 & \lambda_2 t & 0 \\ 0 & 0 & \lambda_3 t \end{pmatrix} = \begin{pmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & e^{\lambda_2 t} & 0 \\ 0 & 0 & e^{\lambda_3 t} \end{pmatrix}
$$

\n
$$
exp\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \cdot t = exp\begin{pmatrix} \lambda t & t & 0 \\ 0 & \lambda t & t \\ 0 & 0 & \lambda t \end{pmatrix} = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} & t^2 e^{\lambda t} \\ 0 & e^{\lambda t} & te^{\lambda t} \\ 0 & 0 & e^{\lambda t} \end{pmatrix}
$$

\n
$$
exp\
$$

Matrix Exponential Formulas (Complex Eigenvalue Case).

$$
exp\begin{pmatrix} a & b \ -b & a \end{pmatrix} = \begin{pmatrix} e^a \cos(b) & e^a \sin(b) \\ -e^a \sin(b) & e^a \cos(b) \end{pmatrix}
$$

$$
exp\begin{bmatrix} a & b \ -b & a \end{bmatrix} \cdot t = exp\begin{pmatrix} at & bt \ -bt & at \end{pmatrix} = \begin{pmatrix} e^{at} \cos(bt) & e^{at} \sin(bt) \\ -e^{at} \sin(bt) & e^{at} \cos(bt) \end{pmatrix}
$$

Remark 1. Let J be the canonical form of square matrix A and non-singular P such that $A = PJP^{-1}$. Then $e^A = P \cdot e^J \cdot P^{-1}$.

Remark 2. If $D = diag(A_1, A_2, \ldots, A_k)$ where A_i is a square matrix of size n_i so D is a square matrix of size $N = \sum n_i$. Then we have:

$$
e^D = diag(e^{A_1}, e^{A_2}, \dots, e^{A_k}).
$$