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Abstract

Mathematical models in population ecology often involve parameters that are empirically determined and inher-
ently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise
uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem.
We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though
nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous
bounds on the probability that some specified outcome for a population is achieved, which can be a core problem
in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that
is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is
demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the
effects of contamination by ionic liquids, a new class of potentially important industrial chemicals.
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Ionic liquids

1. Introduction

Mathematical models are often the only resource
available to predict the effects of anthropogenic influence
on ecological systems. Limited physical experiments can
possibly isolate and estimate the interactions between a
subset of species in an ecosystem, or determine the ef-
fects of a change to the environment (e.g., a change in
some resource or the introduction of a new resource,
predator, or contaminant). However, it is difficult to
replicate many such interactions or changes with physi-
cal experiments.

It can also be challenging to develop and effectively
use mathematical models of ecosystems, particularly in
the presence of uncertainty. The importance of dealing
with the many potential sources of uncertainty in de-
veloping and using population ecology models is well
known [e.g., 1–4]. Our focus here is on those types of
uncertainty (e.g., measurement error, natural variation)
that may manifest themselves as uncertainties in model
parameters. Given some quantitative description of the
parameter uncertainty, such as an interval or a probabil-
ity distribution, the general goal of uncertainty analysis
is to quantify the effect of such uncertainty on the model
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outputs, or, in other words, to “propagate” the param-
eter uncertainty to the outputs. For relatively simple
static or algebraic models, this might be done directly,
perhaps using interval arithmetic or appropriate convo-
lutions of probability distributions. For more complex
or dynamic models, this is widely done using various
sampling methods (e.g., Monte Carlo) in which model
outputs are computed repeatedly at many different sam-
ples of the parameter values, with samples taken based
on a specified probability distribution, if available.

In the presence of multiple types of uncertainty, it
may be appropriate to describe the parameter uncer-
tainty using probability bounds [3, 5, 6]. In this case,
probability distributions are not known precisely but
instead bounds on the cumulative probability distribu-
tions are given, thus effectively combining the ideas of
intervals and probability distributions. For example,
probability bounds may be a useful treatment of uncer-
tainty when both measurement error (often represented
by “error bars”, i.e., intervals) and natural variability (of-
ten represented by probability distributions) are present.
When probability bounds are used, direct propagation of
the uncertainty is again possible for reasonably simple
static or algebraic models, and there is software available
for this purpose [6]. For more complex or dynamic mod-
els, sampling methods can again be used; however, this
is now a second-order (or two-dimensional) process [7],
in which first a sample of the probability distribution for
the parameters is taken from within their given probabil-
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ity bounds, and then this probability distribution is used
to sample the parameter values. Such a nested sampling
procedure can become quite expensive computationally.

We illustrate here a method for the direct propaga-
tion of uncertainties represented by probability bounds
through nonlinear, continuous-time, dynamic models in
population ecology. Uncertainties represented by simple
intervals or probability distributions can also handled,
as special cases, using this approach. No sampling is
required, and computed bounds on outputs are mathe-
matically and computationally rigorous. This approach
was originally developed [8] for applications in chemical
process reaction engineering.

This paper is organized as follows. In the next sec-
tion, we will provide some brief background on the key
mathematical tools used, in particular intervals, and their
extension to probability boxes, and Taylor models. Then
we will provide a concise mathematical statement of the
general problem to be solved, followed by a summary
of the solution methods used. We will then demonstrate
these methods using three example systems, with focus
on a model of an experimental aquatic food web subject
to the effects of chemical contamination.

2. Background

2.1. Interval Analysis

One simple way of representing uncertainty in a
model parameter is to treat it as an interval. This is
appropriate if upper and lower bounds are known, but
there is no information about a probability distribu-
tion. Formally, we define a real interval X as the set of
real numbers between (and including) a specified lower
bound (denoted by X) and upper bound (denoted by X).
That is, X = [X, X] = {x ∈ ℜ | X ≤ x ≤ X}. A real in-
terval vector X = (X1, X2, ..., Xn)T has n real intervals as
components and can be regarded as an n-dimensional
rectangle or box. Interval matrices are similarly de-
fined. Arithmetic on intervals is defined according to
X op Y = {x op y | x ∈ X, y ∈ Y}, op ∈ {+,−,×,÷}.
Division in the case of 0 ∈ Y is allowed only in exten-
sions of interval arithmetic [9]. Interval versions of the
elementary functions can be similarly defined. Interval
computations are implemented with outward rounding
(lower bound rounded down, upper bound rounded up).
Thus, interval computations can be used to obtain rigor-
ously guaranteed bounds on function ranges, and play a
key role in the verified (or validated) numerical solution
of a variety of problems in science and engineering [10].

For a real function f (x) of n variables, the interval ex-
tension F(X) provides bounds on the range of f (x) for
x ∈ X. That is, { f (x) | x ∈ X} ⊆ F(X). However,
while these bounds are guaranteed, they are not neces-
sarily tight. If F(X) is computed using interval arith-
metic (by replacing x with X in the expression for f (x)),
and if any variable occurs more than once in this ex-
pression, then the function range may be overestimated

due to the “dependency” problem. This occurs because,
in interval arithmetic, separate occurrences of the same
variable are not recognized as dependent. Another po-
tential source of overestimation (lower bounds too low,
upper bounds too high) in the use of interval methods
is the “wrapping” effect [11]. This occurs when a mul-
tidimensional interval is used to enclose (wrap) a set of
results that is not an interval. If this type of overestima-
tion is propagated, say from step to step in an integration
method for ordinary differential equations (ODEs), it can
lead quickly to the loss of a meaningful enclosure. His-
torically, the issues of wrapping and dependency have
resulted in interval methods acquiring a reputation for
producing overly loose and conservative bounds. How-
ever, current interval methods, including the use of tech-
niques such as Taylor models, as discussed below, can
often yield rigorous bounds with very little overestima-
tion. Several good introductions to interval analysis, as
well as interval arithmetic and other aspects of comput-
ing with intervals, are available [9, 10, 12–15].

2.2. Probability Boxes (P-Boxes)

An interval gives an upper and lower bound only,
and provides no knowledge about the distribution of
uncertainties. If some (but not exact) knowledge about
the distribution is available, then this can be is captured
by using “probability boxes” (p-boxes), which provide
interval-like bounds on the cumulative distribution func-
tion (CDF) [6, 8, 16, 17]. Intervals and exact CDFs rep-
resent special cases of the more general concept of the
p-box.

For some quantity (variable or parameter) x, we de-
fine the CDF Fx(z) as giving the probability that x ≤ z.
A p-box for x, denoted PB(x) = (Lx, Rx), is the set of all
such CDFs enclosed by two bounding CDFs Lx(z) and
Rx(z) with finite support. That is, PB(x) = (Lx , Rx) =
{Fx(z) | Lx(z) ≥ Fx(z) ≥ Rx(z)}. For a given value of
z, the left bounding function Lx(z) of the p-box gives
the upper bound on the probability that x ≤ z and the
right bounding function Rx(z) gives the lower bound on
this probability. This is shown for an example p-box in
Fig. 1(a), which is marked to indicate that, for this p-box,
the probability that x ≤ 2 is bounded by the interval
[0.4, 0.6]. Conversely, for a given value of the cumula-
tive probability, Lx(z) and Rx(z) provide lower and up-
per bounds on the values of x for which this probability
is possible. For the case of the p-box in Fig. 1(b), this
shows that the 40th percentile value of x is bounded by
the interval [1.78, 2]. The bounding functions in Fig. 1 are
(truncated) Gaussian CDFs. However, the p-box encloses
both Gaussian and non-Gaussian CDFs.

Williamson and Downs [5] have presented methods
for rigorously bounding the results of arithmetic (or
other) operations on random variables when only their
bounding distributions are known. This can be done
without assuming any information about possible cor-
relation between the operands. It can also be done for
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Figure 1: Interpretation of a p-box PB(x): (a) The probability that x ≤ 2 is bounded by the interval [0.40, 0.60]. (b) The
40th percentile value of x is bounded by the interval [1.78, 2.00].

the cases that the operands are independent, or that they
are the same, such as in a polynomial or other expres-
sion with a repeated operand. In general, these meth-
ods are implemented numerically, and use piecewise-
constant discretizations of the bounding distributions.
For the discretization, the p-box bounds are enclosed us-
ing an ordered set of d intervals, each representing a
probability range of equal weight 1/d. Subsequent op-
erations are then done on these intervals using interval
arithmetic. A detailed example of an arithmetic opera-
tion on two p-boxes is given by Enszer et al. [8], who
also demonstrate how the dependency and wrapping is-
sues extend from interval operations to p-box operations.
Analogous procedures can be used to determine proba-
bility bounds on the results of other functions (e.g., log-
arithm, integral powers, polynomial, etc.) Obviously, a
tighter enclosure of a p-box can be obtained using a finer
discretization. Unless noted otherwise, all of the compu-
tations done in the examples presented here use d = 100
intervals to discretize a p-box.

P-box operations are implemented in the risk anal-
ysis software RAMAS Risk Calc [6], and basic p-box
arithmetic operations may also be done using Statool
[18]. Neither of these software platforms perform veri-
fied computations with outward rounding. For this pur-
pose, we have developed a small library of functions
for p-box generation and arithmetic for use with MAT-
LAB, including the option to implement directed out-
ward rounding. This is the tool that is used for the p-box
computations in the examples presented below.

2.3. Taylor Models

One approach for addressing the issues of depen-
dency and wrapping that may lead to overestimation of
bounds in traditional interval methods is the use of Tay-
lor models [19, 20]. In this approach, a function is repre-
sented over some desired interval by a “Taylor model,”

which consists of a real-valued Taylor polynomial and an
interval-valued remainder bound. The basic idea follows
directly from the Taylor theorem. For a real function f (x)
that is (q + 1) times partially differentiable on the inter-
val X and x0 ∈ X, the Taylor theorem says that for each
x ∈ X, there exists a real ζ with 0 < ζ < 1 such that

f (x) = p f (x − x0) + r f (x − x0, ζ), (1)

where p f is a q-th order real-valued polynomial (trun-

cated Taylor series) in (x − x0) and r f is a remainder,
which can be bounded quantitatively over 0 < ζ < 1
and x ∈ X using interval arithmetic or other methods to
obtain an interval-valued remainder bound R f . A q-th

order Taylor model Tf = p f + R f for f (x) over X then
consists of the polynomial p f and the remainder bound

R f and is also denoted by Tf = (p f , R f ). Note that, ac-

cording to the Taylor theorem, f (x) ∈ Tf for x ∈ X, and
thus we have the key property that Tf encloses the range

of f (x) over X.
In practice, Taylor models of functions are often com-

puted by performing Taylor model operations. Arith-
metic with Taylor models can be done using the opera-
tions described by Makino and Berz [19, 20, 21], which
include addition, multiplication, reciprocal, and intrinsic
functions. In this way, it is possible to start with sim-
ple functions such as the constant function f (x) = k,
for which Tf = (k, [0, 0]), and the identity function

f (xi) = xi, for which Tf = (xi0 + (xi − xi0), [0, 0]), and to
then compute Taylor models for quite complicated func-
tions. Implementations based on operator overloading
make it easy to compute a Taylor model for any function
that can be computed using standard arithmetic opera-
tions and elementary functions. Compared to other rig-
orous bounding techniques, the Taylor model approach
often yields tighter bounds for modest to complicated
functional dependencies [19, 20, 22]. The use of Taylor
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models for function bounding does not eliminate the de-
pendency problem; however, by capturing all the depen-
dencies in a single polynomial, a functional form which
can generally be bounded fairly tightly, especially over
relatively small intervals, the effect of dependencies can
be greatly suppressed.

3. Problem Statement

In this section, we describe the basic problem to be
addressed, and describe our goals for its solution. Con-
sider an initial value problem (IVP) for a parametric,
autonomous system of ODEs with uncertain parameters
and initial states:

dy

dt
= f (y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ. (2)

Here y is the vector (length n) of state variables with ini-
tial value y0, θ is a vector (length p) of time-invariant
parameters, and t ∈ [t0, tf] for some tf > t0. Y0 and Θ are
interval vectors that enclose uncertainties in the initial
states and parameters, respectively. It is assumed that
some information about the probability distribution of
the uncertainty is available for one or more component
of Y0 or Θ, and that this can be expressed as a p-box, as
defined above in Section 2.2. It is also assumed that f is
representable by a finite number of standard functions,
and that f is (k − 1) times continuously differentiable
with respect to y and (q + 1) times continuously differ-
entiable with respect to θ. Here, k is the order of the
truncation error in the interval Taylor series (ITS) method
used in the solution procedure outlined below, and q is
the order of the Taylor model used to represent depen-
dence on parameters and initial values. For ODE models
that are nonautonomous, or that have parameters with
known time dependence, conversion to the form of Eq.
(2) can be achieved by the introduction of additional state
variables.

There are two goals: 1. Because of the uncertainty
in the parameters and initial states, there is a range of
possible solutions y(t) to Eq. (2). Our first goal is to
determine rigorous (mathematically guaranteed) upper
and lower bounds on this range of state trajectories. To
do this, we will determine enclosures Yj of the state vari-
ables yj = y(tj) at the endpoints tj ∈ [t0, tf] of every
time step in the numerical integration method used to
solve Eq. (2). 2. Because the probability distribution of
the uncertainties is itself uncertain, the probabilities that
particular state values will be observed at a given time is
also uncertain. Our second goal, which is of particular
interest here, is to determine rigorous (mathematically
guaranteed) upper and lower bounds on these uncertain
probabilities. To do this we will determine, for any en-
closure Yj ∋ yj, verified bounds, in the form of a p-box,
on the probability distribution for the values of yj. Thus,
rigorous bounds are obtained on the probabilities that
different states are achieved.

4. Solution Procedure

4.1. Enclosure of State Variables

For addressing the first goal stated in Section 3, a
number of approaches have been proposed, including
defect-based methods [23] and methods based on dif-
ferential inequalities [24, 25]. However, most work has
focused on the use of interval methods (also called vali-
dated methods or verified methods). These are generally
based on a two-phase process employed at each integra-
tion step. In the first phase, existence and uniqueness
of the solution are proven, and a rough enclosure of the
solution is determined. In the second phase, a tighter
enclosure of the solution is computed. In general, both
phases may be implemented using interval Taylor series
(ITS) expansions with respect to time, with use of auto-
matic differentiation to obtain the Taylor coefficients. An
excellent review of traditional interval methods for ODEs
has been given by Nedialkov et al. [26], and more re-
cent work has been reviewed by Neher et al. [27]. To ad-
dress this problem, there are several packages available,
involving a variety of different methods; these packages
include VNODE [26, 28], VNODE-LP [29], COSY VI [30],
RiOT [31], ValEncIA-IVP [23], and VSPODE [32]. We will
make use here of VSPODE, which employs a novel type
of Taylor model, based on use of a parallelepiped (in-
stead of interval) remainder bound, to deal with the de-
pendency and wrapping issues arising from the uncer-
tain parameters and initial values.

The fundamental idea in Taylor model methods, as
used in VSPODE, is to determine an explicit analytical ex-
pression for the state variables, at any given time, in terms
of the initial states and the problem parameters. This
analytical expression is in the form of a Taylor model,
which can then be bounded over the specified range
and probability distribution of initial state and param-
eter values. In particular, assuming an interval enclosure
Yj of the state variables at time tj, an integration step in
VSPODE determines a time step hj = tj+1 − tj and an en-
closure Yj+1 of the state variables at tj+1. The time step
used can be specified, but will be reduced if necessary,
in the first phase of VSPODE, to guarantee existence of
a unique solution y(t) for t ∈ [tj, tj+1] and for all yj ∈ Yj

and all θ ∈ Θ. In the second phase of VSPODE, a Taylor
model Tyj+1

(y0, θ), of yj+1 in terms of the parameters θ

and initial states y0, is determined. This is an explicit
analytical expression for yj+1 = y(tj+1) in terms of the
initial states y0 and parameters θ, which is valid for all
y0 ∈ Y0 and all θ ∈ Θ. The interval state bounds Yj+1 can
now be determined by bounding Tyj+1

(y0, θ) over y0 ∈ Y0

and θ ∈ Θ using interval arithmetic or other rigorous
bounding methods. Complete details of the method out-
lined briefly here are given by Lin and Stadtherr [32].
Other interesting ideas for using Taylor models in state
bounding have also been described recently [33, 34].
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4.2. Probability Distribution of State Variables

The second goal is, given p-box bounds on the distri-
butions of the uncertain quantities, to determine rigorous
p-box bounds on the distributions for the values of the
state variables yj ∈ Yj.

Using the procedure described above, one can ob-
tain, for a particular time tj of interest, a Taylor model
Tyj

(y0, θ) giving the state variables yj = y(tj) as a poly-

nomial function of the initial states y0 ∈ Y0 and param-
eters θ ∈ Θ, plus a small remainder bound. The avail-
able p-boxes for y0 and for θ are then substituted di-
rectly into Tyj

(y0, θ), and a p-box providing bounds on

the probability distribution for yj can be calculated us-
ing p-box operations. Note that the Taylor model now
has p-box, rather than real number, operands. The di-
rect application of p-box arithmetic operations in evalu-
ating the Taylor model may lead to significant overesti-
mation of bounds on the true probability distribution of
the state variables, due to the wrapping and dependency
problems of p-box arithmetic discussed previously. This
occurs in part because, in using p-box arithmetic op-
erations, the polynomial structure of the Taylor model,
which tends to suppress dependency issues, is not be-
ing effectively exploited. Thus special care is needed to
obtain tighter bounds.

One straightforward approach, which can result in
a considerably tighter enclosure, is to treat the Tay-
lor model Tyj

(y0, θ) as a single “operation” or standard

function, rather than as a collection of individual mul-
tiplication and addition operations involving the same
operands. That is, p-boxes are not constructed after the
individual operations, each of which may result in some
overestimation due to wrapping and dependency, but
instead are only constructed after bounding of the en-
tire Taylor model function. This approach, which we re-
fer to as ”discrete interval bounding” (DIB) effectively
transforms the p-box computation into a series of Tay-
lor model bounding computations, each over different
subintervals of Y0 and Θ. The bounding can be done
with interval arithmetic, or using some other approach
for bounding polynomials. For example, VSPODE
bounds the Taylor model polynomials by first consider-
ing the constant, linear and diagonal quadratic terms,
the sum of which can be bounded exactly [32]. The re-
maining off-diagonal quadratic and higher-order terms
are then bounded using interval arithmetic.

An effective complement to the DIB approach is
subinterval reconstitution (SIR) [17]. In SIR, each of the d
discretization intervals used for p-box operations is fur-
ther partitioned into ds subintervals. Operations are then
done on each subinterval separately, and the overall re-
sults for a particular discretization interval are reconsti-
tuted by taking the union of the results from each of its
subintervals. SIR is available as an option in RAMAS
Risk Calc, as well as in our MATLAB library of functions
for p-box computation. SIR and DIB are most useful for

cases, as encountered here in the Taylor model polyno-
mial, in which there are repeated occurrences of variables
in the expression to be evaluated.

A package of codes (C++ and MATLAB) implement-
ing the methods described here, together with the files
needed to run the example problems described below, is
available for noncommercial use from the corresponding
author.

5. Examples

In this section, we apply the techniques described
above to a set of examples. Each example involves a non-
linear population dynamics model that has parameters
and/or initial conditions which are uncertain, and which
have imprecise probability distributions represented by
p-boxes. In all examples, we will assume that the uncer-
tain quantities are independent (uncorrelated). Since our
solution procedures are designed to be general-purpose,
we will not attempt to exploit any special properties in
the example problems.

VSPODE was implemented using its default ITS trun-
cation order (k = 17) and Taylor model order (q = 5).
All the example problems were solved on a dual-core

AMD Opteron
TM

Model 1214 processor (2.2 GHz) run-
ning Ubuntu 11.04. VSPODE was implemented using
C++. P-box arithmetic was implemented using MAT-
LAB, with outward rounding of interval operations done
using techniques described by Lambov [35] that do not
require repeated switching of rounding mode. Second-
order Monte Carlo simulations used as comparisons
were also implemented using MATLAB.

5.1. Lotka-Volterra Competition Model

As an illustrative example, we will consider the
Lotka-Volterra model of competition. In this model, two
species grow logistically, but each competes for a portion
of the resources (carrying capacity) needed by the other.
The model can be written as

dx1

dt
= r1x1

[

1 −
x1 + α12x2

K1

]

dx2

dt
= r2x2

[

1 −
x2 + α21x1

K2

]

.

(3)

Here x1 and x2 are the populations of the two compet-
ing species, r1 and r2 are their intrinsic growth rates per
capita, and K1 and K2 are their carrying capacities. The
nature of the competition is governed by the interaction
parameters α12, representing the impact of species 2 on
species 1, and α21, representing the impact of species 1
on species 2.

For this example, we will first consider the case in
which the model parameters are known, but the initial
populations are uncertain. Values of the model parame-
ters are r1 = 1.0, r2 = 0.6, K1 = 560, K2 = 202, α12 = 2.66
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and α21 = 0.31. Values of the initial populations, x1,0

and x2,0 are assumed to vary no more than 10% from
mean values of 150 and 130. That is, x1,0 ∈ [135, 165] and
x2,0 ∈ [117, 143]. Furthermore, we assume that the CDFs
for x1,0 and x2,0 are bounded by the p-boxes shown in
Fig. 2. This p-box assumes uniform bounding distribu-
tions from a lower bound that is 8 to 10% below the mean
to an upper bound that is 8 to 10% above the mean. The
time horizon of interest is t ∈ [0, 150].

Using VSPODE, we determined rigorous enclosures
for the trajectories x1(t) and x2(t) over the desired time
horizon. These are shown by the solid black curves in
Fig. 3, which provide upper and lower bounds on the
state trajectories. To test the tightness of these bounds,
we compared them to the results of a simple Monte Carlo
simulation with 500 trials. In each trial, values of x1,0 and
x2.0 were sampled at random from within their given in-
terval bounds, and the system was integrated using the
ode45 ODE solver in MATLAB. The results of each trial
is plotted in grey in Fig. 3, resulting in the mostly grey
shaded area between the bounds computed by VSPODE.
Bounds obtained from Monte Carlo analysis will yield
an underestimate (inner estimate) of the true bounds (as-
suming that the ODE solver used in each trial correctly
integrates the system, which typically cannot be guaran-
teed), and bounds obtained from VSPODE will yield an
overestimate (outer estimate) of the true bounds, and are
guaranteed to be correct. The results in Fig. 3 indicate
that the VSPODE bounds are in fact very tight enclosures
of the trajectories.

We now consider the probability distribution of state
values at a specified time, say at t = 4 (near the peak
possible value of x1). Perhaps a question of interest is to
determine the probability that x1 does not exceed 170
at this time. To do this we use the Taylor model al-
ready computed by VSPODE for t = 4, together with
the given p-boxes for x1,0 and x2,0, to compute p-boxes
for x1(4) and x2(4), using the SIR and DIB procedures
described above. The resulting p-boxes PB(x1(4)) and
PB(x2(4)) are shown by the solid blue lines in Fig. 4.
This shows that the probability of x1 ≤ 170 is in the in-
terval [36, 47]%.

For comparison, we also performed a second-order
Monte Carlo analysis to get probability distributions for
x1(4) and x2(4). This procedure involves two nested
loops of sampling. In the outer loop, CDFs for x1,0 and
x2,0 were chosen at random from the set enclosed by
PB(x1,0) and PB(x2,0) (for simplicity, only uniform dis-
tributions were chosen). Then, in the inner loop, the in-
tervals of uncertainty for x1,0 and x2,0 were repeatedly
sampled based on the CDFs chosen in the outer loop, and
for each sample the ODE system was integrated. These
results were then used to determine CDFs for x1(4) and
x2(4). This process was then repeated for multiple outer
loop samples of PB(x1,0) and PB(x2,0). Fig. 4 shows
(red curves) CDFs from 100 outer loop samples, each ob-
tained using 500 inner loop samples, together with the

p-boxes computed from the VSPODE Taylor model (blue
curves) for comparison. The CPU time for obtaining the
latter was 13 seconds, while the CPU time for the former
(second-order Monte Carlo procedure) was 380 seconds.
The p-boxes PB(x1(4)) and PB(x2(4)) obtained using the
VSPODE Taylor model approach are rigorous bounds on
the CDFs for x1(4) and x2(4), respectively. However,
close examination of Figure 4 reveals that a small num-
ber of the CDFs obtained using the sampling approach
actually lie partly outside of these rigorous bounds. This
highlights the fact that the CDFs obtained by sampling
are not rigorous, as this would require, in principle, an
infinite number of inner loop samples.

As a second case based on the Lotka-Volterra compe-
tition example, we will consider a situation in which the
initial states are known, but some of the model parame-
ters are uncertain. Now x1,0 = 150 and x2,0 = 130, but we
assume that there is ±10% uncertainty in the previously
given values of r1 and r2 (other parameter values re-
main fixed at their previous values). Thus r1 ∈ [0.9, 1.1],
r2 ∈ [0.54, 0.66]. Also, we assume that the CDFs for r1

and r2 are bounded by the p-boxes shown in Fig. 5,
which again are based on uniform bounding distribu-
tions from a lower bound that is 8 to 10% below the mean
to an upper bound that is 8 to 10% above the mean.

Again we used VSPODE to determine rigorous enclo-
sures for the trajectories x1(t) and x2(t), as shown Fig. 6.
Using the VSPODE Taylor model for t = 4, we also again
determined PB(x1(4)) and PB(x2(4)), which are shown
by the blue curves in Fig. 7. A comparison of these
p-boxes with a sampling approach (second-order Monte
Carlo, with 100 outer loop and 500 inner loop samples)
is also shown in Fig. 7. The CPU time needed for the
VSPODE approach was 12 seconds, while the sampling
approach required 323 seconds. Again we note that the
sampling procedure did not yield entirely rigorous re-
sults.

5.2. Lotka-Volterra Predator-Prey Model

As a second illustrative example, we will use the well-
known Lotka-Volterra predator-prey model [36, 37]. This
model simulates the populations of two trophic levels,
predator and prey, in an ecosystem. The model can be
written as

dx1

dt
= r1x1 − a12x1x2

dx2

dt
= −d2x2 + a21x1x2.

(4)

Here x1 and x2 represent populations of the prey and
predator, respectively, r1 is the intrinsic net growth rate
per capita of the prey, d2 is the intrinsic death rate per
capita of the predator, and a12 and a21 are predator-prey
interaction parameters. We will use a two-parameter
form of this model in which r1 = a12 = θ1 and d2 =
a21 = θ2. The initial conditions are known and given by
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Figure 2: Assumed p-boxes for x1,0 and x2,0 for the Lotka-Volterra competition model (with uncertain initial condi-
tions).
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Figure 3: Trajectory bounds for x1 and x2 for the Lotka-Volterra competition model (with uncertain initial conditions)
as computed by VSPODE are shown in black. The results of Monte Carlo simulation are shown in grey.

x1,0 = 1.2 and x2,0 = 1.1. The parameters are treated
as uncertain with θ1 ∈ [2.99, 3.01] and θ2 ∈ [0.99, 1.01].
For parameter values in these intervals, the trajectories
will converge to stable limit cycles. The model in this
form, and with these initial states and parameter values,
is known to be difficult numerically, and is used in stan-
dard numerical test problems [38]. The CDFs for θ1 and
θ2 are bounded by p-boxes that have uniform bounding
distributions with fixed mean (at θ1 = 3 and θ2 = 1) and
an uncertain standard deviation of [0.005, 0.0057]. The
time horizon of interest is t ∈ [0, 25].

Using VSPODE, we determined rigorous enclosures
for the trajectories x1(t) and x2(t), as shown by the solid
black curves in Fig. 8. These represent rigorous upper
and lower bounds on the state trajectories. Fig. 8 also
shows the results of a Monte Carlo simulation (500 sam-
ples) in grey. As in the previous example, we used the
ode45 ODE solver in MATLAB in doing the Monte Carlo

analysis. However, when default tolerances were used
in ode45, the computed trajectories did not fall within
the rigorous VSPODE bounds, suggesting that the ode45

results were incorrect. By increasing the ode45 toler-
ances to a relative tolerance of 10−12 and an absolute
tolerance of 10−14 it was possible to obtain results from
ode45 that fall within the rigorous VSPODE trajectory
bounds. While VSPODE has computed tight bounds for
t ∈ [0, 25], it is important to note that, for difficult prob-
lems such as this one, VSPODE will sometimes fail to
determine meaningful bounds beyond some value of t
[32]. For this problem, the breakdown of bounds occurs
at about t = 30.

Using the Taylor models computed by VSPODE, we
can now determine p-boxes for the prey and predator
populations at times of interest. Results (blue bounding
curves) are shown for t = 10 (Fig. 9), t = 20 (Fig. 10),
and t = 25 (Fig. 11). As might be expected, the relative
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Figure 4: P-boxes (blue) computed from VSPODE Taylor models compared to second-order Monte Carlo simulation
(red) for x1 and x2 at t = 4 for the Lotka-Volterra competition model (with uncertain initial conditions).
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Figure 5: Probability enclosures for r1 and r2 for the Lotka-Volterra competition model (with uncertain growth rate
parameters).

widths of the p-boxes increase with time, as there is in-
creasing uncertainty in the trajectories as time increases
(see Fig. 8). The shape of the p-boxes depends on the
position in the limit cycle. For example, at t = 10 the
predator population x2 is near a minimum and slowly
beginning to grow, while at t = 20 it is going through a
fairly steep decline. This difference in rate of change is
reflected in the relative steepness of PB(x2(10)) (Fig. 9)
and PB(x2(20)) (Fig. 10). A similar effect can be seen for
PB(x1(25)) (Fig. 11), since at t = 25, the prey population
x1 is almost exactly at a maximum.

For comparison, we also did second-order Monte
Carlo analysis, again with 100 outer loop and 500 inner
loop samples, and these results are shown in red in Figs.
9-11. The average computation time for these three cases
was 13 seconds for the direct (VSPODE) approach, and
38700 seconds for the sampling approach. The need to
use tighter than default tolerances for ode45 in MATLAB
contributed to the large computational expense required

for the sampling approach. As in the previous examples,
the results of sampling with 500 inner loops did not pro-
duce entirely rigorous results. It can also be seen that at
t = 25 (Fig. 11) the p-box results for x1 do not provide
tight bounds near the peak value. This occurs because
the VSPODE trajectory bounds near this peak are also
slightly loose at t = 25, as can be seen by close exami-
nation of Fig. 8. Ways to tighten these bounds will be
discussed in Section 5.3.

5.3. Aquatic Food Web Model

Our interest in ecosystem modeling is motivated in
part by its potential use in studying the impact of the
industrial use of newly developed materials. Obviously
it is desirable to take a proactive, not reactive, approach
in examining the safety and environmental effects of us-
ing new materials, and modeling can enable the devel-
opment of such forward-looking strategies. Of particular
interest is the potential use of room-temperature ionic
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Figure 7: P-boxes (blue) computed from VSPODE Taylor models compared to second-order Monte Carlo simulation
(red) for x1 and x2 at t = 4 for the Lotka-Volterra competition model (with uncertain growth rate parameters).

liquids (ILs) as “green” solvents in place of traditional
solvents [39] and in a wide variety of applications, in-
cluding CO2 capture [e.g., 40, 41], low-GHG refrigeration
[42], and many other energy-related fields [43].

ILs have exceedingly low vapor pressures (essentially
they do not evaporate); thus, from a health, safety, and
environmental standpoint, ILs offer several potential ad-
vantages when compared to the volatile organic com-
pounds (VOCs) traditionally used as solvents. Such ad-
vantages include, for example, elimination of hazards
due to flammability, explosion, inhalation, and air pol-
lution. ILs are, however, soluble in water to varying de-
grees, so if ILs are used commercially on a large scale,
their entry into aquatic ecosystems is of concern. Thus, in
recent years there has been significant interest in study-
ing the environmental fate and toxicity of ILs, as re-
viewed by Kulacki et al. [44], Pham et al. [45], and Bubalo
et al. [46]. However, while some physical experiments on
isolated simulations of an ecosystem are possible, these

are often expensive, time-consuming, or otherwise lim-
ited. As emphasized by Bubalo et al. [46], to estimate
complex, multi-species effects on entire food chains, a
modeling approach should be used since standard tests
are inadequate.

The population model considered here was devel-
oped by Kulacki [47] for the study of multiple stressors
(ILs, invasive species) on a simple freshwater lake com-
munity. In this model, the species monitored are the phy-
toplanktor Chlamydomonas reinhardtii (C), the zooplank-
tor Daphnia magna (D), and the zebra mussel Dreissena
polymorpha (Z). The model equations are:

dC

dt
= C

[

rC

(

1 −
C

KC

)

−
aCDD

bC + C
− aCZZ

]

dD

dt
= D

[

aDCC

bC + C

(

1 −
D

KD

)

− dD

]

dZ

dt
= Z [aZCC − dZ] .

(5)
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Figure 8: Trajectory bounds for x1 and x2 for the Lotka-Volterra predator-prey model as computed by VSPODE. The
results of Monte Carlo simulation are shown in grey.

This assumes logistic growth of C. reinhardtii, predation
by D. magna on C. reinhardtii with a hyperbolic preda-
tor response and predator-dependent efficiency, and pre-
dation by D. polymorpha on C. reinhardtii with a linear
predator response. The model parameters are identified
in Table 1, along with experimentally determined val-
ues [47–50] at different concentrations of the IL 1-butyl-
3-methylimidazolium bromide ([bmim][Br]). The time
horizon of interest is t ∈ [0, 30] days.

Note that the parameters rC and aCD are treated here
as uncertain. The width of the uncertainty corresponds
to approximately ±1 standard deviation. The initial con-
ditions were determined [47] based on a typical Mid-
western USA lake that has been invaded by zebra mus-
sels, and are also given in Table 1. The uncertainties
in rC and aCD have CDFs that are bounded by p-boxes.
These p-boxes have uniform bounding distributions with
a lower bound that is 8 to 10% below the mean and an
upper bound that is 8 to 10% above the mean. These
parameters depend on contaminant level (see Table 1).

Rigorous enclosures for the trajectories C(t), D(t)
and Z(t) were determined using VSPODE for each of
the three IL concentration levels, as shown by the solid
black curves in Figs. 12-14. As might be expected, since
the uncertain parameters most directly affect the C. rein-
hardtii population, the trajectories for C(t) show the most
sensitivity to the uncertainties. The upper and lower
bounds for D(t) and Z(t) are close together and cannot
be readily distinguished on the scale of Figs. 12-14. The
results of Monte Carlo simulation (500 samples using
ode45 in MATLAB with default tolerances) are shown
in grey in Figs. 12-14. For the case of no IL contam-
inant, the population of C. reinhardtii initially rises but
then passes through a maximum and declines due to in-
creasing predation from D. magna. Introduction of the
contaminant increases dD and decreases aDC, which in-
hibits the growth of D. magna, thus eliminating the de-

cline in C. reinhardtii, which reaches its highest popula-
tion at the highest contaminant level.

Comparing the VSPODE bounds and the Monte
Carlo simulation results for the no contaminant case (Fig.
12) shows that in this case the VSPODE bounds are be-
coming increasingly loose with increasing t, and are be-
ginning to break down as t = 30 is approached. One sim-
ple approach to obtaining tighter bounds from VSPODE
is to partition the interval of uncertainty into subintervals
and to then apply VSPODE within each subinterval. The
results obtained for each subinterval are then combined
to determine trajectory bounds over the entire interval
of uncertainty. This means that each subinterval will be
characterized by a different Taylor model to relate the
state variables to the uncertain quantities. The fact that
different Taylor models apply to different subintervals of
uncertainty must be then be accounted for in applying
the procedure described in Section 4.2 for computing p-
boxes for the state variables. The breakdown of bounds
determined by VSPODE at longer simulation times does
not occur in all problems (it does not occur in the ex-
amples of Section 5.1 or in the 2 mg/L or 4 mg/L con-
taminant levels in this example), and when it does occur
the VSPODE bounds may diverge from the exact bounds
quite gradually in some cases and very rapidly in others.
In our experience, the behavior of the computed bounds
at longer simulation times is highly problem dependent
and, unfortunately, difficult to predict.

We can now use the Taylor models determined us-
ing VSPODE to compute probability bounds for the state
variables at specified times of interest. For example, say
we are interested in the probability that the C. reinhardtii
population does not exceed 4× 1017 at t = 15 days for the
different contaminant levels. To address this question,
the p-boxes for C(15) at each contaminant level were de-
termined, as shown in Fig. 15. For no contaminant, it is
clear from Fig. 15a (and also from Fig. 12a) that C(15) is
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Figure 9: P-boxes (blue) computed from VSPODE Taylor models compared to second-order Monte Carlo simulation
(red) for x1 and x2 at t = 10 for the Lotka-Volterra predator-prey model.

prey population x
1

0.78 0.8 0.82 0.84 0.86

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

0

20

40

60

80

100

prey population x
2

0.88 0.9 0.92 0.94 0.96

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

0

20

40

60

80

100

Figure 10: P-boxes (blue) computed from VSPODE Taylor models compared to second-order Monte Carlo simulation
(red) for x1 and x2 at t = 20 for the Lotka-Volterra predator-prey model.
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Figure 11: P-boxes (blue) computed from VSPODE Taylor models compared to second-order Monte Carlo simulation
(red) for x1 and x2 at t = 25 for the Lotka-Volterra predator-prey model.
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Table 1: Aquatic food web model parameters for varying levels of IL contaminant.

IL concentration
Description 0 mg/L 2 mg/L 4 mg/L Units

rC Intrinsic growth rate constant for C [0.4, 0.45] [0.4,0.45] [0.4, 0.45] day−1

KC Carrying capacity for C 5.15 × 1017 5.20 × 1017 5.26 × 1017 indv C

aCD Loss rate constant for C due to [4.00, 4.89] [4.34, 5.44] [4.50, 5.64] (indv C) (indv D)−1 day−1

predation by D ×106 ×106 ×106

bC Half-saturation constant 8.82 × 106 8.82 × 106 8.82 × 106 indv C

aCZ Loss rate constant for C due to 7.47 × 10−11 7.46 × 10−11 7.44 × 10−11 (indv Z)−1 day−1

predation by Z

aDC Growth rate constant for D due to 0.125 0.0599 0.0599 day−1

predation on C

KD Carrying capacity for D 3.25 × 1010 3.25 × 1010 3.25 × 1010 indv D

dD Intrinsic death rate constant for D 0.0297 0.0470 0.0842 day−1

aZC Growth rate constant for Z due to 3.78 × 10−23 3.78 × 10−23 3.78 × 10−23 (indv C)−1 day−1

predation on C

dZ Intrinsic death rate constant for Z 0.001 0.002 0.003 day−1

C0 Initial C population 5.15 × 1016 5.15 × 1016 5.15 × 1016 indv C

D0 Initial D population 1.25 × 109 1.25 × 109 1.25 × 109 indv D
Z0 Initial Z population 8.9 × 108 8.9 × 108 8.9 × 108 indv Z

always less than 4 × 1017. For 2 mg/L contaminant (Fig.
15b), the probability that C(15) ≤ 4 × 1017 is bounded
by the interval [76, 92]%, and for 4 mg/L (Fig. 15c) by
[26, 36]%.

The p-box bounds determined for C(15) are also com-
pared in Fig. 15 to the results of second-order Monte
Carlo analysis, with 100 outer loop and 500 inner loop
samples. The average computation time for these three
cases was 19 seconds for the direct (VSPODE) approach
and 870 seconds for the sampling (Monte Carlo) ap-
proach. Again, it is seen that the sampling approach
is much more expensive computationally, and does not
provide rigorous bounds on the state probabilities.

The examples considered here and above all involve
two simultaneous uncertain quantities. In another con-
text [8], we have solved a problem with three simultane-
ous uncertain quantities, and found that the direct ap-
proach was again significantly more efficient than sam-
pling. Factors affecting the growth in computation time
for the direct method with an increasing number of si-
multaneous uncertain quantities are discussed in [8]. We
expect that problems with a few more simultaneous un-
certain quantities could be solved with a feasible compu-
tational effort, but have little experience with such prob-
lems. Of course, as the number of simultaneous uncer-
tain quantities grows, providing a statistically valid sam-
pling of the corresponding multidimensional space will
also be increasingly expensive computationally.

6. Concluding Remarks

Ecological systems modeled using a population ecol-
ogy approach are best understood if the effects of un-
certainty in the model parameters are known. We have

described and demonstrated here a direct approach for
rigorously bounding the output trajectories for nonlin-
ear dynamic models in population ecology with uncer-
tain parameters and/or initial conditions, and for rigor-
ously bounding the probability that some specified out-
come for a population is achieved. It was shown that
this could be done at a computational cost that is sig-
nificantly less than that required by statistical sampling
approaches such as Monte Carlo analysis. We believe
that the approach presented here may be useful in sev-
eral areas of interest in population ecology, including re-
source management [e.g., 51], invasive species [e.g., 52],
and ecotoxicity [e.g., 53].

Another problem of interest in the context of parame-
ter uncertainty is structural sensitivity [e.g., 54, 55]. This
refers to the situation in which some small, but finite,
change in the model leads to a change in the topological
type of the phase portrait. This is often manifested as
a change in the structure of one or more of the equilib-
rium states of the modeled system, e.g., a change in the
number of co-existing species. Such structural changes
may result from changes in model parameter values or
from changes in the form of the model equations. Fo-
cusing on structural sensitivity with respect to a param-
eter change, structural changes occur when the parame-
ter value crosses a bifurcation point. One approach for
identifying structural sensitivity is to use sample param-
eter values from within the interval of uncertainty and
run long-time simulations to identify the asymptotic be-
havior. If the asymptotic behavior is always qualitatively
the same, there is no structural sensitivity. The direct
approach presented here could be used as an alterna-
tive to sampling, but because it determines an envelope
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Figure 12: Trajectory bounds for (a) C. reinhardtii, (b) D. magna, and (c) D. polymorpha populations for the aquatic food
web model with no contaminant as computed by VSPODE. The results of Monte Carlo simulation are shown in grey.
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Figure 13: Trajectory bounds for (a) C. reinhardtii, (b) D. magna, and (c) D. polymorpha populations for the aquatic food
web model with 2 mg/L contaminant as computed by VSPODE. The results of Monte Carlo simulation are shown in
grey.
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Figure 14: Trajectory bounds for (a) C. reinhardtii, (b) D. magna, and (c) D. polymorpha populations for the aquatic food
web model with 4 mg/L contaminant as computed by VSPODE. The results of Monte Carlo simulation are shown in
grey.
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Figure 15: P-boxes (blue) computed from VSPODE Tay-
lor models compared to second-order Monte Carlo sim-
ulation (red) for C. reinhardtii populations at 15 days for
the aquatic food web model with (a) no contaminant, (b)
2 mg/L contaminant, and (c) 4 mg/L contaminant.

of all possible outcomes, it may not always be possible
to clearly identify qualitatively different asymptotic be-
havior. Another common approach [e.g., 56, 57] is to
search directly for the presence of bifurcations; often this
is done over a very wide range of parameter values and
presented in the form of a bifurcation diagram. While
there are various numerical methods used for finding bi-
furcations [e.g., 58, 59], we have found that for the static
bifurcations of equilibrium that correspond to a change
in the number of co-existing species (e.g., transcritical,
fold) a method based on interval analysis [60] is the most
reliable. Given an interval of uncertainty for one or more
parameters, this method can be used to easily determine
whether or not it contains any appropriate bifurcation
points. If there are none, then structural sensitivity with
respect to the parameter uncertainty can be ruled out. If
a bifurcation is found, and if there are p-boxes for the
uncertain parameters, then these could be used directly
to determine the probability that a structural change may
occur.
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Gümüs, , S. T. Harding, J. L. Klepeis, C. A. Meyer, C. A. Schwieger,
Handbook of Test Problems in Local and Global Optimization,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[39] J. F. Brennecke, E. J. Maginn, Ionic liquids: Innovative fluids for
chemical processing, AIChE J. 47 (2001) 2384–2389.

[40] S. Seo, M. Quiroz-Guzman, M. A. DeSilva, T. B. Lee, Y. Huang,
B. F. Goodrich, W. F. Schneider, J. F. Brennecke, Chemically tun-
able ionic liquids with aprotic heterocyclic anion (AHA) for CO2

capture, J. Phys. Chem. B 118 (2014) 5740–5751.

[41] S. Seo, L. D. Simoni, M. Ma, M. A. DeSilva, Y. Huang, M. A.
Stadtherr, J. F. Brennecke, Phase-change ionic liquids for post-
combustion co2 capture, Energy & Fuels 28 (2014) 5968–5977.

[42] G. Mozurkewich, L. D. Simoni, M. A. Stadtherr, W. F. Schneider,
Performance implications of chemical absorption for the carbon-
dioxide-cofluid refrigeration cycle, Int. J. Refrig. 46 (2014) 196–206.

[43] D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C.
Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A.
Angell, Energy applications of ionic liquids, Energy Environ. Sci.
7 (2014) 232–250.

[44] K. J. Kulacki, D. T. Chaloner, J. H. Larson, D. M. Costello, M. A.
Evans-White, K. M. Docherty, R. J. Bernot, M. A. Breuseke, C. F.
Kulpa, G. A. Lamberti, Proactive aquatic ecotoxicological assess-
ment of room-temperature ionic liquids, Curr. Org. Chem. 15
(2011) 1918–1927.

[45] T. P. T. Pham, C.-W. Cho, Y.-S. Yun, Environmental fate and toxic-
ity of ionic liquids: A review, Water Res. 44 (2010) 352–372.
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