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ABSTRACT

A methodology was developed for optimizing electrolytic
cells described by a potential field distribution along with
material, voltage, and economic balance equations. In the
present study, the cell consisted of two flow-through porous
electrodes separated by a membrane. The model conslsted of
two nonlinear differential equations, 19 variables, 8
equality constralnts, and 5 inequality constraints. The
optimum solutions were obtained for slmple economic
objectives with use of a successive quadratic programming
method. The sensitivity of the optimum to operating
variables and design constraints was found with use of
Lagrange multipliers. The method may be applied to any
electrolytic cell which can be modeled by a combinatlon of
differential, algebraic and polynomial (curve-£fit)
equatlons.

The modeling of electrochemical systems based on fundamental
principles has advanced to a high degree of sophistication In recent
years. Such models pave the way for the use of improved techniques
for optimizing electrochemical processes. In the present study, a
flexible and robust method 1s used to optimize an electrolytic cell
modeled by a set of differential and nonlinear algebraic equatlons.

The 1literature on electrochemical optimizaton studies has
recently been reviewed [l1]. Published works on optimizatlon have
generally used an analytical technique 1in which a cost equation Is
differentlated with respect to the variable of 1interest, the
derivative set to zero and the equation solved to obtain the optimum
value. Another commonly reported approach 1s use of a graphical
technique where the tradeoff curves were plotted and the optimum
determined by inspectlon.

With the advent of the digital computer, the field of
optimization has been completely revolutlonized. Within the past two
decades, there has been a rapid growth in the 1literature on
optimization. There are available several reviews of nonlinear
optimization methods [2], applications [3,4], as well as algorithms
and software [5,6]. Lasdon [5] has identified the four most promising
nonlinear optimization algorithms as the Augmented Lagranglan (AL),



Successive Linear Programming (SLP), Generalized Reduced Gradient
(GRG), and Successive Quadratic Programming (SQP). Recent comparative
studies have found that GRG and SQP seemed to be the most promising of
the four methods.

Modern techniques of optimization are beginning to appear in the
electrochemical 1literature. Alkire, Cera, and Stadtherr [7]
implemented a state—of-the-art algorithm for the optimization of an
electrolytic cell. They used the GRG method of Lasdon [8] to optimize
profit for a chlor—-alkali cell based on a model of a diaphragm cell by
MacMullin [9]. Current and potential distribution phenomena in the
cell, however, were not taken into account because the optimization
method used in that study did not 1lend itself efficiently to
applications which involve differential equations. This limitation is
removed in the present study.

Models of current and potential distribution within cells have
increasingly served as guides in the design, scale-up, and
optimization of electrochemical cells. Models of electrolytic cells
generally include both nonlinear algebraic and differential
equations. In the present work, a general methodology was developed
that incorporates state-of-the-art optimization techniques with a
model of the current and potential distribution within an electrolytic
cell [10]. The goal was to optimize efficiently all cell parameters
simultaneously. In this study, a divided cell containing two flow-
through porous electrodes was chosen for investigation.

THEORETICAL

Formulation of Porous Electrode Model

An electrolytic cell having two flow-through porous electrodes
separated by a membrane and operated under steady, continuous
conditions in a flow-by configuration was 1investigated. Figure 1
illustrates the cell configuration. The porous electrodes were of
uniform porosity, thickness and specific surface area throughout, and
were assumed to be made up of a packed bed of spheres. Dilute
solution theory was used to describe the transport of species 1n
solution. The kinetic behavior of the electrochemical reactions was
represented by the Tafel form of the Butler-Volmer equation. One main
electrochemical reaction occurred at each electrode, with oxygen
evolution as a side reaction at the anode and hydrogen evolution as a
side reaction at the cathode.

The equations representing the system were based on several
assumptions: (a) the electrode phase was 1sopotential; (b) the pores
of the electrode were large with respect to the double layer;
(c) convection through the porous electrodes occurred by plug flow
with no channeling effects; (d) transport through axial diffusion and
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dispersion were negligible compared to axial coavection;
(e) conduction through bulk electrolyte obeys Ohm's law, and migration
effects were negligible due to a large excess of supporting
electrolyte; (f) mass transfer from the bulk stream to the electrode
surface may be characterized by an average mass transfer coefficieat
which was independent of position; (g) the system was operated
isothermally; (h) the conversion per pass was low.

The current balance equation is:

!-1--arf; (1)

The rate expression for the main anodic reaction 1is:

8
c

£5 = 15, —5 exp {an,Fo’/rT} (2)
c
1

For the side reaction at the anode, the reaction kinetics is given by:
8
e _ 2 +
£, = 1y, 0 exp {an2P (¢ + ¢tl)/k'r} 3)
2

In the above two equations, 0+ is the potential with respect to the
thermodynamic rest potential of the main anodic reaction while ¢_, is
the thermodynamic rest potential of the main anodic rteaction with
respect to the thermodynamic rest potential of the side reaction at
the anode. The reaction kinetics for the main cathodic reaction is
given by:

£S = -1 . — exp {-BnaFO-/RT} (4)

For the side reaction at the cathode, the reaction kinetics is given
by:

8
c
4 -
fz =1, o exp {~Bn,F (¢ + ¢.5)/RT} (5)
4

In the above two equations, ¢ 1s the potential with respect to the
thermodynamic rest potential of the main cathodic reaction
while ¢ , 18 the thermodynamic rest potential of the main cathodic
reaction with respect to the thermodynamic rest potential of the side
reaction at the cathode.

The local concentration difference between the surface of the
electrode and the concentration of the bulk electrolyte 1ls related
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through the mass transfer coefficient:

n,Fk
e J 1 8
fj = sij (ci - ci) (6)

From the assumptions of the model, particularly in that it was a
differential reactor, the potential distribution is one-dimensional:

d2

dy

L-3

N
wlw

e
;3 fj 7)

The model for the porous electrode was completed by the following
boundary conditlons. For the anode:

+
+ do i
at y =0: F--K—l
+
=gty 4
at y = H: dy 0
For the cathode:
at y = 0 : %%— - - %;
awy-u: #og

The main reaction at the anode represents a hypothetical
oxidatlon reaction involving a two-electron transfer process:

24" =B + 2 E(l’-o.9v
The side reaction at the anode is oxygen evolution and is given by:
+ - 0
21-120 = 02 + 4H + be Ez

The main reaction at the cathode represents a hypothetical
reduction reaction involving a two-electron transfer process:

=1.229 V

2t +2¢7 =D Eg-O.ZV
The side reactlon on the cathode ls hydrogen evolutlon and 1s given
by:

0

W+ 2" = w E, =00V

2
Formulation of Objective Functlon and Constralnts

The objective functlon represents the goal of the optimization.
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For example, return on investment, discounted cash flow rate of return
on investment, and profit are frequently wused as objective
functions. Two objective functions were formulated in this study.
The first objective was that of maximizing a profit function
consisting of total revenue minus total cost on an annual basis. The
second objective function was that of maximizing curreat per unit
volume. This 1is equivalent to maximizing the space-time-yield. 1In
order to relate these objectives to the behavior of the porous
electrode modeled in the previous section it is necessary to introduce
additional equations in the form of material balances, energy
balances, mass transfer correlations, and voltage balances.

The applied current density is:

i=1/xy (8)
A material balance on the anode for species A is:
U
0 1
€19, = C,Q +;1? moles/s 9)

A material balance on the anode for water is:

n‘: " 181 (1 - U))
Y "= U * 1000 aF kg/s (10)
lnl 1 2

A material balance on the cathode for species C 1is:

0 )

C3Q, = C4Q, + ;3—1; moles/s (11)
A material balance on the cathode for H' is:

0 1(1-Uy)

€,Q, = €0, + ———nal’ moles/s (12)
The anode volumetric flow rate is:

Q = vyz (13)
The cathode volumetric flow rate 1s:

Q, = vyz (14)

There are also a number of inequality constralnts. Anode and

cathode converslon are constrained to be less than or equal to 10X,
because of the assumption of low coaversion per pass. The membrane

226



area ls set not to exceed a maximum area of 4500 cm (45¢m x 100 cm).
Upper bounds on the anode and cathode pressure drops are also
imposeds The pressure drop 1s correlated using the Ergun equation
[11]. The vapor pressure of water in solution and the vapor pressure
of pure water are calculated using the fitted equations of LeRoy et
al. [12]. The mass transfer correlation of Wilson and Geankoplis [13]
18 used. The spheres are assumed to be packed in a hexagonal close
packed (hcp) arrangement. The activity coefficient, fi , was
calculated using a Debye-Huckel equation.

The conductivity of the solution has to be corrected for the
porous media. The effective conductivity for the porous media {is
given by [14]:

k= (3725) x, (15)

The voltage drop across the membrane is calculated by taking into
account the resistivity of the membrane, the conductivitlies of the
anolyte and catholyte, as well as the thickness of the membrane. The
voltage balance 1s given by:

tiet +U -Ey -0 (16)

V=E M

1
y = o y=0

The final model consisted of two nonlinear differential
equations, 19 variables, 8 equality constraints, and 5 inequality
constraints. The two differential equations were used to solve for
the potential distributions ¢+ and ¢~. The remaining 17 variables used
In the optimization are presented in Table l. Upper and lower bounds
were imposed on all these 17 variables. The number of degrees of
freedom was determined by the number of variables minus the number of

equality constraints. In this study, the total number of degrees of
freedom was 9.

Method of Solution

The nonlinear differential equations were solved with a fiaite
difference numerical technique. The nonllinear differential equations
were flrst llnearized about a trial solution, and the equations were
then written In finite difference form by employlng central difference
operators. The resulting tridiagonal matrix was then inverted by a
modified Gauss—Jordan elimination method with the use of a CDC Cyber
175. Solutions of the equation were obtained when a convergence of
0.01% was achleved by the mesh points during successive iteratlons.

The optimization problem was solved using a successive quadratic
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programming method as 1mplemented in the program SQPHP [15].
Successive quadratic programming was chosen because of its need for
fewer function and gradient evaluations, its efflciency, ease of use,
and reliability.

In SQPHP, the P equality constraints are used to eliminate some
of the variables. This 1s tantamount to reducing the dimensionality
of the problem from N to N-P. The code then solves the original
problem by solving a sequence of reduced quadratic programming (QP)
subproblems. Details are available in the thesis [10].

In the executlion of the optimization runs, a large number of
different starting points were used, in an attempt to ensure that a
global rather than 1local optimum was found. A total of 68
optimization runs were made for each objective function. The final
program trequired 32.25 K words of core on the CDC Cyber 175.

RESULTS AND DISCUSSION

The methodology by which the following results were obtained was
general enough for it to be applied to any electrolytic cell which can
be modeled by a combination of differential and algebraic equations.
Hence, the results below are presented to illustrate the types of
considerations that can be made with the optimization method presented
here. The particular results obtained with the model system were not
intended to correspond to a particular application.

A series of case studies was carried out 1in order to evaluate
optimization methodology as well as to explore electrochemical aspects
of the problem. The seventeen variables in the optimization problem
are listed in Table 1. Table 2 summarizes model parameters used,
including physical property data, thermodynamlc and kinetic rate
constants, mass transfer correlation, as well as economic data. For
the case studies here, values of parameters were chosen to be
representative of a paired synthesis from aqueous solution of two
organlc compounds, one valued at about $4/kg and the other about
$5/kg.

The simple profit objective function took into consideration
power costs as well as market prices of feedstocks and products.
Table 3 shows the optimal values together with the laitial guesses.
These initlal guesses represent the starting polnt In the search for
the optimum and they are needed to initialize the program. A total of
68 starting polnts were tried and several local maxima were €found.
The best of these local maxima has a maximum profit of $63,419.45/yr
with a productlon rate of 10.1 moles/hr, and corresponds to the
optimal values and starting point given in Table 3. Since a large
number of different starting points were tried, making it likely that
all local maxima were found, one can be reasonably confident, though
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not absolutely certain, that this is the global maximum.

It 1s seen from the optimal results in Table 3 that the
dimenslons x, y, and z of the porous electrode cell were forced to
their upper bounds; this was expected since the objective function did
not take into account capital costs. Increasing the dimensions of the
cell would mean an increase in production rate and hence, profit.
However, as the dimensions of the cell increase, the capital costs
associated with the cell also increase. To account for this trade off
between 1increasing production rate and capital cost, a capital cost
term lacorporating the costs of the material and the labor required
for the fabrication of the <cell needs to be taken Into
consideration. Provided estimated or actual cost data are available,
this can be 1ncorporated into the optimization scheme with modest
effort.

The optimum anodic volumetric flow rate Q; was found to exist at
the upper bound of the range while the cathodic volumetric flow rate
Qz was not. It was more profitable to increase the throughput of the
anode since the anodic product was more valuable than the cathodic
product.

With the simple profit objective function the effect of an
increase 1in energy costs was examined. Alkire, Cera, and Stadtherr
[7) had used a different optimization problem to explore how changes
in the price of electricity impact on profit and on optimum production
rate. As the price increases, the profit and the production rate were
found to decline. In the present study the major impact of increasing
energy costs was decreasing profits. In the study of Alkire, Cera,
and Stadtherr [7], it was found that changes in market prices affect
only the optimum value of the objective function and not the optimal
operating conditions. The same effect was observed in the present
study.

To test the consistency of the methodology further, an objective
function was chosen which maximized the current per unit volume.
Table 4 shows the optimal values of the variables together with
initial guesseg. It was found that the optimum value was 0.5 A/cm’,
or 14,000 A/ft”. Again because a large number of starting points were
tried, it is 1likely that this is the global maximum.

The major differences in the optimal results obtalned from the
two different objectives as shown in Tables 3 and 4 are in the
dimensions of the cell and in the applied current density. 1In the
case of the current per unit volume as objective, the cell dimensions
are smaller and the applied current density higher in comparison to
the profit as objective case. This 18 because the energy cost in
production is not taken into account in the current per unit volume
case.

For the cases investigated, the total CPU time needed to arrive
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at the optimum depended on the starting polnt, and ranged from 1.7 to
40 seconds on a CDC Cyber 175. Of thls the time spent lan the
optimization code ranged from 0.5 to 1.5 seconds; the remalnder was
spent in solving the differential equations. These results suggested
that efficient numerical methods for the solution of the differeatial
equations is critically important. These results also suggested that
adrolt selection of starting point is important, but that the
computatlonal costs of the present model are modest in all cases.

The results of the optimization runs may be reformulated into
informatlon such as current efficlency, selectivity, space-time yield,
and energy consumption. Table 5 compiles optimal results for the two
objectives investigated in this study.

It was found that a temperature rise of about 1.5° C occurred in
both cases. Hence, heat transfer was not an important consideration.

Sensltivity of the operating varfables was investigated by
evaluation of the Lagrange multipliers associated with the optimal
solution. The Lagrange multipliers are sensitivity coefficients and
are therefore capable of giving an indication of sensitivity. They
provide a relative weasure of the sensitivity of the objective
function with respect to small changes 1n the constraints. If the
objective function is in terms of dollars of profit, then the Lagrange
multiplier A, may be Interpreted as dollars of profit per unit of the
1*" constraint.

Tables 6 and 7 show the Lagrange wmultipliers for selected
variables for the two objectives investigated in this study. The
changes were based on a one percent perturbatioa of the variables at
the optimum. The expected changes in optimal value were calculated by
multiplying the Lagrange multipliers by the magnitudes of the
change. By this method, it 1is possible to identify the more sensitive
features of the cell from among the large list of input parameters and
constraints. This capability should be particularly helpful 1a the
early stages of engineering assessment and development. In the cases
studied in this 1investigation it was found that the sensitive
variables were the anodic flow rate and the initial coacentration of
the anodlc reactant with the latter being the most sensitive.

CONCLUSTONS

In this study, a successive quadratic programming technique was
used to optimize a model of a porous electrode cell that incorporated
current and potential distribution phenomena. The model was prepared
for optimization by formulating an objective function as well as a
system of equality and 1nequality coastraints that included waterial
balances, charge  balances, physical property, and physical
limitations.
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The model wused in this study coaslsted of two aonllinear
differential equations, 19 variables, 8 equality constraints, and 5
inequality constralnts. The methodology described here gave the
optimal value of all the variables required for optimizatlon of two
different objectives: maximum profit based on the prices of chemicals
and electrical energy, and maximum current per unit volume.
Lagrangian multipliers were used to determine the sensitivity of the
constralnts to the optimal solution.

The model required the use of certain physical property data such
as magss transfer coefficients, density, viscosity, conductivity, vapor
pressure, activity, and pressure drop. Membrane transport propertles
were needed to calculate cell voltage. Physical property data
correlations were incorporated wherever possible for determining
pressure drop, vapor pressure of water, and correcting conductivities
for the effect of porosity. A lack of availability of such auxiliary
data may limit the accuracy of any optimization model.

It 1is recognized that to optimize a process, an eatire flowsheet
needs to be considered rather than a single cell. It is also
recognized that in process optimization, the objective function
normally consists of maximizing a rate of return on investment or
maximizing venture profit. While rate of return 1s the final
criterion in the assessment of a process, it 1s sometimes convenlent,
especially in electtrochemical processes to develop a criterion which
pertains more closely to the electrolytlc process. Hence, for
electrolytic processes In the preliminary design stages, high
selectivity, space-time yield, chemical yield, or energy yield may be
the desired objective. However, in a first generation study such as
this, the simple profit function served adequately to 1illustrate the
usefulness and feasibility of the methodology.

Tremendous advances in the modeling of electrochemical systems
have been made in recent years. Rigorous electrochemical models based
on current and potential distribution phenomena within the cell have
increasingly served as guides 1In the design, scale-up, and
optimization of electrochemical cells. The development of digital
computers and numerical methods for optimization, as well as the
recent progress in the thermodynamics of electrolyte solutions, has
paved the way for the use of improved optimization techniques for
electrochemical processes. This study attempted to show how state-of-
the-art optimization techniques can be applied to cell models to
obtain optimal conditions and to provide an estimate of the
sensitivity of operating variables. Optimization methods can assist
In 1implementing wise technological changes in the electrochemical
process industry.
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NOTATION

The following nctation has been used throughout this work:

English Characters:

specific surface area, g¢m L.

a -

c - concentration, moles/cm’.

E° = standard electrode potential, volts.

F = Farady's constant, 96,487 Cou%ombs/g~equiva1ent.
f¢ = intrinsic reaction rate, A/cm®.

fi = activity coefficient of species 1.

H - thickness of anode, cm.

H = thickness of cathode, cm.

I - total cell current, amperes.

io - exchange curreat density, A/c?

i = applied current density, A/cm

k - mass transfer coefficient, cm/s.

M - molarity, moles/liter.

m - molality, moles/kg H,0

n = number of electrons in reaction, g-equivalents/mole.
Py ™ vapor pressure of water, atm. 3

Ql - anode volumetric flow rate, cm”’/g.

Q = cathode volumetric flow rate, cm’/s.

R = molar gas constant, 8.3143 J/mole-K.

8y = stoichiometric coefficient.

T - temperature, K.

Uy = current efficiency of anodic reaction.
U, = current efficiency of cathodic reaction.
V+ - cell voltage, volts.

v = anolyte velocity, cm/s.

v = catholyte velocity, cm/s.

x - width of porous electrode, cm.

y = length of porous electrode, cm.

z = thickness of porous electrode, cm.

zy = symbol of electronic charge of species {i.

Greek Characters:

a - anodic transfer coefficient.

B = cathodic transfer coefficient.

€ = vold fraction, cm3 void space/cm3 tfactot volume.
3 - electrolyte conductivity, (ohm—cm)

K = anolte conductivity, (ohm-cm)”
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catholyte conductivity, (ohn—cm)-l.

K -

vctz’ = specific conductivity, (ohm-cm) ".
u = viscosity of solution, g/cm s.

or = potential, volts.

® - potential, volts.

A = Lagrange multiplier

Superscripts:

[ - value at reactor inlet.
s = surface value,

Subscripts:

1.

2.

3.

15.

i = species 1.
J = reaction j.
r = reference value.
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Optimsl Solution Obtsined with Stimple Profit as Objective
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