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Abstract

High performance computing (HPC) technology, including parallel and/or vector processing,
provides opportunities to solve process optimization and simulation problems faster and more
reliably than ever before, thus enabling the solution of increasingly large scale problems, even
in a real time environment. This presentation will focus on recent advances in HPC technology
and methods for exploiting it in process optimization and simulation. Of particular interest
are methods for the large, sparse linear equation systems that often arise in large-scale process
engineering problems, and that often represent a computational bottleneck. Also of interest is
an approach for guaranteeing the reliable solution of process engineering problems.

1 Introduction

The future success of the chemical process industries depends on the ability to design and
operate complex, highly interconnected plants that are pro�table and that meet quality, safety,
environmental and other standards. Towards this goal, process simulation and optimization tools
are increasingly being used industrially in every step of the design process and in subsequent
plant operations. To perform realistic process simulation for very large scale industrial processes,
however, requires adequate computational resources. Today, high performance computing (HPC)
technology, including parallel and/or vector computing, provides the computational power to real-
istically model, simulate, design, and optimize complex chemical manufacturing processes, steady-
and unsteady-state. To better use this leading edge technology in process simulation requires the
use of techniques that e�ciently exploit vector and parallel processing. Since most currently used
techniques for solving such problems were developed for use on conventional serial machines, it is
often necessary to rethink problem solving strategies in order to take full advantage of HPC power.

High performance computing typically involves some form of parallel processing, which in recent
years has been rapidly entering the mainstream of computer technology. Though single processor
performance will continue to improve, the most immediate way to improve a system's performance
is through the use of multiple processors, as opposed to waiting for the next generation of single
processors. Furthermore, physical limits on single processor speeds will eventually be reached. Since
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in principle there is no upper limit on the speed of a parallel processing machine, this represents
the inevitable future of computing, not only for the fastest state-of-the-art supercomputers, but
also for desk-based machines and servers. In fact it is the booming network and database server
market that has been driving parallel processing into the mainstream today.

Parallel processing takes on many forms. The processors used may be CISC (Complex In-
struction Set Computing) processors, such as the Intel Pentium II, RISC (Reduced Instruction Set
Computing) processors, such as the MIPS R10000 or Sun UltraSPARC-II, or vector processors,
such as used in the CRAY T90. While historically vector processors have been very expensive and
produced in fairly low volume, there are some indications today that vector processing technology
will be ultimately be incorporated with super-scalar RISC technology in processors produced as
a higher volume commodity. Whatever processors are used in the system, they can be connected
in a variety of ways, and can access memory in a number of di�erent ways. Most systems can be
classi�ed as either shared-memory or distributed-memory, or some hybrid thereof. Both high-end
parallel/vector supercomputers, such as the CRAY T90 and lower-end symmetric multiprocessors
(SMPs), such as a four processor Compaq ProLiant 6000, feature uniform access to a shared mem-
ory. This arrangement may not scale well to larger numbers of processors, so other designs, such
as the Cray/SGI Origin2000, feature a nonuniform access to memory that though physically dis-
tributed may be considered logically shared. Distributed-memory systems include both massively
parallel machines, such as the CRAY T3E, and network-based systems. While for the former, a
shared-memory programming model may still be useful in some cases, for the latter one must usu-
ally rely on message passing, using popular protocols such as PVM (Parallel Virtual Machine) or
MPI (Message Passing Interface), to move data from processor to processor and to memory. With
the rapid advancement of networking technology, network-based parallel systems are becoming
common. Essentially any collection of machines on a network can be used as a parallel computing
system. The machines in the network-based system may range from simple workstations to SMPs
to parallel/vector supercomputers. Such a heterogeneous network of computational resources is
sometimes referred to as a metacomputer. The concept of metacomputing in the context of chem-
ical process engineering was discussed originally by Stadtherr et al. (1993). An excellent recent
example of the implementation of metacomputing for process simulation and optimization is the
Simulator Manager at Bayer AG (Br�ull, 1997). This allows di�erent units in a large problem to be
considered in parallel on the most appropriate machine with the most appropriate software, with
the overall problem converged by the Simulation Manager using a simultaneous-modular approach
(e.g., Chen and Stadtherr, 1985; Chimowitz and Bielinis, 1987).

In Sections 2-4 below, the focus is on using vector and parallel computing for increasing the
speed of process simulation and optimization computations. A key step in solving complex process
engineering problems is the solution of a large, sparse system of linear equations. In fact, this
step may account for as much as 90% of the computation time on industrial-scale problems. Thus,
any reduction in the linear system solution time will result in a signi�cant reduction of the total
simulation time. The matrices that arise, however, do not have any of the desirable structural or
numerical properties, such as numerical or structural symmetry, positive de�niteness, and diagonal
dominance, often associated with sparse matrices, and usually exploited in developing e�cient
algorithms for high performance computing. We describe here vector and parallel algorithms for the
solution of linear equation systems arising in process simulation and optimization. It is important
to realize that not only does HPC provide the power to increase the speed with which problems
can be solved, but also the reliability with which they can be solved. Thus, in Section 5 we discuss
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an approach, based on interval mathematics, that is capable of guaranteeing the reliable solution
of process engineering problems.

2 Frontal Method

Consider the solution of a linear equation system Ax = b, where A is a large sparse n�n matrix
and x and b are column vectors of length n. While iterative methods can be used to solve such
systems, the reliability of such methods is questionable in the context of process simulation (Cofer
and Stadtherr, 1996). Thus we concentrate here on direct methods. Generally such methods can
be interpreted as an LU factorization scheme in which A is factored A = LU , where L is a lower
triangular matrix and U is an upper triangular matrix. Thus, Ax = (LU)x = L(Ux) = b, and the
system can be solved by a simple forward substitution to solve Ly = b for y, followed by a back
substitution to �nd the solution vector x from Ux = y.

The frontal method is an LU factorization technique that was originally developed to solve
the banded matrices arising in �nite element problems (Irons, 1970; Hood, 1976). The original
motivation was, by limiting computational work to a relatively small frontal matrix, to be able
to solve problems on machines with small core memories. Using codes such as MA42 (successor
to the well-known MA32) from the Harwell Subroutine library, this method is widely applied to
�nite element problems on vector supercomputers, because, since the frontal matrix can be treated
as dense, most of the computations involved can be performed by using very e�cient vectorized
dense matrix kernels. Stadtherr and Vegeais (1985) extended this idea to the solution of process
simulation problems on supercomputers, and later (Vegeais and Stadtherr, 1990) demonstrated its
potential. An implementation of the frontal method developed speci�cally for use in the process
simulation context has been described by Zitney (1992), Zitney and Stadtherr (1993), and Zitney
et al. (1995), and is now incorporated in supercomputer versions of popular process simulation and
optimization codes.

The frontal elimination scheme can be outlined brie
y as follows:

1. Assemble a row into the frontal matrix.

2. Determine if any columns are fully summed in the frontal matrix. A column is fully summed
if it has all of its nonzero elements in the frontal matrix.

3. If there are fully summed columns, then perform partial pivoting in those columns, eliminating
the pivot rows and columns and doing an outer-product update on the remaining part of the
frontal matrix.

This procedure begins with the assembly of row 1 into the initially empty frontal matrix, and
proceeds sequentially row by row until all are eliminated, thus completing the LU factorization.
To see this in mathematical terms, consider the submatrix A(k) remaining to be factored after the
(k � 1)-th pivot:

A(k) =

"
F (k) 0

A
(k)
ps A

(k)
ns

#
: (1)

Here F (k) is the frontal matrix, A
(k)
ps contains columns that are partially summed (some but not all

nonzeros in the frontal matrix), and A
(k)
ns contains columns that are not summed (no nonzeros in
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the frontal matrix). Assembly of rows into the frontal matrix then proceeds until gk � 1 columns
become fully summed:

A(k) =

2
664

�F
(k)
11

�F
(k)
12 0

�F
(k)
21

�F
(k)
22 0

0 �A
(k)
ps

�A
(k)
ns

3
775 : (2)

�F (k) is now the frontal matrix and �F
(k)
11 and �F

(k)
21 comprise the columns that have become fully

summed, which are now eliminated using rows chosen during partial pivoting and which are shown

as belonging to �F
(k)
11 here. This amounts to the factorization �F

(k)
11 = L

(k)
11 U

(k)
11 of the order-gk block

�F
(k)
11 , resulting in:

A(k) =

2
664
L
(k)
11 U

(k)
11 U

(k)
12 0

L
(k)
21 F (k+gk) 0
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(k+gk)
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3
775 (3)

where the new frontal matrix F (k+gk) is the Schur complement F (k+gk) = �F
(k)
22 �L

(k)
21 U

(k)
12 , which is

computed using an e�cient full-matrix outer-product update kernel, A
(k+gk)
ps = �A

(k)
ps and A

(k+gk)
ns =

�A
(k)
ns . Note that operations are done within the frontal matrix only. At this point L

(k)
11 and L

(k)
21

contain columns k through k + gk � 1 of L and U
(k)
11 and U

(k)
12 contain rows k through k + gk � 1

of U . The computed columns of L and rows of U are saved and the procedure continues with the
assembly of the next row into the new frontal matrix F (k+gk).

2.1 Application of frontal method in process engineering

The outer-product updates in the innermost loops of the frontal code are done using readily
vectorizable BLAS2 or BLAS3 dense matrix kernels (BLAS indicates Basic Linear Algebra Subrou-
tines: BLAS2 covers matrix-vector operations and BLAS3 matrix-matrix). However, for process
simulation problems the frontal matrices are often relatively large and sparse. Thus, while a high
computational rate can be achieved when operating on frontal matrices, a large number of unneces-
sary operations on zeros may be performed, potentially lowering overall performance. In most cases,
however, the time spent on wasted operations is more than made up for by the faster computational
rate achievable.

FAMP has now been incorporated in CRAY versions of popular commercial simulation codes,
such as ASPEN PLUS, SPEEDUP, RATEFRAC, and BATCHFRAC (Aspen Technology, Inc.).
Zitney (1992) and Zitney et al. (1994) give several examples showing how the use of the frontal
solver (as opposed to conventional solvers) has led to dramatic improvements in the performance
of ASPEN PLUS and SPEEDUP. Zitney et al. (1995) describe a dynamic simulation problem
at Bayer AG requiring 18 hours of CPU time on a CRAY C90 supercomputer when solved with
the standard implementation of SPEEDUP. With a CRAY optimized version of SPEEDUP, which
contains the frontal code FAMP and an improved residual evaluator CRAYRES, this simulation
now takes only 21 CPU minutes, with most of the improvement due to the frontal solver. As a
result, Bayer engineers can run this simulation many times per day instead of only once per day.
This improves engineering productivity and let users consider more alternatives in a shorter time
while not sacri�cing model size and/or complexity.

4



3 Multifrontal Method

The multifrontal method is a generalization of the frontal method, and was originally devel-
oped for symmetric matrices. Like the frontal method, it also exploits low-level parallelism and
vectorization through the use of dense matrix kernels on frontal matrices. However, the frontal
matrices are generally smaller and denser than in the frontal method. The classical multifrontal
approach (Du� and Reid, 1984) has met with only limited success when the pattern of nonzeros
is highly unsymmetric. However, recently a new unsymmetric-pattern multifrontal algorithm has
been described by Davis and Du� (1993,1997), and implemented in the code UMFPACK (Davis
and Du�, 1995) (version 2.0 of UMFPACK is incorporated into the Harwell Subroutine Library as
MA38). In this method, a frontal matrix, consisting of pivot row(s) and column(s), their entries
from the original matrix A, and contributions to them from previous frontal matrices, is assembled
at each stage of the factorization process. The frontal matrix Ek for steps k through k + gk � 1 of
the LU factorization, where gk is the number of pivots performed in Ek can be represented as

Ck C 0

k

Rk

R0

k

"
Fk Bk

Tk Dk

#
:

(4)

Ek is labeled with the ordered sets Rk and Ck, representing the pivot rows and columns, respectively,
and with the sets R0

k and C 0

k, representing the nonpivot rows and columns. The blocks Fk, Bk,
and Tk are all fully assembled with contributions from both the original matrix and from previous
frontal matrices; however contributions to Dk may be only partially assembled or not assembled at
all. The pivot block Fk is now factored (Fk = LkUk) thus determining a block-column L

0

k of L and
a block-row U 0

k of U. An outer-product update D0

k = Dk�L0

kU
0

k is then performed to complete the
elimination operations on this frontal matrix, thus resulting in

Ck C 0

k

Rk

R0

k

"
LkUk U 0

k

L0

k D0

k

#
:

(5)

Lk and L0

k can be written into an array for L factors. Similarly, Uk and U 0

k can be written into
an array for U factors. The contribution block D0

k is saved since some of its elements may need to
be assembled into future frontal matrices. This interwoven assembly-elimination process con�nes
the arithmetic operations to the frontal matrices, and so permits the use of e�cient dense matrix
vector operations during the factorization of Fk and the update of Dk.

Zitney et al. (1996) have compared the performance of the general-purpose unsymmetric-
pattern multifrontal approach (UMFPACK v.1.1) with that of the frontal code (FAMP), as well as
with that of the conventional code MA28 (the relative performance of MA48, successor to MA28
in the Harwell Subroutine Library is discussed brie
y in Section 3.2). Results on a set of six
chemical process simulation problems and �ve other engineering problems show that the frontal
and multifrontal methods are signi�cantly faster than MA28, re
ecting in part the use of vectorized
dense matrix kernels. Comparing the frontal and multifrontal methods, the frontal method is most
e�ective on problems with good initial matrix orderings, while the multifrontal method is most
attractive for problems without a good initial ordering. For process simulation problems, good
initial orderings are not uncommon if the equations describing each unit (or equilibrium stage) in
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a process are kept together, and if adjacent units and streams are numbered consecutively, thus
resulting in a nearly block-banded matrix corresponding to the unit-stream nature of the problem.
In the general-purpose multifrontal approach, a pivot element is chosen using a Markowitz-style
strategy to preserve sparsity. Additional pivots may then be chosen to form a pivot block if they do
not cause growth of the assembled frontal matrix beyond a preset limit. In the context of process
simulation, the disadvantage of this approach is that it does not take advantage of the good initial
structure of the matrix, and may in fact destroy it. The multifrontal algorithm presented below is
designed to avoid this di�culty.

3.1 The MFA1P algorithm

MFA1P (MultiFrontal Algorithm, 1 Pivot) is designed to take advantage of good initial struc-
ture in process simulation matrices, especially those that primarily involve equilibrium-stage oper-
ations. The algorithm uses a modi�ed threshold pivot search strategy that attempts to maintain
the structure during the factorization process. The basic MFA1P algorithm is outlined below:

Algorithm MFA1P:
For k = 1 : n

1. Start the k-th frontal matrix by assembling all contributions to the k-th column (including
entries from the original matrix and contributions from previous frontal matrices). This is
the pivot column. Store as a column of L.

2. Choose as a pivot the element in the pivot column closest to (preferably on) the diagonal that
satis�es a threshold pivot tolerance. This determines the pivot row.

3. Assemble all contributions to the pivot row and normalize it. Store as a row of U .

4. Perform an outer product update of Dk using the pivot column and normalized pivot row to
compute the contribution block D0

k for this frontal matrix. Store this contribution block for
later use.

The key feature of the algorithm is the simple pivot selection scheme used in Step 2. The pivot
row j is chosen to minimize jj�kj subject to the threshold tolerance criterion jajkj � t�maxsjaskj,
where t is a preset fraction in the range 0 < t � 1:0. This is in contrast to the frontal method, in
which partial pivoting is used and the largest element in the column is chosen as the pivot (t = 1).
It is also in contrast to the general-purpose unsymmetric-pattern frontal method, in which a global
Markowitz-style pivot search with threshold is used. MFA1P tries to maintain the initial matrix
structure by choosing as the pivot the element closest to and preferably on the diagonal, while
maintaining numerical stability by using the threshold tolerance. In our experiments a threshold
tolerance of t = 0.1 was adequate to maintain numerical stability.

3.2 Results and discussion

Table 1 compares the performance of MFA1P with that of the frontal solver FAMP, the general-
purpose unsymmetric-pattern multifrontal solver UMFPACK, and, to provide a familiar bench-
mark, the conventional solver MA28. Version 2.0 of UMFPACK was used; this version (Davis
and Du�, 1995) incorporates features of the frontal method into the multifrontal solver in order to
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Name n NZ as FAMP MA38 MA28 MFA1P

v3 1078 16937 0.91 0.114 0.243 2.159 6.01x10�2

v10 1148 15729 0.94 0.109 0.227 1.862 6.10x10�2

v13 834 9713 0.95 6.35x10�2 0.140 0.983 4.20x10�2

mpex2 848 11413 0.96 6.60x10�2 0.176 0.299 4.27x10�2

mpex3 2473 46503 0.94 0.359 0.567 10.598 0.173

mpex4 2478 44075 0.95 0.317 0.559 9.19 0.172

mpmult1 2023 31894 0.95 0.234 0.472 6.131 0.13

rdist1 4134 94408 0.94 0.730 1.854 30.21 0.32

rdist2 3198 56934 0.95 0.392 0.696 16.11 0.22

rdist3 2398 61896 0.85 0.478 1.172 32.87 0.20

sumb 523 4998 0.95 3.22x10�2 8.30x10�2 0.314 2.18x10�2

traycalc 1145 20296 0.88 0.14 0.244 2.649 6.81x10�2

uosb 523 4998 0.95 3.22x10�2 8.29x10�2 0.315 2.19x10�2

userupp 1269 22508 0.89 0.154 0.289 3.310 7.39x10�2

Table 1: Run times (s) for ASPEN PLUS test problems on A + F + S execution path. See text
for de�nition of column headings.

improve overall e�ciency; it is incorporated into the Harwell Subroutine Library as MA38. The
default parameter settings were used for each code. Numerical experiments were carried out on
a CRAY C90 parallel/vector supercomputer at Cray Research, Inc. in Eagan, Minnesota (USA).
The problem set includes 14 steady-state simulation problems solved using ASPEN PLUS (Aspen
Technology, Inc.). These problems use the RADFRAC module of ASPEN PLUS. This module
does rigorous calculations for all types of fractionation, including absorption, reboiled absorption,
stripped, reboiled stripping, and extractive, azeotropic, and three phase distillation, in addition to
ordinary distillation.

In Table 1, each matrix is identi�ed by name and order (n). In addition, statistics are given for
the number of nonzeros (NZ), and for a measure of structural asymmetry (as). The asymmetry,
as, is the number o�-diagonal nonzeros aij (j 6= i) for which aji = 0 divided by the total number
of o�-diagonal nonzeros (as = 0 is a symmetric pattern, as = 1 is completely asymmetric). Run
times (in CPU seconds) represent the total time to perform analysis to determine a pivot sequence,
to compute the L and U factors of A, and to perform the forward and backward substitution to
solve Ax = b. This execution path (Analyze + Factor + Solve) is typically used at each iteration
in a steady-state simulation. The fastest run time for each problem is shown in bold. Data for
the factor only and solve only execution paths are given by Mallya and Stadtherr (1997), along
with results for a variety of other problems. Mallya and Stadtherr (1997) also describe a version
(MFA2P) of this multifrontal approach in which two pivots are performed in each frontal matrix.

For the critical A + F + S execution path, the MFA1P solver is the best on all problems and
on the average is nearly twice as fast as the frontal solver FAMP. Neither MA38 nor MA28 are
able to take good advantage of the structure of these problems and, in fact, spend considerable
e�ort �nding a di�erent pivot sequence. Some savings can be achieved in these codes by turning
o� the default permutation to block upper triangular form, which in general is not useful on these
problems. It should also be noted that MA48, the successor to MA28 in the Harwell Subroutine
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Library, should perform better than MA28 on these problems, but still not better than the other
codes on the A+F+S execution path. For instance, on the rdist1 problem, Davis and Du� (1995)
found that, on a CRAY C90, MA38 was about six times faster than MA48.

4 Parallel Frontal Method

The main de�ciency with the frontal code FAMP and multifrontal code MFA1P is that there is
little opportunity for parallelism beyond that which can be achieved by microtasking the inner loops
or by using higher level BLAS in performing the outer product update, which unfortunately usu-
ally provides relatively little speedup (Mallya, 1996; Camarda and Stadtherr, 1994). We overcome
this problem by using a coarse-grained parallel approach in which frontal elimination is performed
simultaneously in multiple independent or loosely connected blocks. This can be interpreted as
applying frontal elimination to the diagonal blocks in a bordered block-diagonal matrix form as de-
scribed below. It can also be interpreted as a coarse-grained multifrontal approach (e.g., Davis and
Du�, 1997; Zitney et al., 1996) with large independent pivot blocks factored by frontal elimination.
Du� and Scott (1994) have applied this type of approach in solving �nite element problems and
referred to it as a \multiple fronts" (as opposed to multifrontal) approach.

Consider a matrix in singly-bordered block-diagonal form:

A =

2
6666664

A11

A22

. . .

ANN

S1 S2 : : : SN

3
7777775

(6)

where the diagonal blocks Aii are mi �ni and in general are rectangular with ni � mi. Because of
the unit-stream nature of the problem, process simulation matrices occur naturally in this form, as
described in detail by Westerberg and Berna (1978). Each diagonal block Aii comprises the model
equations for a particular unit, and equations describing the connections between units, together
with design speci�cations, constitute the border (the Si). Of course, not all process simulation
codes may use this type of problem formulation, or order the matrix directly into this form. Thus
some matrix reordering scheme may need to be applied, as discussed further below.

The basic idea in the parallel frontal algorithm (PFAMP) is to use frontal elimination to partially
factor each of the Aii, with each such task assigned to a separate processor. Since the Aii are
rectangular in general, it usually will not be possible to eliminate all the variables in the block,
nor perhaps, for numerical reasons, all the equations in the block. The equations and variables
that remain, together with the border equations, form a \reduced" or \interface" matrix that must
then be factored. It should be emphasized that while frontal elimination is used here to partially
factor the diagonal blocks, since the target machine is a vector processor, any factorization method
can be used in this context. For instance, if the target architecture involves parallel computing
on a network of scalar processors, then each processor might use a Gaussian elimination with
Markowitz-style pivoting (as in MA48 for example).

4.1 The PFAMP algorithm

The basic PFAMP algorithm is outlined below, followed by a more detailed explanation of the
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key steps. For complete details, see Mallya et al. (1997a).

Algorithm PFAMP:
Begin parallel computation on P processors

For i = 1 : N , with each task i assigned to the next available processor:

1. Do symbolic analysis on the diagonal block Aii and the corresponding portion of the border
(Si) to obtain memory requirements and last occurrence information (for determining when
a column is fully summed) in preparation for frontal elimination.

2. Assemble the nonzero rows of Si into the frontal matrix.

3. Perform frontal elimination on Aii, beginning with the assembly of the �rst row of Aii into
the frontal matrix (see Section 2). The maximum number of variables that can be eliminated
is mi, but the actual number of pivots done is pi � mi. We use a partial-threshold pivoting
strategy to ensure that the pivot row belongs to the diagonal block Aii. We cannot pick a
pivot row from the border Si because border rows may be shared by more than one diagonal
block.

4. Store the computed columns of L and rows of U . Store the rows and columns remaining in
the frontal matrix for assembly into the interface matrix.

End parallel computation

5. Assemble the interface matrix from the contributions of Step 4 and factor.

Note that for each block the result of Step 3 is

Ci C 0

i

Ri

R0

i

"
LiUi U 0

i

L0

i Fi

#
(7)

where Ri and Ci are index sets comprising the pi pivot rows and pi pivot columns, respectively. Ri

is a subset of the row index set of Aii. R
0

i contains row indices from Si (the nonzero rows) as well
as from any rows of Aii that could not be eliminated for numerical reasons. As they are computed
during Step 3, the computed columns of L and rows of U are saved in arrays local to each processor.
Once the partial factorization of Aii is complete, the computed block-column of L and block-row
of U are written into global arrays in Step 4 before that processor is made available to start the
factorization of another diagonal block. The remaining frontal matrix Fi is a contribution block
that is stored in central memory for eventual assembly into the interface matrix in Step 5. The
overall situation at the end of the parallel computation section is:

C1 C2 : : : CN C 0

R1

R2
...

RN

R0

2
6666664

L1U1 U 0

1

L2U2 U 0

2
. . .

...
LNUN U 0

N

L0

1 L0

2 : : : L0

N F

3
7777775

(8)
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where R0 =
NS
i=1

R0

i and C 0 =
NS
i=1

C 0

i. F is the interface matrix that can be assembled from the

contribution blocks Fi. Note that, since a row index in R0 may appear in more than one of
the R0

i and a column index in C 0 may appear in more than one of the C 0

i, some elements of F
may get contributions from more than one of the Fi. As this doubly-bordered block-diagonal
form makes clear, once values of the variables in the interface problem have been solved for, the
remaining triangular solves needed to complete the solution can be done in parallel using the same
decomposition used to do the parallel frontal elimination. During this process the solution to the
interface problem is made globally available to each processor.

Once factorization of all diagonal blocks is complete, the interface matrix is factored. This is
carried out by using the FAMP solver, with microtasking to exploit loop-level parallelism for the
outer-product update of the frontal matrix. However, as noted above, this tends to provide little
speedup, so the factorization of the interface problem can in most cases be regarded as essentially
serial. This constitutes a computational bottleneck. Therefore, it is critical to keep the size of the
interface problem small to achieve good speedups for the overall solution process. It should also
be noted that depending on the size and sparsity of the interface matrix, some solver other than
FAMP may in fact be more attractive for performing the factorization.

4.2 Results and discussion

In this section, we present results for the performance of the PFAMP solver on several process
optimization and simulation problems. We compare the performance of PFAMP on multiple pro-
cessors with its performance on one processor and with the performance of the frontal solver FAMP
on one processor. The numerical experiments were performed on a CRAY C90 parallel/vector su-
percomputer at Cray Research, Inc., in Eagan, Minnesota. The timing results presented represent
the total time to obtain a solution vector from one right-hand-side vector, including analysis, fac-
torization, and triangular solves. A threshold tolerance of t = 0:1 was used in PFAMP to maintain
numerical stability, which was monitored using the 2-norm of the residual b � Ax. FAMP uses
partial pivoting.

In Table 2 each matrix is identi�ed by name and order (n). In addition, statistics are given for
the number of nonzeros (NZ), and for a measure of structural asymmetry (as), as de�ned above.
Also given is information about the bordered block-diagonal form used, namely the number of
diagonal blocks (N), the order of the interface matrix (NI), and the number of equations in the
largest and smallest diagonal blocks, mi;max and mi;min, respectively. P is the number of processors
used for evaluating the parallel performance of PFAMP.

The �rst three problems involve the optimization of an ethylene plant using NOVA, a chemical
process optimization package from Dynamic Optimization Technology Products, Inc. NOVA uses
an equation-based approach that requires the solution of a series of large sparse linear systems,
which accounts for a large portion of the total computation time. The linear systems arising during
optimization with NOVA are in bordered block-diagonal form, allowing the direct use of PFAMP
for the solution of these systems. Each problem involves a 
owsheet that consists of 43 units,
including �ve distillation columns. The problems di�er in the number of stages in the distillation
columns.

The next �ve problems have been reordered into a bordered block-diagonal form using the
Minimum-Net-Cut (MNC) approach (Coon and Stadtherr, 1995). Two of the problems (Hydr1c
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Name n NZ as N mi;max mi;min NI P

Ethylene 1 10673 80904 0.99 43 3337 1 708 5
Ethylene 2 10353 78004 0.99 43 3017 1 698 5
Ethylene 3 10033 75045 0.99 43 2697 1 708 5
Hydr1c 5308 23752 0.99 4 1449 1282 180 4
Icomp 69174 301465 0.99 4 17393 17168 1057 4
lhr 17k 17576 381975 0.99 6 4301 1586 581 4
lhr 34k 35152 764014 0.99 6 9211 4063 782 4
lhr 71k 70304 1528092 0.99 10 9215 4063 1495 4

Bigequil.smms 3961 21169 0.97 18 887 12 733 4
Wood 7k.smms 3508 16246 0.96 37 897 6 492 4
4cols.smms 11770 43668 0.99 24 1183 33 2210 4
10cols.smms 29496 109588 0.99 66 1216 2 5143 4

Table 2: Description of PFAMP test problems. See text for de�nition of column headings.

and Icomp) occur in dynamic simulation problems solved using SPEEDUP (Aspen Technology,
Inc.). The Hydr1c problem involves a 7-component hydrocarbon process with a de-propanizer and
a de-butanizer. The Icomp problem comes from a plantwide dynamic simulation of a plant that
includes several interlinked distillation columns. The other three problems are derived from the
prototype simulator SEQUEL (Zitney and Stadtherr, 1988), and are based on light hydrocarbon
recovery plants, described by Zitney et al. (1996). Neither of the application codes produces
directly a matrix in bordered block-diagonal form, so a reordering such as provided by MNC is
required.

The �nal four problems arise from simulation problems solved using ASCEND (Piela et al.,
1991), and re-ordered to bordered block-diagonal form using the tear drop approach (Abbott,
1996). Problem Bigequil.smms represents a 9-component, 30-stage distillation column. Problem
Wood 7k is a complex hydrocarbon separation process. Problems 4cols.smms and 10cols.smms

involve nine components with four and ten interlinked distillation columns, respectively.
Table 3 shows the performance of PFAMP. We note �rst, that the single processor performance

of PFAMP is usually better than that of FAMP. This is due to the di�erence in the size of the
largest frontal matrix associated with the frontal elimination for each method. For solution with
FAMP, the variables which have occurrences in the border equations remain in the frontal matrix
until the end. The size of the largest frontal matrix increases for this reason, as does the number
of wasted operations on zeros, thereby reducing the overall performance. This problem does not
arise for solution with PFAMP because when the factorization of a diagonal block is complete, the
remaining variables and equations in the front are immediately written out as part of the interface
problem and a new front is begun for the next diagonal block. Thus, usually PFAMP is a more
e�cient serial solver than FAMP. This re
ects the advantages of the multifrontal-type approach
used by PFAMP, namely smaller and less sparse frontal matrices.

In each of the three ethylene plant matrices, there are �ve large diagonal blocks, corresponding
to the distillation units, with one of these blocks much larger (mi = 3337) than the others (1185 �
mi � 1804). In the computation, one processor ends up working on the largest block, while the
remaining four processors �nish the other large blocks and the several much smaller ones. The load
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Name Source n FAMP PFAMP (1 Proc) PFAMP (P Proc)

Ethylene 1 NOVA 10673 0.697 0.550 0.297
Ethylene 2 NOVA 10353 0.667 0.510 0.290
Ethylene 3 NOVA 10033 0.628 0.505 0.280
Hydr1c SPEEDUP 5308 0.258 0.243 0.139
Icomp SPEEDUP 69174 3.78 4.33 1.72
lhr 17k SEQUEL 17576 3.62 1.77 0.808
lhr 34k SEQUEL 35152 7.18 3.81 1.78
lhr 71k SEQUEL 70304 14.8 7.67 3.04

Bigequil.smms ASCEND 3961 0.235 0.232 0.149
Wood 7k.smms ASCEND 3508 0.208 0.205 0.129
4cols.smms ASCEND 11770 1.14 1.13 0.680
10cols.smms ASCEND 29496 11.3 3.69 1.81

Table 3: FAMP and PFAMP wallclock run times (s). In the last column, P refers to the values in
Table 2.

is unbalanced with the factorization of the largest block being the bottleneck. This, together with
the solution of the interface problem, results in a speedup (relative to PFAMP on one processor)
of less than two on �ve processors. It is likely that more e�cient processor utilization could be
obtained by using a better partition into bordered block-diagonal form.

For MNC-reordered SPEEDUP and SEQUEL matrices, the speedup is around two. MNC
achieves the best reordering on the Icomp problem, for which it �nds four diagonal blocks of
roughly the same size (17168 � mi � 17393) and the size of the interface problem is relatively
small in comparison to n. The speedup observed for PFAMP on this problem was about 2.5 on
four processors. While this represents a substantial savings in wallclock time, it still does not
represent particularly e�cient processor utilization.

On ASCEND problems, the moderate task granularity helps spread the load over the four
processors used, but the size of the interface problem tends to be relatively large, 14-19% of n, as
opposed to less than about 7% on the previous problems. The best parallel e�ciency was achieved
on the largest problem (10cols.smms), with a speedup of about two on four processors. This was
achieved despite the relatively large size of the interface problem because, for this system, the use
of small-grained parallelism within FAMP for solving the interface problem provided a signi�cant
speedup (about 1.7). As on the previous problems, this represents a substantial reduction in
wallclock time, but is not especially good processor utilization. Overall on 10cols.smms the use of
PFAMP resulted in the reduction of the wallclock time by a factor of six; however only a factor of
two of this was due to multiprocessing.

For none of the problems considered above was the e�ciency of processor utilization particularly
high. In this context, it should be remembered that even a relatively small serial component in a
computation can greatly reduce the e�ciency of processor utilization [see Vegeais and Stadtherr
(1992) for further discussion of this point]. Improved reorderings to bordered block diagonal form
can provide some improvements along these lines (Mallya et al., 1997b). However, because of the
unsymmetric and irregular nature of process engineering matrices, achieving extremely e�cient
processor utilization may be very di�cult. Nevertheless, signi�cant speedups can still be achieved,
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not only by considering the linear algebra component of the problem, but also function evaluation,
derivative evaluation, and other aspects of the problem.

5 Reliable Computing

It is important to realize that not only does HPC provide the power to increase the speed with
which problems can be solved, but also the reliability with which they can be solved. In process
optimization a consistent issue concerning reliability is whether or not a global, as opposed to local,
optimum has been achieved. In process modeling, especially in the presence of highly nonlinear
models, the issue of whether a solution is unique is of concern, and if no solution is found, of
whether there actually exists a solution to the posed problem. It is a common misconception that
such di�culties cannot be resolved except in special cases. For example, in a section entitled \What
is not possible," Dennis and Schnabel (1983) state that \In general, the questions of existence and
uniqueness|does a given problem have a solution and is it unique?|are beyond the capabilities
one can expect of algorithms that solve nonlinear problems." More recently, in the textbook of
Heath (1997) it is stated concerning nonlinear equation systems that \It is not possible, in general,
to guarantee convergence to the correct solution or to bracket the solution to produce an absolutely
safe method." However, in fact there do exist methods, based on interval computations, that can,
given a system of equations with a �nite number of solutions in a speci�ed initial interval, �nd
with mathematical certainty any and all solutions to a speci�ed tolerance, or can determine with

mathematical certainty that there are none. Not only do these techniques provide the power to
�nd with certainty all solutions of a system of nonlinear equations, but also to �nd with total
con�dence the global minimum of a nonlinear objective function, again provided only that upper
and lower bounds are available for all variables. While such methods are not new and date to the
pioneering work of Moore (1966), the computational power to e�ciently implement these techniques
are a relatively recent development, and thus such methods have not yet been widely applied.
Schnepper and Stadtherr (1990) suggested the use of these techniques for solving chemical process
modeling problems, and recently described both parallel and serial implementations (Schnepper
and Stadtherr, 1996). Balaji et al. (1995) have also successfully applied these methods to chemical
engineering problems. Stadtherr et al. (1995), McKinnon et al. (1996), and Hua et al. (1996a,b)
have shown how to use interval computations to reliably solve phase stability problems, and this
will be used as an example below. For good introductions to interval computations, including their
use in nonlinear equation solving and global optimization, the recent monographs of Neumaier
(1990), Hansen (1992), and Kearfott (1996) are available.

5.1 Phase stability analysis

The determination of phase stability, i.e., whether or not a given mixture can split into multiple
phases, is a key step in phase equilibrium calculations, and thus in the simulation and design of a
wide variety of processes, especially those involving separation operations such as distillation and
extraction. We use it here as an example of the power of interval computations to reliably solve
di�cult modeling and optimization problems.

The phase stability problem is frequently formulated in terms of the tangent plane condition
(Baker et al., 1982). Minima in the tangent plane distance are sought, usually by solving a system
of nonlinear equations for the stationary points (Michelsen, 1982). If any of these yield a negative
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tangent plane distance, indicating that the tangent plane intersects (or lies above) the Gibbs energy
of mixing surface, the phase is unstable and can split (in this context, unstable refers to both
the metastable and classically unstable cases). The di�culty lies in that, in general, given any
arbitrary equation of state or activity coe�cient model, most computational methods cannot �nd
with complete certainty all the stationary points, and thus there is no guarantee that the phase
stability problem has been correctly solved.

Standard methods (e.g., Michelsen, 1982) for solving the phase stability problem typically rely
on the use of multiple initial guesses, carefully chosen in an attempt to locate all stationary points
in the tangent plane distance function. However, these methods o�er no guarantee that the global
minimum in the tangent plane distance has been found. Because of the di�culties that thus arise,
there has been signi�cant recent interest in the development of more reliable methods for solving
the phase stability problem (e.g., Nagarajan et al., 1991; Sun and Seider, 1995; Eubank et al., 1992;
Wasylkiewicz et al., 1996; McDonald and Floudas, 1995a,b,c,1997). For example, Sun and Seider
(1995) apply a homotopy-continuation method, which will often �nd all the stationary points, and is
easier to initialize than Michelsen's approach. However, their technique is still initialization depen-
dent and provides no theoretical guarantees that all stationary points have been found. McDonald
and Floudas (1995a,b,c,1997) show that for certain activity coe�cient models, the phase stability
problem can be reformulated to make it amenable to solution by powerful global optimization tech-
niques, generally involving branch and bound using convex underestimating functions. While this
type of approach can o�er mathematical guarantees, it does not o�er computational guarantees in
practice, since it does not deal rigorously with rounding error. As shown by the example given
originally by Rump (1988) and also discussed by Hansen (1992), the impact of rounding error is
something that should not be taken lightly.

An alternative approach for solving the phase stability problem, based on interval analysis, that
provides both mathematical and computational guarantees of global optimality, with resolution
limited only by machine precision, was originally suggested by Stadtherr et al. (1995), who applied
it in connection with activity coe�cient models, as later done also by McKinnon et al. (1996).
This technique, in particular the use of an interval Newton/generalized bisection algorithm, is
initialization independent and can solve the phase stability problem with mathematical certainty,
while also dealing automatically with rounding error. Recently Hua et al. (1996a,b) extended this
method to problems modeled with cubic equation of state (EOS) models, in particular the Van
der Waals (VDW), Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) models with standard
mixing rules. It should be emphasized however, that the technique is general-purpose and can be
applied in connection with any equation of state or excess Gibbs energy model.

According to tangent plane analysis (Baker et al., 1982; Michelsen, 1982), a phase at speci�ed
temperature T , pressure P , and feed mole fraction z is unstable if the molar Gibbs energy of mixing
surface m(x; v) = �gmix = �Ĝmix=RT ever falls below a plane tangent to the surface at z. That
is, if the tangent plane distance

D(x; v) = m(x; v) �m0 �
nX
i=1

�
@m

@xi

�
0
(xi � zi) (9)

is negative for any composition x, the phase is unstable. The subscript zero indicates evaluation
at x = z, n is the number of components, and v is the molar volume of the mixture. A common
approach for determining if D is ever negative is to minimize D subject to the mole fractions
summing to one and subject to the equation of state relating x and v. It is readily shown that
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the stationary points in this optimization problem can be found by solving the system of nonlinear
equations: ��

@m

@xi

�
�
�
@m

@xn

��
�
��

@m

@xi

�
�
�
@m

@xn

��
0
= 0; i = 1; : : : ; n� 1 (10)

1�
nX
i=1

xi = 0 (11)

P � RT

v � b
+

a

v2 + ubv + wb2
= 0 (12)

Equation (12) is the generalized cubic EOS given by Reid et al. (1987). With the appropriate
choice of u and w, common models such as PR (u = 2, w = �1), SRK (u = 1, w = 0), and
VDW (u = 0, w = 0) may be obtained. For the example considered here, standard mixing
rules, namely b =

Pn
i=1 xibi and a =

Pn
i=1

Pn
j=1 xixjaij, are used, with aij = (1 � kij)

p
aiiajj.

The aii(T ) and bi are pure component properties determined from the system temperature T , the
critical temperatures Tci, the critical pressures Pci and acentric factors !i. If there are multiple
real volume roots at the feed composition z, then in evaluating equations (9) and (10), the molar
volume v0 at the feed composition must be the root yielding the minimum value of m0 = m(z; v0),
the reduced molar Gibbs energy of mixing at the feed.

The (n+1)�(n+1) system given by equations (10){(12) above has a trivial root at (x; v) = (z; v0)
and frequently has multiple nontrivial roots as well. Thus conventional equation solving techniques
may fail by converging to the trivial root or give an incorrect answer to the phase stability problem
by converging to a stationary point that is not the global minimum ofD. This is aptly demonstrated
by the experiments of Green et al. (1993), who show that the pattern of convergence from di�erent
initial guesses demonstrates a complex fractal-like behavior for even very simple models like VDW.
We show here that the interval Newton/generalized bisection method can reliably solve the system
of equations (10){(12). The method requires no initial guess, and will �nd with certainty all the
stationary points of the tangent plane distance D.

5.2 Interval computations

A real interval, X, is de�ned as the continuum of real numbers lying between (and including)
given upper and lower bounds; i.e., X = [a; b] = fx 2 < j a � x � bg, where a; b 2 < and a � b. A
real interval vector X = (Xi) = (X1;X2; :::;Xn)

T has n real interval components and since it can
be interpreted geometrically as an n-dimensional rectangle, is frequently referred to as a box. Note
that in this section lower case quantities are real numbers and upper case quantities are intervals.

Interval arithmetic is an extension of real arithmetic. For a basic arithmetic operation op 2 f+,
� , � ,�g, the corresponding interval operation for intervals X = [a; b] and Y = [c; d] is de�ned by
X op Y = fx op y j x 2 X; y 2 Y g. Formulae for computing these basic interval operations are well
known, for example X + Y = [a+ c; b+ d]: Such formulae assume that we are able to compute the
endpoints of an interval result exactly. Of course, when this is done on a computer, there may be
round-o� problems, so steps must be taken to ensure that the resulting intervals enclose the exact
values. The use of rounded-interval arithmetic solves this problem. Essentially a directed outward
rounding is used, so that when a lower endpoint a is computed, it is rounded down to the largest
machine-representable number less than or equal to a, and when an upper endpoint b is computed,
it is rounded up to the smallest machine-representable number greater than or equal to b. In this
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way, when interval arithmetic is used, rounding error is readily accounted for. Outwardly rounded
interval extensions of the elementary functions (e.g., exponentiation, logarithm, exponential) are
also available.

Of particular interest here are interval Newton/generalized bisection (IN/GB) methods. Con-
sider the solution of the system of real nonlinear equations f(x) = 0, where it is desired to �nd all
solutions in an speci�ed initial interval X(0). The basic iteration step in interval Newton methods
is, given an interval X(k), to solve the linear interval equation system

F 0(X(k))(N(k) � x(k)) = �f(x(k)) (13)

for a new interval N(k), where k is an iteration counter, F 0(X(k)) is an interval extension of the
real Jacobian f 0(x) of f(x) over the current interval X(k), and x(k) is a point in the interior of
X(k), usually taken to be the midpoint. It can be shown (Moore, 1966) that any root x� of the
set of equations that is within the current interval, i.e. x� 2 X(k), is also contained in the newly
computed interval N(k). This suggests that the next iteration for X should be the intersection of
X(k) with N(k), i.e. X(k+1) = X(k) \ N(k). There are various interval Newton methods, which
di�er in how they determine N(k) from equation (13) and thus in the tightness with which N(k)

encloses the solution set of (13).
While the iteration scheme discussed above can be used to tightly enclose a solution, what is of

most signi�cance here is the power of equation (13) to provide a test of whether a solution exists
within a given interval and whether it is a unique solution. For several techniques for �nding N(k)

from equation (13), it can be proven (e.g., Neumaier, 1990) that if N(k) is totally contained within
X(k), i.e. N(k) � X(k), then there is a unique zero of the set of nonlinear equations f(x) = 0 in
X(k), and furthermore that Newton's method with real arithmetic will converge to that solution
starting from any point in X(k). Thus, if N(k) is determined using one of these techniques, the
computation can be used as part of a root inclusion test for any interval X(k):

1. If X(k) and N(k) do not intersect, i.e., X(k) \ N(k) = ;, then there is no root in X(k).

2. If N(k) is totally contained in X(k), then there is exactly one root in X(k) and Newton's
method with real arithmetic will �nd it.

3. If neither of the above is true, then no conclusion can be drawn.

In the last case, one could then repeat the root inclusion test on the next interval Newton iterate
X(k+1), assuming it is su�ciently smaller than X(k), or one could bisect X(k+1) and repeat the
root inclusion test on the resulting intervals. This is the basic idea of IN/GB methods. If f(x) = 0

has a �nite number of real solutions in the speci�ed initial box, a properly implemented IN/GB
method can �nd with mathematical certainty any and all solutions to a speci�ed tolerance, or can
determine with mathematical certainty that there are no solutions in the given box (Kearfott and
Novoa, 1990; Kearfott, 1990). The technique used here for computingN(k) from equation (13) is the
preconditioned Gauss-Seidel-like technique developed by Hansen and Sengupta (1981). A detailed
step-by-step description of the IN/GB algorithm used here is given by Schnepper and Stadtherr
(1996). It should be noted that, prior to executing the interval-Newton procedure outlined above,
the root inclusion test �rst computes an interval extension F(X(k)) containing the range of f(x)
over X(k) and tests to see whether it contains zero. Clearly, if 0 =2 F(X(k)) � ff(x) j x 2 X(k)g
then there can be no solution of f(x) = 0 in X(k)and this interval need not be further tested using
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the interval-Newton procedure. Furthermore, it should be emphasized that since the root inclusion
tests can be performed independently on all the intervals generated by bisection, this technique is
readily parallelized.

The system of equations (10){(12) that must be solved here involves n + 1 variables, the n
component mole fractions x and the molar volume v. For the mole fraction variables, initial intervals
of [0,1] are suitable. In practice the initial lower bound is set to an arbitrarily small positive number
" (10�10 was used) to avoid taking the logarithm of zero in subsequent calculations. This can be
done without the loss of reliability providing a su�ciently small value of " is used. The lower limit
on the molar volume was taken to be the smallest pure component size parameter bi, and the upper
bound was taken to be the ideal gas molar volume for the T and P under investigation. Although
it is possible to have compressibility factors greater than one at very high reduced pressure, this
was deemed satisfactory for reduced temperature and pressure used in the example below. Our
implementation of the IN/GB method for the phase stability problem is based on appropriately
modi�ed routines from the packages INTBIS (Kearfott and Novoa, 1990) and INTLIB (Kearfott et
al., 1994).

5.3 Example

This is a mixture of hydrogen sul�de (1) and methane (2) at 190 K and 40.53 bar (40 atm.).
The SRK model was used with parameters calculated from Tc1 = 373.2 K, Pc1 = 89.4 bar, !1 =
0.1, Tc2 = 190.6 K, Pc2 = 46.0 bar, !2 = 0.008, and a binary interaction parameter k12 = 0.08.

Several feeds were considered, as shown in Table 4, which also shows the roots (stationary
points) found, and the value of the tangent plane distance D at each root. For the z1 = 0.5 case,
our results are consistent with those given by Sun and Seider (1995) for this problem. For feeds near
the z1 = 0.0187 case, this is known to be a di�cult problem to solve (e.g., Michelsen, 1982; Sun and
Seider, 1995). As noted by Michelsen and others, if one uses a locally convergent solver, with nearly
pure CH4 as the initial guess, convergence will likely be to the trivial solution at x1 = z1 = 0:0187.
And if nearly pure H2S is the initial guess, convergence will likely be to the local, but not global,
minimum at x1 = 0:8848. Using only these initial guesses would lead to the incorrect conclusion
that the mixture is stable. This is indicative of the importance of the initialization strategy when
conventional methods are used. An important advantage of the IN/GB approach described here is
that it eliminates the initialization problem, since it is initialization independent. In this case, it
�nds all the stationary points, including the global minimum at x1 = 0:0767, correctly predicting,
since D < 0 at this point, that a mixture with this feed composition is unstable. Michelsen's
algorithm, as implemented in LNGFLASH from the IVC-SEP package (Hytoft and Gani, 1996), a
code that in general we have found to be extremely reliable, incorrectly predicts that this mixture
is stable. As indicated in Table 4, several other feed compositions were tested using the IN/GB
approach, with correct results obtained in each case. Note that the presence of multiple real volume
roots does not present any di�culty, since the solver simply �nds all roots for the given system.

Also included in Table 4 are the number of root inclusion tests performed in the computation
and the total CPU time on a Sun Ultra 1/170 workstation. Results for several other problems are
available (Hua et al., 1997) We would expect standard approaches to the phase stability problem
to be faster, but these methods do not reliably solve the problem in all cases. Thus, as one might
expect, to obtain guaranteed reliability some premium must be paid in terms of computation time.
While this problem is too small for the use of parallel computing to have much impact, for larger
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Number of Root CPU Time (sec)
Feed (z1; z2) Roots (x1; x2; v) D Inclusion Tests Sun Ultra 1/170

(0.0115, 0.9885) (0.0115, 0.9885, 212.8) 0.0 1079 0.23
(0.0237, 0.9763, 97.82) 0.0137
(0.0326, 0.9674, 78.02) 0.0130

(0.0187, 0.9813) (0.8848, 0.1152, 36.58) 0.0109 1428 0.29
(0.0187, 0.9813, 207.3) 0.0
(0.0313, 0.9687, 115.4) 0.0079
(0.0767, 0.9233, 64.06) -0.004
(0.4905, 0.5095, 41.50) 0.0729

(0.07, 0.93) (0.8743, 0.1257, 36.65) 0.0512 1414 0.30
(0.5228, 0.4772, 40.89) 0.0965
(0.0178, 0.9822, 208.0) 0.0015
(0.0304, 0.9696, 113.7) 0.0100
(0.07 , 0.93 , 65.35) 0.0

(0.50, 0.50) (0.8819, 0.1181, 36.60) -0.057 1416 0.29
(0.0184, 0.9816, 207.5) -0.079
(0.0311, 0.9689, 114.9) -0.071
(0.0746, 0.9254, 64.44) -0.082
(0.50 , 0.50 , 41.32) 0.0

(0.888, 0.112) (0.888 , 0.112 , 36.55) 0.0 1412 0.30
(0.0190, 0.9810, 207.1) 0.0026
(0.0316, 0.9684, 116.0) 0.0103
(0.0792, 0.9208, 63.60) -0.002
(0.4795, 0.5205, 41.72) 0.0683

(0.89, 0.11) (0.89 , 0.11 , 36.54) 0.0 1411 0.29
(0.0192, 0.9808, 206.9) 0.0113
(0.0319, 0.9681, 116.4) 0.0189
(0.0809, 0.9191, 63.31) 0.0058
(0.4725, 0.5275, 41.87) 0.0724

Table 4: Results for example problem: Hydrogen sul�de (1) and methane (2) at P = 40.53 bar and
T = 190 K, modeled using SRK.
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problems and other application areas, the use of high performance computing will be important in
using interval computations for global optimization.

6 Concluding Remarks

In the �rst part of this paper, the focus was on using HPC for increasing the speed of process
simulation and optimization computations. To better use this leading edge technology in process
engineering requires the use of techniques that e�ciently exploit vector and parallel processing, and
thus it is often necessary to rethink problem solving strategies. We have seen here how a simple
multifrontal approach (MFA1P) can be used to e�ciently solve, in a vector processing environment,
the sparse linear equation systems that arise in the simulation of equilibrium-stage processes. By
taking advantage of the problem's structure, the new approach provides signi�cant improvements
over both the standard frontal solver FAMP and the general-purpose multifrontal solver MA38
(from the Harwell Subroutine Library). We have also seen that the parallel frontal solver PFAMP
can be e�ective for use in process simulation and optimization on parallel machines with a relatively
small number of processors. In addition to making better use of multiprocessing than the standard
solver FAMP, on most problems the single processor performance of PFAMP was better than that
of FAMP. The combination of these two e�ects led to four- to six-fold performance improvements
on some large problems.

Not only does HPC provide the power to increase the speed with which problems can be solved,
but also the reliability with which they can be solved. In the second part of the paper the focus was
on an approach, based on interval mathematics, that is capable of guaranteeing the reliable solution
of process engineering problems, and that is well suited to parallel processing. As an example of
this approach we saw that the interval Newton/generalized bisection algorithm can solve phase
stability problems for a generalized cubic equation of state model e�ciently and with complete
reliability. This work represents an entirely new method for solving these problems, a method that
can guarantee with mathematical certainty that the correct solutions are found, thus eliminating
computational problems that are frequently encountered with currently available techniques. The
method is initialization independent; it is also model independent, straightforward to use, and can
be applied in connection with other equations of state or with activity coe�cient models. This
represents a very powerful problem solving technique that, especially when combined with the
power of high performance computing, will �nd applications in many areas of process modeling
and optimization.
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