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In the first part of this presentation we will take abrief look at the tremendous growth in
computational power that is ongoing, from desktop machinesto high performance @mputing
hardware. It will come & no surprise to this audience that computational power has grown very
quickly and continues to grow very quickly. The availability of all this power allows usto solve
problems much faster. This meanswe can solve larger problems involving more complex and
more realistic models. It allows us to solve problems we probably would not have even considered
trying to solve yeas ago, because of their computational demands. All of this has made possible
significant advances in many fields of science and engineering. But, another thing we can use all
this computer power for, that is often overlooked in the quest to solve problems faster and faster, is
that we can use it to solve problems more reliably—in fad to actually provide mathematical and
computational guarantees of reliability. So in the seaond part of this presentation we will focus on
issues of reliability—what good is high performance omputing if we ae just computing the wrong
answer faster?

Growth in computational power.

The historical trend is that computational performanceincreases by about two orders of
magnitude adecale, and thisis atrend that we should exped to seecontinue into the foreseeable
future. What is happening is that we have been riding the rapid growth stages of a continuing
series of technological advances. Asgrowth in one type of advance levels off, rapid growth due to
some other advancekicks in, and thus growth continues at arapid pace

Looking at single-user PC performance in Figure 1, the two orders of magnitude per decale
growth rate is apparent, putting us over 100 MFLOPS (millions of floating point operations per
seoond) today. Thisis based not on atheoretical pe rate, but the rate on solvinga 100x 100
system of linear equations (the LINPACK-100benchmark). For reference Figure 1 also shows a
couple of old machines that | used to work with: the CDC Cyber 175 mainframe and the Cray X-
MP supercomputer. Clealy, we now have cme along ways sincethen, especially in
price/performanceratio. The Cray X-MP cost around 8-10 million dollars; a comparably
performing machine today would run around 1000dollars, and by Christmas shoppingtimein 1999
we should exped this to drop to around 200dollars. The PC is rapidly becoming a"disposable”
applicance
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The growth in performance of multi-user workstations (Figure 2) has followed a very
similar pattern, again about two orders of magnitude adecale. However, the growth here, at least
based on single processor machines, has not been quite & fast asin the PC case, lealing to the
increasing overlap today in the low-end workstation and high-end PC markets.

Looking at high performance mmputing hardware (Figure 3), the situation is mewhat
different, but in the end till the same. If we look at the growth in single procesor performance
using vedor processing technology (based on the Cray T94), it is not that impressve—less than an
order of magnitude per decale. Thisis based on performance solvinga 1000x 1000linea system
(the LINPACK-1000"Toward Pe&k Performance” benchmark). If we allow for multiple vedor
procesrs (based on the Cray T932), we can do much better. However, to redly seethe growth
here we need to compare state of the at then (Cray 1-S) with state of the at now (Intel Sandia Red)
and look at performance on the largest problem solved (the Rmax benchmark). Rnax for the Cray 1-S
is little different than its performance on the LINPACK-1000benchmark, so again we seethe two
orders of magnitude per decale growth rate, which, if anything, in recent yeas has acually been
accelerating, due to the use of massively parallel architedures.

Looking at the aurrent situation in parallel computing (Table 1), the latest hardware gives a
pek performance of around 4teraflops (million MFLOPS), with a likely Ryax Of over 3 teraflops.
At Notre Dame, | am currently working with a group of people that is already working on the
technology and algorithms for petaflop machines—that is, 10*° floating point operations per seand
(abillion MFLOPS). Onetrend that we can seehere isthat these high end machines use massively
parallel computing; and they do this with commodity level chips. For example, the Intel Red
machine is based on Pentium Pro processors.

On amore commercial mainstream level, the trend is toward shared-memory machines,
from 4 to 32to 64 pocesrs. These ae very easy to use machines, and the word "mainstream”
should be emphasized here. These machines are very widely used in the business world, as srvers
and for various other applications. For example, looking at the June 1998listing of the top-500
supercomputing sites, one will find several banks, several telecommunication companies, and
various other companies sich as American Airlines, Raytheon, Federal Express Rubbermaid,
Allstate, etc. So we should no longer think of parallel computing as sosme kind of exotic
technology—it is much more widespread than most people probably think.

Another trend istoward the use of network-based systems. Essentialy, if you have a
number of computers connected in a network, you have aparallel computer. The rapid growthin
networking and its projected future growth, including all the new wireless technology, has led
people to think about a concept cdled "metacomputing”. Metacomputing refers to the use of a
heterogeneous network of computing resources, that may range from simple microprocessorsto
high-end multiprocessors. The analogy that is frequently used is that plugging into a metacomputer
would be just like plugging into the eledrical power grid. You would get as much computational
power as you need, when you nedl it and where you nedl it, by grabbing compute cycles off the
network. And just like I do not know or necessarily care where the eledricity runnng my
workstation has been generated, you would not necessarily know where the compute gycles you are
using are adually coming from. Thisisastill developing concept, with much research still needed



in algorithms, software and applications. Infad, there isametacomputing group at Notre Dame
that | currently interad with, looking at processengineering applications.

One interesting development along these linesis Jini. Thisisasystem developed by Sun
Microsystems, and announced in Summer 1998 It is based on Java, and is designed to allow
machines ranging from computer-controll er appliances to supercomputersto talk to ead other and
share computing power aaossa network. The ideathat alot of excessprocessing power resides
today in appliances, such as refrigerators, is 9mething that was mentioned in July 1998at the
FOCAPO meding in Snowbird by Larry Smarr, who was the keynote speder. This led to some
joking about the potential power of a "Refrigerator-Net”. Something like Jini makes that alittle
lessfar fetched. Infad it may not be far fetched at all. On September 30, 1998 a story appeaed on
the New York Times web site proclaiming "Refrigerator, Computer Combined.” The story went on
to say that this product is being marketed as an "I nternet Refrigerator,” and that it has a Pentium I
microprocesor, a huge hard drive—and separate compartments for fruits and vegetables.

What does this growth in computational power mean in processengineaing? Thisisa
guestion that will be discussed in concluding this presentation. For now, | want to emphasizethat a
problem has been, in this areaand in others, that existing problem solving strategies were
developed under a serial computing paradigm, and thus may take little alvantage of advanced
computing architectures, such as vedor and/or parallel computing. So, thereredly isaneed to be
rethinking the way we solve problems. Thisisan areathat | have been very interested in over the
yeas, and | will provide one example to demonstrate the point.

This example (Figure 4) involves a dynamic simulation run using Aspen Tedchnology's
SPFEEDUP padkage on a Cray C90 vedor machine not too many yeas ago, and shows what
happens when you change sparse matrix solvers in order to try to take better advantage of
vedorizaion. Thiswasa omparison done by Steve Zitney in collaboration with people & Bayer
[1]. What this shows is that with the conventional sparse matrix solver of thetime, MA28, the
simulation took about 12 hours, which, sincethis was a simulation of a much shorter period of
adual plant time, was not agood thing. By changing to the FAMP solver, which was developed by
Steve Zitney in my group, and which takes advantage of the vedor computer architedure, the
simulation time was reduced by an order of magnitude, and the time to solve asingle linea system
by two orders of magnitude.

Reliability in Computing
Now shifting geas, consider the question: With all this computing power, can we in fad
reliably compute the right answers? To explore this isaue, we will look at some examples. The

first example isthe relatively well-known problem due to Rump [2]. Here we ae asked to evaluate
the expressgon

f(xy) = 33375y + x(1 DAY - VP -121y* - 2) + 5.5y° + x/2y

forx=77617and y = 330%. All numericd inpusin this calculation are exact machine numbers,
S0 any errors we get in the result are due to the computation. Looking at the computed results from



a Fortran program, which Rump did on aIBM S$/370, and athers have repeaed on many other
machines, we seethat when using single precision the result is

f=11726(...

when using double precision, the result is
f=1.172603940058..

and when using extended precision, the result is
f=1.17260394005314..

The fad that the answer does not change with increasing precision is often taken as confirmation
that the correct answer has been obtained. However, the mrred answer is, in fad,

f=-0.827396059946.
So we didn't even get the sign right!

The problem here is due to rounding errors, combined with other difficulties, such as
cancellation errors, that are inherent in the use of floating point arithmetic. A frequent reaction
when people seethis example is "so what, this will never happen to me" and "even if it does happen
to me, it will be no big deal.” So consider now a wupe of real world examples.

On February 25, 1991, during the Gulf War, an American Patriot missle battery fired at an
incoming Scud missle but failed to intercept it. The Scud missle struck an American Army
barradks and 28soldiers were killed. During the Gulf War, the U. S. Army had been claiming a
successul intercept rate by Patriot misdles of 80% in Saudi Arabia. This estimate was scaled back
to 70% shortly after the war. However, in alater congressional investigation, testimony indicaed
that "the Patriot's intercept rate could be much lower than ten percent, perhaps even zero."

So, what was the problem? It turns out that the computation of time in a Patriot missile,
which iscritical in tradking a Scud, involves a multiplicaion by a constant fador of 1/10. The
number 1/10is a number that has no exad binary representation, so every multiplication by 1/10
necessarily causes sosme rounding error. Inthe cae of the Patriot missle, the acamulated
rounding error was sufficient to cause it to mistradk incoming Scuds and thus miss them, with
deally consequences—and all due to bad computer arithmetic.

The European space gency spent 10 yeasand 7 bill ion dollars to develop the Ariane-5
rocket. OnJune 4, 1996 thefirst Ariane-5 was launched. At 39 seconds after liftoff it exploded,
destroying the rocket and cargo valued at half a billion dollars. So what happened? It turns out that
the explosion was caused by adivation of the self-destruct mechanism built into the rocket. The
self-destruct wastriggered by unusually large aeodynamic forces that were ripping off the
boogters. These forces were dueto an abrupt course correction made by the on-board steeaing
computer, which was in compensation for awrong turn off course that in fact never took place.



The inertial guidance mmputer had told the steering computer that the rocket had gone way off
course, when in fact it was not off course & all.

What caused this turn of events? It seemsthat what happened was that in the cmmputations
done by the inertial guidance @mputer it was converting a 64-bit floating point number into a 16-
bit signed integer number. At about 36 seands into the flight, a number was encountered that was
larger than 32768 which is the largest possible 16-bit signed integer, so the mnversation failed.
Thus, erroneous numbers were sent to the steaing computer, causing it to think the missle was off
course and leading to the explosion at 39 seands into the flight. Again avery costly disaster due
to bad computer arithmetic.

Difficulties like this have caised some in the cmmputing industry to suggest a rethinking of
computer arithmetic paradigms. Originally computers used fixed point arithmetic. However, while
fixed point arithmetic continuesto be used in some special applications, there was a major
paradigm shift in the mid-195Gs to floating point arithmetic. At the time, this shift was the caise of
some ntroversy. Accuracy was one main concern, since eror analysis is much more complicated
under the floating point paradigm. Alston Householder reportedly pronounced that he would never
fly in an aircraft designed with the help of floating point arithmetic. The biggest drawbadk to
floating point, however, wasthat it was very much slower than fixed point, and given the
computers of the time, thiswas a very serious concern. But it was much easier to write programs in
floating point arithmetic and so that paradigm won oui.

Today, at least one major computer hardware and software company is sriously
considering another computer arithmetic paradigm—namely, interval arithmetic. Thisis slower
than floating point, so in that sense presents an issue similar to what had to be considered in
moving from fixed to floating point in the 195G. However, today we have ample computing
power to ded with thisisaue. What isthe advantage of interval arithmetic relative to floating
point? Mainly it is an issue of reliability. In floating point arithmetic, if we ald two numbers, say ¢
=a+Db, evenif aand b have exad binary representations, the result c in general will not, and so
the result of the cmputation will have rounding error, which may then continue to propagate. In
interval arithmetic, if we ald two numbers, we acdually add two degenerate intervals, [a,a] + [b,b]
= [(atb),(at+b)]. Then the lower bound of the result is rounded down to (a+b)” and the upper
bound rounded upto (a+b)*. Inthisway, the mmputed result C = [(a+b)",(a+b)*] isavery narrow
interval that is known to contain the correct result c.

The use of interval arithmetic has some interesting implications when it comes to problem
solving. For instance, just consider the problem of solving 1k = 1. Mathematically the answer is
1/10, but as we have already seen, this has no exad binary representation. So, in fad, solvingthe
equation 10x = 1 on a binary computer is not possible—you cannot find the @rrect solution
because the number 1/10 does not exist in a binary computer. However, if we use interval
arithmetic to solve 10x = 1 we will come up with a narrow interval enclosure than is guaranteed to
contain the crrect solution.

Consider now some more difficult equation solving problems, and what the role of interval
mathematics might be. One & the cre of many chemica engineeing problemsisthat of
computing phaese equilibrium. To do thiswe @uld solve the equifugacity equations. But these



frequently have multiple solutions, so to be sure that we have the right solution we really need to be
ableto find all the solutions. Another way to compute phase equilibrium is do a minimization of
the Gibbs energy. But this may have multiple locd minima, so we need areliable way to be sure
that we get the global minimum.

Problems like this, involving issues of the existenceand uriquenessof solutions, are
difficult ones, but there ae some misconceptions about how difficult they really are. For example,
in Dennis and Schnabel's classc book [3] it is said that "In general, the questions of existence ad
uniqueness—does a given problem have asolution and is it unigue?—are beyond the capabil ities
one an exped of algorithmsthat solve nonlinea problems.” This, however, is not entirely true, as
we shall soon discuss In amore recant textbook, Heah [4] says "It is nhot possible, in general, to
guarantee onvergenceto the @rred solution or to bradket the solution to produce an absolutely
safe method" [for solving nonlinea equations]. Again thisis not quite right.

In fad, there do exist methods, based on interval mathematics, in particular interval-Newton
methods, that can, given initial bounds on the variables, enclose any and all solutionsto a nonlinea
equation system, or determine that there is no solution, or find the global optimum of a nonlinear
function [5]. These methods provide amathematical and also computational guaranteeof
reliability. The latter isimportant since mathematica guarantees can be lost oncethings are
implemented in floating point arithmetic. In my group a Notre Dame, we ae adively involved in
developing algorithms and applications using these mncepts[e.g., 6,7]. So why isn't everyone
using these methods? A primary reason is that they can be significantly slower than standard local
point methods. However, my feeling on this and on other isaues of reliability isthat we have lots of
computing power, so why not use it to solve problems more reliably? The use of interval
mathematics is one potential approacd for doing this.

Now consider briefly another question. If we cannot be sure that we ae getting the right
answers, are we in danger of relying too heavily on computing power? Again we will explore the
guestion by looking at a couple examples.

The USSY orktown is a guided missile auiser, and the first in the Navy to be outfitted with
so-cdled SmartShip technology, which would allow reducing crew levels by computerizing many
ship functions. (Thisisreminiscent of the Starship Enterprise's ill-fated encounter with Dr.
Daystrom and the M-5 Multitronic computer system in "The Ultimate Computer” episode of the
original Star Trek series.) In September of 1997, the Y orktown suffered a cmplete propulsion
system failure and was dead in water for about two hours and 45minutes. The subsequent
investigation determined that "the Y orktown lost control of its propulsion system because its
computers were unable to divide by the number zero." Apparently a aew member entered a zeo
into afield of some gplication program, leading to a complete aash of the system and leaving the
ship dea in the water.

Now if | write acomputer program, run it on the Unix workstation in my office, and it
mistakenly divides by zero, about the worst that will happen is that the program will stop and 1 will
seesome message on my monitor saying "overflow error.” It will not lead to a complete shut down
of every computer on the Notre Dame ampus network—which is the analog of what happened on
the Yorktown. Thereis gill some controversy about why this ssemingly simple aror could have



such severe mnsequences, but a popular theory attributes it to the use of the Windows NT
operating system. A report from the Atlantic Technical Fleet Support Center concluded that "Using
Windows NT ... on awarship is similar to hoping that luck will be in our favor.”

Sleipner A is an offshore drilling platform in the North Sea Such platforms are mnstructed
on shore in two parts, a concrete base and the platform itself. These aethen mated in a degp water
areanea shore (afjord typically) and then floated out to the desired position in the North Sea
Thus the ncrete base has a number of large buoyancy cdls allowingit to float. The processof
mating the platform to the base is the most critical part of this process During mating, the concrete
base is lowered, so that the suppat pill ars are just under water, alowing the platform to be properly
positioned over it. At thistime, the buoyancy cells are degoer than they will ever be, and thus
subject to the highest water presaure they will ever see The cells must thus be designed with this
inmind. On August 23, 1991while the original concrete base for Sleipner A was being lowered
for mating, it sprang aleak and sank, causing a seismic event registering 3.0 on the Richter Scale,
and an economic lossof about 700 million dollars.

So what went wrong? It seemsthat the concrete base structure was designed using a well
known and quite sophisticated finite element algorithm and code, and one that had been
successully employed before in this same type of applicaion. There was great trust placed in this
particular algorithm and code, and a sophisticated design was produced. Later investigation, using
adifferent finite element algorithm, showed however that the dgorithm used initially made apoar
finite element approximation of a aitical areain the cluster of cells, resulting in an underestimate
of stresses by about 50% and a design in which the cell walls were toothin in critical places.

After the original base sank, the operator was faced with an economic loss of production of
about amillion dollarsaday. And they no longer trusted the computer analysis. So what could
they do to get this project moving? What they did was to make adecision "to proceal with the
design using precomputer diderule egatedniques’ [8]. The resulting design was not as
sophisticated as the first, and reportedly somewhat more cstly to build, but it did not sink. One of
the investigative reports later concluded with a simple lesson [8], namely that "relatively simple
hand calculations ... should always be done, both to chedk the computer results and to improve the
enginee's understanding of the «itical design issues.” Thisisa point that many of us make in
teading the senior design classin which students may make extensive use of simulation padkages.
However, in my experiencethisis apoint that does not take eaily with students and has to be
repededly pounded in.

These two examples suggest that, without good algorithms and software, putting too much
trust in computing power may be downright dangerous. Perhaps more importantly, these examples
show we must always keep in mind that, no matter how powerful the computer or sophisticated the
software, results must be viewed with sound engineeing judgement.

Concluding Remarks
Now that | have too long played devil's advocate, | want to conclude on a very positive

note. Thefad isthat chemical engineastoday are using high performance @mputing, and
computing at al levels, to break computational barriers and truly expand the frontiers of process



engineeing. For the chemicd processindustries, effective and appropriate use of computing
technology has much to offer: cleaner, safer, more dficient and lesscostly manufacturing
processes, new and better products, faster times to market, and faster responses to changesin
eanomic, regulatory, and technological environments. This adds up to a bottom line of enhanced
competitivenessin the global marketplace
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Table 1. Leaing Parallel Computersin Late 1998

Cray/SGI Mourtain Blue (199)

IBM Blue Pacific (5800 pocesors)

Intel Sandia Red (9152processors)

Cray T3E-1200E (1080 processors)

IBM SP/604e (1900 pocessors)

SGI Origin 2000250MHz (512 pocessors)

Rirex Roesk
(GFLOPS)
~4000
3880
1338 1830
8915 1296
547 1262
1956 256
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Figure 1. Growth in PC performance Seetext for discussion.
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