
HIGH PERFORMANCE COMPUTING: ARE WE JUST GETTING
WRONG ANSWERS FASTER?1

Mark A. Stadtherr
Department of Chemical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA

In the first part of this presentation we will take a brief look at the tremendous growth in
computational power that is ongoing, from desktop machines to high performance computing
hardware. It will come as no surprise to this audience that computational power has grown very
quickly and continues to grow very quickly. The availabil ity of all this power allows us to solve
problems much faster. This means we can solve larger problems involving more complex and
more realistic models. It allows us to solve problems we probably would not have even considered
trying to solve years ago, because of their computational demands. All of this has made possible
significant advances in many fields of science and engineering. But, another thing we can use all
this computer power for, that is often overlooked in the quest to solve problems faster and faster, is
that we can use it to solve problems more reliably—in fact to actually provide mathematical and
computational guarantees of reliability. So in the second part of this presentation we will focus on
issues of reliabil ity—what good is high performance computing if we are just computing the wrong
answer faster?

Growth in computational power.

The historical trend is that computational performance increases by about two orders of
magnitude a decade, and this is a trend that we should expect to see continue into the foreseeable
future. What is happening is that we have been riding the rapid growth stages of a continuing
series of technological advances. As growth in one type of advance levels off, rapid growth due to
some other advance kicks in, and thus growth continues at a rapid pace.

Looking at single-user PC performance in Figure 1, the two orders of magnitude per decade
growth rate is apparent, putting us over 100 MFLOPS (mil lions of floating point operations per
second) today. This is based not on a theoretical peak rate, but the rate on solving a 100 x 100
system of linear equations (the LINPACK-100 benchmark). For reference, Figure 1 also shows a
couple of old machines that I used to work with: the CDC Cyber 175 mainframe and the Cray X-
MP supercomputer. Clearly, we now have come a long ways since then, especially in
price/performance ratio. The Cray X-MP cost around 8-10 million dollars; a comparably
performing machine today would run around 1000 dollars, and by Christmas shopping time in 1999
we should expect this to drop to around 200 dollars. The PC is rapidly becoming a "disposable"
applicance.

1 Presentation given at CAST Division Awards Banquet, November 17, 1998, Miami Beach FL

2

The growth in performance of multi-user workstations (Figure 2) has followed a very
similar pattern, again about two orders of magnitude a decade. However, the growth here, at least
based on single processor machines, has not been quite as fast as in the PC case, leading to the
increasing overlap today in the low-end workstation and high-end PC markets.

Looking at high performance computing hardware (Figure 3), the situation is somewhat
different, but in the end still the same. If we look at the growth in single processor performance
using vector processing technology (based on the Cray T94), it is not that impressive—less than an
order of magnitude per decade. This is based on performance solving a 1000 x 1000 linear system
(the LINPACK-1000 "Toward Peak Performance" benchmark). If we allow for multiple vector
processors (based on the Cray T932), we can do much better. However, to really see the growth
here we need to compare state of the art then (Cray 1-S) with state of the art now (Intel Sandia Red)
and look at performance on the largest problem solved (the Rmax benchmark). Rmax for the Cray 1-S
is little different than its performance on the LINPACK-1000 benchmark, so again we see the two
orders of magnitude per decade growth rate, which, if anything, in recent years has actually been
accelerating, due to the use of massively parallel architectures.

Looking at the current situation in parallel computing (Table 1), the latest hardware gives a
peak performance of around 4 teraflops (million MFLOPS), with a likely Rmax of over 3 teraflops.
At Notre Dame, I am currently working with a group of people that is already working on the
technology and algorithms for petaflop machines—that is, 1015 floating point operations per second
(a bill ion MFLOPS). One trend that we can see here is that these high end machines use massively
parallel computing; and they do this with commodity level chips. For example, the Intel Red
machine is based on Pentium Pro processors.

On a more commercial mainstream level, the trend is toward shared-memory machines,
from 4 to 32 to 64 processors. These are very easy to use machines, and the word "mainstream"
should be emphasized here. These machines are very widely used in the business world, as servers
and for various other applications. For example, looking at the June 1998 listing of the top-500
supercomputing sites, one will find several banks, several telecommunication companies, and
various other companies such as American Airlines, Raytheon, Federal Express, Rubbermaid,
Allstate, etc. So we should no longer think of parallel computing as some kind of exotic
technology—it is much more widespread than most people probably think.

Another trend is toward the use of network-based systems. Essentially, if you have a
number of computers connected in a network, you have a parallel computer. The rapid growth in
networking and its projected future growth, including all the new wireless technology, has led
people to think about a concept called "metacomputing". Metacomputing refers to the use of a
heterogeneous network of computing resources, that may range from simple microprocessors to
high-end multiprocessors. The analogy that is frequently used is that plugging into a metacomputer
would be just like plugging into the electrical power grid. You would get as much computational
power as you need, when you need it and where you need it, by grabbing compute cycles off the
network. And just like I do not know or necessarily care where the electricity running my
workstation has been generated, you would not necessarily know where the compute cycles you are
using are actually coming from. This is a still developing concept, with much research still needed

3

in algorithms, software and applications. In fact, there is a metacomputing group at Notre Dame
that I currently interact with, looking at process engineering applications.

One interesting development along these lines is Jini. This is a system developed by Sun
Microsystems, and announced in Summer 1998. It is based on Java, and is designed to allow
machines ranging from computer-controller appliances to supercomputers to talk to each other and
share computing power across a network. The idea that a lot of excess processing power resides
today in appliances, such as refrigerators, is something that was mentioned in July 1998 at the
FOCAPO meeting in Snowbird by Larry Smarr, who was the keynote speaker. This led to some
joking about the potential power of a ''Refrigerator-Net''. Something like Jini makes that a little
less far fetched. In fact it may not be far fetched at all. On September 30, 1998 a story appeared on
the New York Times web site proclaiming "Refrigerator, Computer Combined." The story went on
to say that this product is being marketed as an "Internet Refrigerator," and that it has a Pentium II
microprocessor, a huge hard drive—and separate compartments for fruits and vegetables.

What does this growth in computational power mean in process engineering? This is a
question that will be discussed in concluding this presentation. For now, I want to emphasize that a
problem has been, in this area and in others, that existing problem solving strategies were
developed under a serial computing paradigm, and thus may take little advantage of advanced
computing architectures, such as vector and/or parallel computing. So, there really is a need to be
rethinking the way we solve problems. This is an area that I have been very interested in over the
years, and I will provide one example to demonstrate the point.

This example (Figure 4) involves a dynamic simulation run using Aspen Technology's
SPEEDUP package on a Cray C90 vector machine not too many years ago, and shows what
happens when you change sparse matrix solvers in order to try to take better advantage of
vectorization. This was a comparison done by Steve Zitney in collaboration with people at Bayer
[1]. What this shows is that with the conventional sparse matrix solver of the time, MA28, the
simulation took about 12 hours, which, since this was a simulation of a much shorter period of
actual plant time, was not a good thing. By changing to the FAMP solver, which was developed by
Steve Zitney in my group, and which takes advantage of the vector computer architecture, the
simulation time was reduced by an order of magnitude, and the time to solve a single linear system
by two orders of magnitude.

Reliability in Computing

Now shifting gears, consider the question: With all this computing power, can we in fact
reliably compute the right answers? To explore this issue, we will look at some examples. The
first example is the relatively well-known problem due to Rump [2]. Here we are asked to evaluate
the expression

f(x,y) = 333.75y6 + x2(11x2y2 - y6 -121y4 - 2) + 5.5y8 + x/2y

for x = 77617 and y = 33096. All numerical inputs in this calculation are exact machine numbers,
so any errors we get in the result are due to the computation. Looking at the computed results from

4

a Fortran program, which Rump did on a IBM S/370, and others have repeated on many other
machines, we see that when using single precision the result is

f = 1.172603...

when using double precision, the result is

f = 1.1726039400531...

and when using extended precision, the result is

f = 1.172603940053178...

The fact that the answer does not change with increasing precision is often taken as confirmation
that the correct answer has been obtained. However, the correct answer is, in fact,

f = -0.827396059946...

So we didn't even get the sign right!

The problem here is due to rounding errors, combined with other diff iculties, such as
cancellation errors, that are inherent in the use of floating point arithmetic. A frequent reaction
when people see this example is "so what, this will never happen to me" and "even if it does happen
to me, it will be no big deal." So consider now a couple of real world examples.

On February 25, 1991, during the Gulf War, an American Patriot missile battery fired at an
incoming Scud missile but failed to intercept it. The Scud missile struck an American Army
barracks and 28 soldiers were killed. During the Gulf War, the U. S. Army had been claiming a
successful intercept rate by Patriot missiles of 80% in Saudi Arabia. This estimate was scaled back
to 70% shortly after the war. However, in a later congressional investigation, testimony indicated
that "the Patriot's intercept rate could be much lower than ten percent, perhaps even zero."

So, what was the problem? It turns out that the computation of time in a Patriot missile,
which is critical in tracking a Scud, involves a multiplication by a constant factor of 1/10. The
number 1/10 is a number that has no exact binary representation, so every multiplication by 1/10
necessarily causes some rounding error. In the case of the Patriot missile, the accumulated
rounding error was sufficient to cause it to mistrack incoming Scuds and thus miss them, with
deadly consequences—and all due to bad computer arithmetic.

The European space agency spent 10 years and 7 bill ion dollars to develop the Ariane-5
rocket. On June 4, 1996, the first Ariane-5 was launched. At 39 seconds after li ftoff it exploded,
destroying the rocket and cargo valued at half a billion dollars. So what happened? It turns out that
the explosion was caused by activation of the self-destruct mechanism built into the rocket. The
self-destruct was triggered by unusually large aerodynamic forces that were ripping off the
boosters. These forces were due to an abrupt course correction made by the on-board steering
computer, which was in compensation for a wrong turn off course that in fact never took place.

5

The inertial guidance computer had told the steering computer that the rocket had gone way off
course, when in fact it was not off course at all .

What caused this turn of events? It seems that what happened was that in the computations
done by the inertial guidance computer it was converting a 64-bit floating point number into a 16-
bit signed integer number. At about 36 seconds into the flight, a number was encountered that was
larger than 32768, which is the largest possible 16-bit signed integer, so the conversation failed.
Thus, erroneous numbers were sent to the steering computer, causing it to think the missile was off
course and leading to the explosion at 39 seconds into the flight. Again a very costly disaster due
to bad computer arithmetic.

Difficulties like this have caused some in the computing industry to suggest a rethinking of
computer arithmetic paradigms. Originally computers used fixed point arithmetic. However, while
fixed point arithmetic continues to be used in some special applications, there was a major
paradigm shift in the mid-1950s to floating point arithmetic. At the time, this shift was the cause of
some controversy. Accuracy was one main concern, since error analysis is much more complicated
under the floating point paradigm. Alston Householder reportedly pronounced that he would never
fly in an aircraft designed with the help of floating point arithmetic. The biggest drawback to
floating point, however, was that it was very much slower than fixed point, and given the
computers of the time, this was a very serious concern. But it was much easier to write programs in
floating point arithmetic and so that paradigm won out.

Today, at least one major computer hardware and software company is seriously
considering another computer arithmetic paradigm—namely, interval arithmetic. This is slower
than floating point, so in that sense presents an issue similar to what had to be considered in
moving from fixed to floating point in the 1950s. However, today we have ample computing
power to deal with this issue. What is the advantage of interval arithmetic relative to floating
point? Mainly it is an issue of reliabil ity. In floating point arithmetic, if we add two numbers, say c
= a + b, even if a and b have exact binary representations, the result c in general wil l not, and so
the result of the computation will have rounding error, which may then continue to propagate. In
interval arithmetic, if we add two numbers, we actually add two degenerate intervals, [a,a] + [b,b]
= [(a+b),(a+b)]. Then the lower bound of the result is rounded down to (a+b)- and the upper
bound rounded up to (a+b)+. In this way, the computed result C = [(a+b)-,(a+b)+] is a very narrow
interval that is known to contain the correct result c.

The use of interval arithmetic has some interesting implications when it comes to problem
solving. For instance, just consider the problem of solving 10x = 1. Mathematically the answer is
1/10, but as we have already seen, this has no exact binary representation. So, in fact, solving the
equation 10x = 1 on a binary computer is not possible—you cannot find the correct solution
because the number 1/10 does not exist in a binary computer. However, if we use interval
arithmetic to solve 10x = 1 we will come up with a narrow interval enclosure than is guaranteed to
contain the correct solution.

Consider now some more difficult equation solving problems, and what the role of interval
mathematics might be. One at the core of many chemical engineering problems is that of
computing phase equil ibrium. To do this we could solve the equifugacity equations. But these

6

frequently have multiple solutions, so to be sure that we have the right solution we really need to be
able to find all the solutions. Another way to compute phase equilibrium is do a minimization of
the Gibbs energy. But this may have multiple local minima, so we need a reliable way to be sure
that we get the global minimum.

Problems like this, involving issues of the existence and uniqueness of solutions, are
difficult ones, but there are some misconceptions about how difficult they really are. For example,
in Dennis and Schnabel's classic book [3] it is said that "In general, the questions of existence and
uniqueness—does a given problem have a solution and is it unique?—are beyond the capabil ities
one an expect of algorithms that solve nonlinear problems." This, however, is not entirely true, as
we shall soon discuss. In a more recent textbook, Heath [4] says "It is not possible, in general, to
guarantee convergence to the correct solution or to bracket the solution to produce an absolutely
safe method" [for solving nonlinear equations]. Again this is not quite right.

In fact, there do exist methods, based on interval mathematics, in particular interval-Newton
methods, that can, given initial bounds on the variables, enclose any and all solutions to a nonlinear
equation system, or determine that there is no solution, or find the global optimum of a nonlinear
function [5]. These methods provide a mathematical and also computational guarantee of
reliability. The latter is important since mathematical guarantees can be lost once things are
implemented in floating point arithmetic. In my group at Notre Dame, we are actively involved in
developing algorithms and applications using these concepts [e.g., 6,7]. So why isn't everyone
using these methods? A primary reason is that they can be significantly slower than standard local
point methods. However, my feeling on this and on other issues of reliabil ity is that we have lots of
computing power, so why not use it to solve problems more reliably? The use of interval
mathematics is one potential approach for doing this.

Now consider briefly another question. If we cannot be sure that we are getting the right
answers, are we in danger of relying too heavily on computing power? Again we wil l explore the
question by looking at a couple examples.

The USS Yorktown is a guided missile cruiser, and the first in the Navy to be outfitted with
so-called SmartShip technology, which would allow reducing crew levels by computerizing many
ship functions. (This is reminiscent of the Starship Enterprise's ill-fated encounter with Dr.
Daystrom and the M-5 Multitronic computer system in "The Ultimate Computer" episode of the
original Star Trek series.) In September of 1997, the Yorktown suffered a complete propulsion
system failure and was dead in water for about two hours and 45 minutes. The subsequent
investigation determined that "the Yorktown lost control of its propulsion system because its
computers were unable to divide by the number zero." Apparently a crew member entered a zero
into a field of some application program, leading to a complete crash of the system and leaving the
ship dead in the water.

Now if I write a computer program, run it on the Unix workstation in my off ice, and it
mistakenly divides by zero, about the worst that will happen is that the program will stop and I will
see some message on my monitor saying "overflow error." It will not lead to a complete shut down
of every computer on the Notre Dame campus network—which is the analog of what happened on
the Yorktown. There is still some controversy about why this seemingly simple error could have

7

such severe consequences, but a popular theory attributes it to the use of the Windows NT
operating system. A report from the Atlantic Technical Fleet Support Center concluded that "Using
Windows NT ... on a warship is similar to hoping that luck will be in our favor."

Sleipner A is an offshore drilling platform in the North Sea. Such platforms are constructed
on shore in two parts, a concrete base and the platform itself. These are then mated in a deep water
area near shore (a fjord typically) and then floated out to the desired position in the North Sea.
Thus the concrete base has a number of large buoyancy cells allowing it to float. The process of
mating the platform to the base is the most critical part of this process. During mating, the concrete
base is lowered, so that the support pill ars are just under water, allowing the platform to be properly
positioned over it. At this time, the buoyancy cells are deeper than they wil l ever be, and thus
subject to the highest water pressure they wil l ever see. The cells must thus be designed with this
in mind. On August 23, 1991 while the original concrete base for Sleipner A was being lowered
for mating, it sprang a leak and sank, causing a seismic event registering 3.0 on the Richter Scale,
and an economic loss of about 700 mill ion dollars.

So what went wrong? It seems that the concrete base structure was designed using a well
known and quite sophisticated finite element algorithm and code, and one that had been
successfully employed before in this same type of application. There was great trust placed in this
particular algorithm and code, and a sophisticated design was produced. Later investigation, using
a different finite element algorithm, showed however that the algorithm used initially made a poor
finite element approximation of a critical area in the cluster of cells, resulting in an underestimate
of stresses by about 50% and a design in which the cell walls were too thin in critical places.

After the original base sank, the operator was faced with an economic loss of production of
about a mill ion dollars a day. And they no longer trusted the computer analysis. So what could
they do to get this project moving? What they did was to make a decision "to proceed with the
design using precomputer sliderule era techniques" [8]. The resulting design was not as
sophisticated as the first, and reportedly somewhat more costly to build, but it did not sink. One of
the investigative reports later concluded with a simple lesson [8], namely that "relatively simple
hand calculations ... should always be done, both to check the computer results and to improve the
engineers' understanding of the critical design issues." This is a point that many of us make in
teaching the senior design class in which students may make extensive use of simulation packages.
However, in my experience this is a point that does not take easily with students and has to be
repeatedly pounded in.

These two examples suggest that, without good algorithms and software, putting too much
trust in computing power may be downright dangerous. Perhaps more importantly, these examples
show we must always keep in mind that, no matter how powerful the computer or sophisticated the
software, results must be viewed with sound engineering judgement.

Concluding Remarks

Now that I have too long played devil's advocate, I want to conclude on a very positive
note. The fact is that chemical engineers today are using high performance computing, and
computing at all levels, to break computational barriers and truly expand the frontiers of process

8

engineering. For the chemical process industries, effective and appropriate use of computing
technology has much to offer: cleaner, safer, more efficient and less costly manufacturing
processes, new and better products, faster times to market, and faster responses to changes in
economic, regulatory, and technological environments. This adds up to a bottom line of enhanced
competitiveness in the global marketplace.

Acknowledgements

I want to give particular thanks to my early mentors, namely Skip Scriven, whom I worked
with as an undergraduate at the University of Minnesota, and Dale Rudd, who was my Ph.D.
advisor at the University of Wisconsin. Thanks also to all my graduate students, and others who
have worked in my group. I think it is well known that it is these students who do most of the work
I also want to thank the various funding agencies and others who have supported this work, both in
terms of dollars and computing time. These include the National Science Foundation, the ACS
Petroleum Research Fund, the Environmental Protection Agency, the Department of Energy, the
Army Research Office, the Dreyfus Foundation, Sun Microsystems, Cray Research, IBM, Dow
Chemical, Du Pont, Shell Oil, the University of I llinois at Urbana-Champaign, and the University
of Notre Dame.

References

[1] S. E. Zitney, L. Brüll , L. Lang and R. Zeller. AIChE Symp. Ser. 91(304), 313-316 (1995).

[2] S. M. Rump. In Reliability in Computing (R. E. Moore, ed.), pp. 109-126, Academic Press
(1988).

[3] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall (1983).

[4] M. T. Heath. Scientific Computing: An Introductory Survey, McGraw-Hill (1997).

[5] R. B. Kearfott. Rigorous Global Search: Continuous Problems, Kluwer (1996).

[6] J. Z. Hua, J. F. Brennecke and M. A. Stadtherr. Ind. Eng. Chem. Res. 37, 1519-1527 (1998).

[7] R. M. Maier, J. F. Brennecke and M. A. Stadtherr. AIChE J. 44, 1745-1755 (1998),

[8] M. P. Colli ns, F. J. Vecchio, R. G. Selby, P. R. Gupta. Concrete International 19(8), 28-35
(1997).

9

Table 1. Leading Parallel Computers in Late 1998.

Rmax Rpeak
(GFLOPS)

Cray/SGI Mountain Blue (1999) ~4000
IBM Blue Pacific (5800 processors) 3880
Intel Sandia Red (9152 processors) 1338 1830
Cray T3E-1200E (1080 processors) 891.5 1296
IBM SP/604e (1900 processors) 547 1262
SGI Origin 2000/250MHz (512 processors) 195.6 256

10

Figure 1. Growth in PC performance. See text for discussion.

11

Figure 2. Growth in workstation performance. See text for discussion.

12

Figure 3. Growth in high performance computing. See text for discussion.

13

Figure 4. Comparison of sparse matrix solvers [1]. See text for discussion.

