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- We examme two ordermgs for the large sparse matrices typlcallyf
~occurring in EB flowsheeting applications and present a new parallel,
~ direct method with which these orderings are used. Some previously
considered methods for the parallel solution these matrices are based
~on a strategy which exploits their inherent bordered block-diagonal
 structure.  These ~methods are susceptible to processor load
~ imbalances and, consequently, low parallel efficiencies. The methods
~under study are designed to maintain a uniform processor load
distribution throughout the linear solving step while still exploiting
large task granularity to reduce communication overhead. Results for
~ the reordering strategies are given for several test problems.

INTRODUCTION

'The much faster computatlonal rates that can be achleved through the use of parallel :
, ,computmg hold several potenttal benefits for process simulation and design (ﬂowsheetmg)
' These increases in computing power not only make possible the use of more realistic unit ,

~ models involving complex phenomena and the tractability of larger simulation problems'

~ but they will also result in the increased productivity of the design engineer (Stadtherr and "
Vegeais (1)). Although many parallel computers have extremely fast clock speeds, their

ability to achieve high computational rates is also the result of the extensive use of various

forms of parallel architecture within each of those computers. If a program which is
/nnplemented on one of these machines is to execute at such h1gh computatmnal speeds, it
‘must use algortthms which effectively exploit that parallel architecture. The efficient

‘ gsolutlon of large, sparse sets of linear equations is a critical requirement in equatlon-based ,

" (EB) process flowsheetlng, thus, the parallel unplementatxon of a sparse. lmear solvel is
:Tcruc1a1 , , ,

, We will confine our attention to the 1dent1ftcat10n and exploxtatlon of large gram,',
parallel tasks. Although there are many uses of the term granularity in the literature (e. g,
see Kruskal and Smith (3)), we use it here to indicate the amount of time spent calculatlng

~ relative to the time spent commumcatmg (with global memory or other processors). Our

objectives in this approach are not only to reduce interprocessor communication, but to
reduce processor synchromzatxon delays and load imbalances. These ‘goals can be achieved
if the algorithm we use can be written in a high level language with independent procedure '

~ calls of approximately equal duration. One should note that this does not preclude the use

- of a low level parallel strategy to execute the individual tasks (by low level parallelism we
~ mean concurrency explmted on the DO LOOP level). On multtvector processors this may ‘
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~ be achieved by assigning each task to a different processor, and exploiting the vector
architecture of the processor in the execution of the task. On multiprocessors, one might
assign more than one processor to each task if there are idle processors and the tasks
- exhibit some fine grain parallelism. Many of today’s vectorizing and parallelizing

~compilers can identify much of this low level parallelism, and the next generation of such

compilers should be even more effective in detecting low level parallelism.  Such use of |

~ fine grain parallelism within the tasks generated by the course grain approach allows a
multiple level concurrency that significantly enhances the overall parallel perfonnance of

the algorithm (e.g., see Coon and Stadtherr (3)).

The methods we propose below are extensions of large grain parallel strategies for
matrices whose associated graphs have a predetermined structure (e.g., those arising from |
~ finite difference applications) (3). With such graphs, good separators and bisections can be
~ readily identified and a parallel ordering based on a nested dissection strategy can be used.

Because of the more general structure of EB flowsheeting matrices, good separators and
bisections are not so easily identified, and the parallel performance of these strategies is

critically dependent on finding good separators.

~ The use of heuristic algorithms for finding separators in graphs of general sparse
matrices was originally considered in the context of reducing the sequential complexity of
‘the LU factorization by Lipton et al. (4), and has been investigated more recently as a
~means of producing an ordering for parallel LU factorization of ‘symmetric matrices by
~ Leiserson and Lewis (5). This latter approach, in which the relative size of the connected
components can be bounded, is equivalent to a parallel implementation of nested dissection.

This idea can be adapted to generate a parallel ordering for EB flowsheeting matrices that

- will not result in a severe processor load imbalance. This adaption to the case of the
nonsymmetric EB flowsheetin, ix entails using the o 3 aph of A+AT. The
, ymmetric tlowsheeting matrix entails using the occurrence graph of A+AT  The
orderings that we can generate for the occurrence matrix of the symmetric part can then be
used for the original matrix (if two pivots can ‘be processed concurrently in A+AT, they
~ can be processed concurrently in A as well). Unfortunately, using the symmetric part of
the matrix to generate a parallel ordering can often preclude the identification of .

parallelism that exists in the nonsymmetric structure of the matrix. ‘

, We examine here an alternate approach in which a heuristic bisection algorithm is
~used to identify a block tridiagonal ordering for EB flowsheeting matrices. A graph
_ theoretical model that includes a description of the asymmetry of the matrix is used, so
that this method is not subject to the same pitfalls as the ‘method mentioned above. The
reordered matrix can be solved using a parallel block tridiagonal scheme that is a

generalization of a method for solving narrow banded matrices. We present the results of

 these ordering strategies as applied to typical EB flowsheeting matrices.

BLOCK TRIDIAGONAL APPROACH

- ,Géneralization of Narrow-Banded ',Solvc'-r

: Thls approach is motivated by an algorithm for the parallel solution of narmw
banded linear systems presented by Dongarra and Sameh (6). In this algorithm, the narrow

- banded system is partitioned into block-tridiagonal form. For P processors and a system of

~ order N with semi-bandwidth b, the diagonal blocks of this partition will have order N/P.
(Here, we assume that N is a multiple of P; otherwise, the first P-1 diagonal blocks will
~ have order [N/P1) Each of the off-diagonal blocks is also of order N/P, and contains all
zeros except for either an upper or lower triangular ‘matrix of order b (Figure 1a). The



~ diagonal blocks can be factored concurrently, with each factorization ,a331gned to a different
processor. Left multiplication of the system by the inverse of the block diagonal part

0

creates fill-in only above the lower triangular submatrix or below the upper triangular

~ submatrix within each off-diagonal block (Figure 1b). (In the actual implementation, one

- does not compute the inverse of the block diagonal part and premultiply with it, rather one
~ computes the fill-in columns by forward _elimjnation and back substitution using the
factorization of the diagonal block and the appropriate off-diagonal block column as the
right-hand side.) Again, these computations can be done concurrently by assigning one
block row to each processor. We can include partial or threshold pivoting within the
 factorization of each diagonal block, and we assume that this is enough to maintain

numerical stability. e ~

~ At this point, an independent system of order 2b(P-1) remains, as depicted by the
solid outline in Figure 1b. This reduced system comprises the b equations above and the b
_ equations below each block row. It can be solved independently and the rest of the overall
“solution obtained by substitution (which can be executed concurrently), or the overall
system can be repartitioned into block-triangular form with diagonal blocks of order 2N/P.
In this latter case (in which we assume P = 2% for some integer k) the factorization,

premultiplication, and repartitioning are applied recursively until a reduced system of order

2b remains, at which point this reduced system is solved and rest of the overall solution is
determined by concurrent substitution. One should note that for this recursive procedure,
‘the diagonal blocks of the repartitioned matrix are not dense and can be factored as
indicated in Figure 1. ; o

The general structure of EB flowsheeting matrices is nearly block-banded, with
nzero blocks occurring outside of the block bands (e.g., Vegeais and Stadtherr @),
; (8)) feedforward and recycle streams are typically represented by these off-band
blocks. One might consider reordering the EB flowsheeting matrix with a bandwidth
~ reduction algorithm (using the structure of ‘the symmetric part) and applying the narrow
~ banded strategy to the result. Investigations of bandwidth and profile reduction algorithms

for EB flowsheeting matrices in (8) indicate that the resulting matrices have fairly large

~ bandwidths with sparse bands. Since the size of the reduced System is proportional to the
bandwidth, this would not appear to be a good strategy. For EB flowsheeting matrices,
however, most equations have very few nonzero coefficients. This indicates that the matrix
- could be reordered so that it has areas of small local bandwidth, i.e., subsets of equations
- with small bandwidths. The key observation is that small bisections correspond to small

local bandwidths. - : o - o

- We now consider an adaptation of a bisection algorithm to find a more general
block-tridiagonal ordering to which we can apply the above strategy. Thus, the above
strategy will not be limited to narrow banded systems. For the graph G = (X,E) (of the
~occurrence matrix of A + AT) of order N, and a given partitioning of X into two disjoint
subsets, X, and X,, of orders [N/21 and |N/2), respectively, we define the bisection, B
E, to be the set of edges with one vertex in X, and the other vertex X,. Given a
bisection, B, of a graph and the vertex sets X, and X, into which the vertices are
partitioned, a block-tridiagonal form with two diagonal blocks will result if we order the
vertices as follows: : : - o : . -

(@) all the vertices in le are mapped into integers less than those

associated with the vertices in X,, and



(b) the vertices incident to B in X, are mapped into integers
~ greater than those integers into which the rest of X, is
mapped, while the vertices incident to B in X, are mapped
~ into integers less than those integers associated with the rest of
X, 2 ’ ,

(The latter condition is equivalent to requiring that vertices incident to B be numbered
consecutively.) We will Iet b, denote the number of vertices in X, that are incident to B,
and b, denote the number of such vertices in X,. In the resulting matrix, the upper right
~ off-diagonal block has zero entries everywhere except in the b;xb, subblock closest to the

diagonal. The lower left off-diagonal block has zero entries everywhere except in its |

- byxb, subblock which is closest to the diagonal. If this system is left multiplied by the
inverse of the block-diagonal portion of the matrix, fill-in will occur only above the byxb,
- subblock and below the b,xb; subblock, analogous to the narrow banded case. A reduced
~ system of by+b, independent equations results. We consider this to constitute the first level
of the ordering. i - , : '

~ This ordering can be applied recursively to the subgraphs induced by the vertex sets

of the partition, in a manner similar to the recursive application of the nested dissection -
~ordering described in (3). One should note, however, that the ‘algorithm which finds the

bisection must be modified slightly. This modification should prevent the algorithm from
~ choosing a bisection with any incident vertices that are also incident to a bisection found at
~ a previous level (since those vertices have already been made to satisfy the ordering
criteria at that level). The recursive application of the ordering stops after the kth level,

~ where umber of processors is 2X. The resulting matrix will be block-tridiagonal with

2k 4

, Figure 2 shows an example for two levels of this ordering. The size of the nonzero
_subblocks in the off-diagonal blocks will be determined by the number of vertices incident
to the corresponding bisection. If the matrix is premultiplied by the inverse of the
diagonal blocks (which can be factored concurrently), the fill-in is limited to the nonzero
~ columns of the off-diagonal blocks. The resulting matrix contains a reduced system of
independent equations whose order is equal to the number of vertices which are incident to
all of the bisections found in the ordering stage. ' -

, ~ As in the narrow-banded case, the reduced system can be solved and the entire
_ solution then can found via substitution, or the system can be repartitioned to a block-
tridiagonal form with 2! diagonal blocks (Figure 2b). The factorization of the diagonal
blocks, the premultiplication by the inverse (both of which can be executed concurrently),

al blocks, each of order N/2* (for simplification, we assume N to be a multiple of

~and the repartitioning can all be applied recursively until the remaining system has only

two diagonal blocks. (Diagonal blocks of each repartitioned matrix have a sparse structure
similar to that shown in Figure 1b and can be factored as indicated there.) At this point,
the order of the reduced system of independent equations will be equal to the number of
~ vertices incident to the bisection found at the first level. This reduced system can be
~solved and the rest of the solution is computed by substitution. .

. - One should note that the order of the reduced system is determined by the number
~ of vertices incident to the first level bisection. In the former case (that the reduced system

~is solved without recursive repartitioning), the order is determined by the number of

vertices incident to all bisections. In the narrow banded case, the order of the reduced
~ system was determined by the bandwidth. The number of vertices incident to a bisection
~can be thought of as a local bandwidth which is always less than or equal to the overall
bandwidth (e.g., Figure 2a). : ' ' ' : -~



Block Tridiagonal Reordering

: Although we have sketched the overall idea of the reordering and numerical phases
of this approach, we have not yet discussed how we account for the asymmetry of the EB
flowsheeting matrix. In this section, we describe the graph model ~and the bisection

algorithm we actually use to generate the ordering.

The ordering algorithm uses a bipartite graph of row vertices and column vertices to ,
describe the nonzero structure of the matrix. A row vertex and a column vertex are
adjacent if the corresponding matrix coefficient is nonzero. Thus, ‘we can adequately
- describe a nonsymmetric matrix with this graph. Our algorithm assumes the input bipartite
graph has a complete matching, or equivalently, the matrix has a full transversal. For each
- nonzero diagonal element, we say the corresponding row and column vertices are the match
~ of one another. This model of the matrix structure is an extension of the net model used
~ Schweikert and Kernighan (9) to find partitions of electrical circuits. In our model, each

net corresponds to a column and the nonzeros elements in that column. The fundamental
step in the algorithm is to find a partitioning of the vertices into two sets, such that each
set has an equal number of row and column vertices and approximately the same number
of total vertices as the other set, and so that the number of nets cut by the partition is
minimized. (A net can be thought of as a generalization of an edge, and in that sense, this

Is essentially a bisection algorithm). This step is applied recursively (with a few further .

restrictions) to the resulting sets of vertices to obtain a partitioning into several sets.
Information from such a partitioning can be used to order the matrix in a block tridiagonal
- form in which the off-diagonal blocks have very few nonzero columns (with each such

~honzero column associated with a net that was cut by a pattition). Once such an ordering
~ has been determined, each diagonal block can be factored concurrently and the nonzero

columns that correspond to a particular diagonal block are multiplied by the inverse of that
diagonal block. We can extract from the resulting matrix a reduced linear system whose
~order is equal to the total number of nets that were cut by partitions. '

‘We assume that input to the reordering algorithm is a matrix with a full transversal
(i.e., a complete matching in the bipartite graph) and tolerance of variation in the partition

~sizes. The algorithm generates a balanced two-way partition of the input matrix,

corresponding to a two-way partition of the row and column vertices into X, and X,
(where each subset contains as many column vertices as it does row vertices). The kemnel
of the algorithm involves the determination of which row or column vertex to move so that
 the number of nets cut by the partition (i.e., the number of nets with elements in each

~ partition) is the smallest. We will refer to this reduction in the number of nets cut as the
- gain of a vertex (as is done in (9)). Vertices are always moved in pairs, that is, every row
vertex that is move from X; to X, is followed by a row vertex move from X;t0 X;,ora
column vertex move from X; to X. A similar remark holds for column vertex moves.
~ This requirement assures us that each subset will have as many rows as columns.
~ Furthermore, if the second move is a row vertex from X. to X, that row vertex must be

‘adjacent to the match of the former row vertex and the former row vertex must be adjacent

to the current match. Likewise, if the second move is a column vertex from ';X-l to X, it
must be adjacent to the former row vertex and its match must be adjacent to the match of

. ‘the former row vertex. This requirement preserves the full transversal. In general, the
graph induced by the row and column vertices adjacent to any vertices moved as a pair

 must be a complete bipartite graph (specifically, K, |, an edge in the matching, or K,,).

We choose the vertices with the largest gains from the set of rows ~and column vertices
that satisfy these criteria. Figure 3 shows an example matrix and its graph both before and
after the ordering. : ' F o



The implementation we describe above allows the consideration of row exchanges
without exchanging the corresponding columns, which is tantamount to considering alternate
transversal_s. - Hence, the overall reordering will not be constrained by the nonexistent data
~dependencies that reduce potential parallelism when the symmetric part is used.  This
model attempts to minimize the number of nets cut and does not weight the nets according
to the number of vertices on a net. Hence, a net with many vertices is no more expensive
to cut than a net with few vertices. This means that the nonzero areas of the off diagonal
blocks can include any rows in the nonzero columns (not just those within the tridiagonal
blocks). Because we apply the bisection algorithm recursively to each subset of the
partition, this could potentially destroy the block tridiagonal. To maintain block tridiagonal
structure during the recursive calls, we must further require that a partition be rejected if it
cuts a net that was previously cut by another partition. This will result the ordering and

~ reduced system depicted in Figure 4. ' .

Nested Block Tridiagonal Ordering

~ If we allow a net to be cut by more than one partition, ‘then there is the possibility
 that the columns corresponding to variables in the reduced system will suffer fill-in across
~ partition boundaries. As mentioned above, this destroys the block tridiagonal structure, but
the resulting structure, which we refer to as nested block tridiagonal, can still be exploited
in a similar manner. The nested block tridiagonal structure and the resulting reduced
_system are shown in Figure 5. The modification to the numerical phase requires that the
factored diagonal blocks be solved for the additional nonzero columns in each partition.
As with the computation of the previous fill-in columns, these operations can be done
concurrently, with each block row assigned to a different processor. The reduced systems
resulting from this ordering are more dense than those resulting from the former ordering,
‘but because this ordering is less restrictive in choosing candidate rows and columns for
reordering, one expects that it will result in greater parallelism (more block rows) or a
smaller reduced system. We show the results of these two ~orderings for several EB
~ flowsheeting matrices in Table 2, with a description of the matrices in Table 1. The
parameters which control the tolerance of relative partition size and relative number of nets
~ cut by the partition were selected with a preference for a highly balanced four-way
~ partition matrix (suitable for execution on a four processor machine like the Cray 2).

TABLE 1 - Descriptions of Test Problems (Problems 3-10 are from the Harwell/Boeing

Com uter Services Sparse Matrix Test Collection)

Problem  Order of Matrix ~ Nonzeros ~  Descripion

155 630 ammonia synthesis problem
- 350 1634  light hydrocarbon recovery
137 411 - ethylene plant
207 572 ~ heat exchanger network
225 1308 ' ~ hydrocarbon separations
425 1339 , , nitric acid plant
156 371 ‘ ~ simple chemical plant model
167 507 - rigorous model of chemical stage
655 , 2854 16 stage column, some simplified
989 3537 / 7 stage column, all rigorous
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 Nested Block Tridiagonal

 Block Tridiagonal

'No. of Largest Size of =~ No. of Largest ~ Size of
- i ~ Diagonal Diagonal Reduced = Diagonal Diagonal Reduced
- Problem i ~ _Blocks _ Block _ System Blocks _ Block _ Sy stem

43 62
105 147
37 sl
59 31
59 58
125 61
45 67
67 41
364 87
290 224

45 49
105 99
40 46
59 35
58 57
118 0
4 46

48 41

194 207
529 86
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CONCILUSIONS

~ As indicated in Table 2, the algorithms are capable of producing fairly ‘balanced partitions
for the graphs of most of these problems. Because the tolerance parameters were selected
to give a tightly balanced four-way partition, the reduced systems that result from the
indicated orderings can be larger than the diagonal blocks for some problems. If such a
~ large reduced system were costly to solve (e.g., if interprocessor communication costs are
high enough to preclude the use of a fine grained dense solver), then its size could be

~ reduced by relaxing the partition and/or cut net tolerances.

For the problems in which the load balancing of the two orderings is similar (i.e.,
the largest diagonal blocks are about the same size), the nested block tridiagonal ordering
~does tend to give smaller (albeit, more dense) reduced systems. In the test problems,
however, this trend is not as pronounced as one might suspect (although we conjecture that
it will be much more pronounced for larger, sparser problems). The circumstances under .
which one should relax the load balancing criterion to obtain a smaller reduced system, the

- optimal choice of tolerance parameters, and the choice of ordering are issues that are

~ dependent on the parallel architecture under consideration, as well as on the problem being
solved. We are hopeful that our current studies of the parallel solution time for these
‘methods will partially resolve these issues. - ' ' .

SYMBOLS USED

AT = the transpose of matrix A
B = a bisection, subset of an edge set
b, = number of vertices in vertex subset X; incident to bisection B

’GV(X,E): a graph on X vertices and E edges




Ky = the complete bipartite graph on sets of i’ and j vertices

N = the Order,of matrix A |
P = _nu,tnber’ of parallel; processors used
X, ’ = a subset of vettexkset X : |
,I'i’i = the least integer greater than or equal to z
| I.zJ | ,,=’:,t,he gteatest integer less than or equal to z
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~ Figure 3 Bipartite Graphs of the Matrix with Initial and Final Orderings (Column vertices
~ corresponding to cut nets are shaded) ' o - ,
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Figure 4 Reduced System for No Nets Cut by More than One Partition_
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