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Abstract

Food chains and webs in the environment can be modeled by systerdsafy
differential equations that approximate species or functionalrfgegtoup behavior with
a variety of functional responses. We present here a new methoém@gpmputing all
equilibrium states and bifurcations of equilibria in food chain modelse riethodology
used is based on interval analysis, in particular an interval-Neyaioevalized-bisection
algorithm that provides a mathematical and computational guardmsteall roots of a
nonlinear equation system are enclosed. The procedure is iatt@izndependent, and
thus requires na priori insights concerning the number of equilibrium states and
bifurcations of equilibria or their approximate locations. The technigjdested using

several example problems involving tritrophic food chains.
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1. INTRODUCTION

Food chains and webs in the environment are highly complex and interdependent
systems. Seemingly insignificant changes in the parametessch systems can have drastic
consequences. Food chains and webs can be modeled by systems of dlifie@mntial
equations that approximate species or functional feeding group belvaitiora variety of
functional responses. Many simple two-species models have beenghigrexplored, while
new discoveries continue to be made in examining models with ameédour trophic levels
(e.g., Moghadas and Gumel, 2003). Ecological systems exhibit comptedependencies in
that changes in a single trophic level may have far reachingimpa the rest of the system. In
some cases, this leads to unexpected or counterintuitive behaviorof Wgeple food chain
models can assist in qualitatively illustrating the complextd interdependencies in real
ecological systems.

Our interest in ecological modeling is motivated by its userestool in studying the
impact on the environment of the industrial use of newly discoverediataite Clearly it is
preferable to take a proactive, rather than reactive, approaeh wonsidering the safety and
environmental consequences of using new compounds. Of particulastingetifee potential use
of room temperature ionic liquid (IL) solvents in place of traditiavents (Brennecke and
Maginn, 2001). IL solvents have no measurable vapor pressure and thug fafety and
environmental viewpoint, have several potential advantages relatitre ttvaditional volatile
organic compounds (VOCSs) used as solvents, including elimination of hakzerds inhalation,
explosion and air pollution. However, ILs are, to varying degreashleoin water; thus, if they
are used industrially on a large scale, their entry into the envinoinwea aqueous waste streams
is of concern. The effects of trace levels of ILs in the renvnent are today essentially
unknown and thus must be studied. Single species toxicity informatiw@rysmportant as a
basis for examining the effects that a contaminant will havanoenvironment. However, this
information, when considered by itself, is insufficient to predigtdnts on a food chain, food
web, or an ecosystem. Ecological modeling provides a means fginsfute impact of such
perturbations on a localized environment by focusing not just on thetimpame species, but
rather on the larger impacts on the food chain and ecosystem. ©¢&gcecological modeling is

just one part of a much larger suite of tools, including toxicologidastorffet al., 2003;



Freemantle, 2002), hydrological and microbiological studies, that lmeussed in addressing this
issue.

In this paper, we concentrate on the computation of equilibriuns qsteady states) in
food chain models, and on the computation of bifurcations of equilibria. ukchtfon is a
sudden, macroscopic change in the qualitative behavior of a syssamagarameter is varied.
These changes include the appearance and disappearance bfiequsitates (fold or saddle
node bifurcation), the exchange of stability of two equilibrian@caitical bifurcation), and the
change of stability of an equilibrium point (Hopf bifurcation). van Coller (1997) gesva good
high-level introduction for dynamical systems and their charatitss, while a more advanced
and thorough review of bifurcations can be found in Kuznetsov (1998). Foresaygiems, or
specific parts of more complex ones, analytic techniques andnescahalysis are useful for
analysis of equilibrium states and bifurcations. However, for mampkex problems,
continuation methods are the predominant computational tools, with packedeas AUTO
(Doedelet al., 1997) and others (van Coller, 1997) being particularly popular in thisxtonte
These are applied to solve the systems of nonlinear algelyaatians that represent the
equilibrium states and bifurcations.

Continuation methods can be quite reliable, especially in the hands ex{parienced
user. However, in general, continuation methods are initializatiomdepg and may fail to
find all solutions to a system of nonlinear equations. Thus, in thigxdptihese methods may
fail to find all equilibrium states or all bifurcations of eqoilla. In this paper, we propose a new
approach for computing equilibrium states and bifurcations of equilibri@od chain models,
and consider the feasibility of using this approach. This techniqueassd on interval
mathematics, in particular an interval-Newton approach combined witbrglized bisection,
and provides amathematical and computational guarantee that all equilibrium states and
bifurcations of equilibria will be located (or, more preciselyclesed within a very narrow
interval). There are other dynamical features of interasth sas limit cycles (and their
bifurcations); however, our attention here will be limited to epuoiUm states and their
bifurcations. While the focus here is on food chain models, therdeartycapplications of this
technique in the analysis of other dynamical systems of interest in chengaaeering.

In the next section, we describe the development of food chain modelshe

formulation of the nonlinear equation systems that must be solved eomdet equilibrium



states and bifurcations. In Section 3, the computational method doniselered is described
briefly. Then, in Section 4, we apply this methodology to some velgtsimple systems to

explore its feasibility.

2. PROBLEM FORMULATION

2.1 Food Chain Models

The food chain models studied in this paper are all continuous time mntbdelsre
represented by a set of ordinary differential equations. Thgsessions give the rate of change
of biomass in terms of specific models of growth and mortatityagh trophic level. In food
chain models, it is common to equate each trophic level with a sipglges, and that is the
practice that we will follow here. However, it should be notet & trophic level may in fact
consist of multiple similar (and noncompetitive) species with gsame functional feeding
behavior. Species biomass can be related to species population logicogshe average size
and mass of individual members of a species. However, it is convéaigmrk in terms of
biomass for many organisms, especially those found in aquatic food chains. Thus, when the t
population is used here, it refers to species biomass.

In general, for a food chain witk trophic levels, the equations giving the rate of change
of biomass for each trophic levielspecies) can be expressed as:

dt

=gi-m, i=1.,N, 1)

wherex; is the species biomasg, is the species growth rate, angl is the species removal
(mortality) rate. The removal rate of a species mayudeldeaths due to natural causes,
predation, harvesting, contamination, etc., and also includes the net nombwetividuals
leaving the control volume of interest, whether due to drift or washbug. species growth rate
may include growth due to consumption of prey, or due to consumption of nutrients.

At the lowest level of the food chain (species 1), simple pregisp are typically
modeled as growing either exponentially or logistically in theeace of a predator. Logistic
models tend to better represent real systems, as these moclsitafor the effect of prey

density on growth. The logistic growth model is:



0= X1|:r (1—%H (2)

wherer is the prey growth rate constant afds the prey carrying capacity for the system. In
this type of model, at small prey populations, pspgcies grow exponentially. However, as the
population gets larger, the rate of growth slowsl dine population reaches the system carrying
capacity. This carrying capacity represents theimam biomass of a prey species that a
system can support when the prey lives in absefc gredator. This growth rate model
represents theet growth, including both birth and natural deathpo#y organisms. This type of
model is sufficient to characterize population dyes of simple organisms at the bottom of a
food chain. Predation behavior is quite differdmyever.

Predators (species 2, .N) grow by consuming prey, and the rate at whictdaters
consume prey can modeled by different responsestypdolling (1959) categorized predator
responses into three classes, as explained in deted by Turchin (2003). Type | predators
exhibit a linear functional response, while Typeuid Type 1ll predators exhibit hyperbolic and

sigmoidal responses, respectively. The correspgngliowth rate models are:

Linear: g =€aXX_g (3)
. o AiXiXig
Hyperbolic: g =¢§ b %, (4)
Sigmoidal: g; =¢ a,x,—x,2_1 (5)
g . ! b|2 + Xi2—l .

Here x is the predator species biomass, is the prey species biomass,is the maximum
predation ratel; is a half-saturation constant, agdis the efficiency with which a predator
converts prey into biomass. If the efficiengyequals one, theg represents the rate of prey
consumption. Note that in a food chain model (agosed to a food web), a predator species
preys only on the trophic level immediately belawnithe chain. Because of the amount of time
required to handle prey (i.e., hunt, Kill, consurdigest), predator species cannot consume prey
at a constant rate as prey population increasebus,Tlinear functional responses do not
accurately portray behavior in the natural envirenm On the other hand, the hyperbolic and
sigmoidal functional responses provide a saturataffect based upon the prey species

population. One important difference between tlypehbolic response and the sigmoidal



response arises as the prey population diminisbemrts zero. As the prey population
approaches zero, the rate of change in prey cornsumpate modeled by the hyperbolic
response increases, while the rate of change yngmesumption rate modeled by the sigmoidal
model response passes through an inflection panat,then decreases. This means that as prey
population dwindles to a very low level, predatexhibiting a sigmoidal response slow in their
efforts to consume prey, while hyperbolic predateosk harder for their meals. This reduction
in effort by sigmoidal predators to catch preyygital of a generalist predator that switches to
another food source when prey abundance becomes Idvine hyperbolic response is
characteristic of specialist predators, which dbaiternate food sources. Specialist predation is
generally seen as a more accurate representatiorany systems, including aquatic systems;
however, both types of behavior can be used to hmadaral systems.

The species removal rate generally involves twaenge one accounting for death by
predation, and the other being a density-dependieatth rate term accounting for natural death
and other forms of removal (e.g., harvesting, washetc.). The loss of biomass by predation at
one trophic level is directly related to the grovimy predation at the next highest level in the
food chain, and differs only by the efficiency facintroduced above. Thus, for example, the

removal rate for a speciesvith a hyperbolic predator (specied) would be represented by:

_ 81 XX +d;x (6)

m
bi+1+ X

whered is the death rate constant. Note that the forrtheffirst term (removal by predation)
depends on the form of the predator growth ratepré&ssions such as this far, which include
both the predation term and the density-dependeathdate term, will apply far= 2, ...,N - 1.
For the bottom prey species £ 1), there is no density-dependent death rata &3 this is
accounted for in the logistic growth rate modebr the top predator specias{N), there is no
consumption by predation term, since there is edator higher in the food chain.

Based on the concepts outlined above, one candarmdel of a food chain consisting of
any number of species that exhibit a variety ofctiomal responses. For example, consider a
tritrophic (N = 3) chain with a logistic prey € 1), and hyperbolic (Holling Type 1) predator<

2) and superpredatar¥£ 3) responses:
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This model is well-known as a tritrophic RosenzwiligcArthur model (also referred to as a
tritrophic Oksanen model), and is frequently usedhieoretical ecology (e.g., Gragnaahial .,
1998; Hastings and Powell, 1991; Klebanoff and iHgst 1994; Abrams and Roth, 1994;
Kuznetsov and Rinaldi, 1996; De Feo and Rinald87)9 Since this model is relatively simple
and has been widely studied both analytically amtherically, it provides a good initial problem
for testing the feasibility of the interval-basecktitvodology described below for determining
equilibrium states and bifurcations of equilibmafood chain models.

Two additional tritrophic models, involving difiemt predator functional responses, will
be used as test problems. The first of these wegoh sigmoidal (Holling Type IIl) predator and
superpredator, and is given by:

a

by r(l_ﬁj By (10)
dt KJ bS+x{

dx, aX  8gXpXg

—==X,| & — —d (11)
dt 2[2b§+x12 b2 + x2 2

dxs agxs

—= =X -d 12
dt SI:eS b32 + X% 3 ( )

This model appears to have received only limitedst(Turchin, 2003; Yodzis, 1989), as the
Type Il functional response is generally only apgible to generalist, not specialist, predators,
and is thus perhaps less widely applicable in gipiatural environments than the Rosenzweig-
MacArthur model.

The second of the two additional test problems lwve® a hyperbolic, or specialist,

predator and a sigmoidal, or generalist, superpoedd his model is given by:



9y r(l_ﬁ] _ 2% (13)
dt KJ) b, +x

a
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dxg agxXs
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dt SI:eS b32 + X% 3 ( )

This model has apparently not been widely studied.

Note that, since all of the terms typically usedrtodelg; andm have a common factor
of x,, food chain models, including all of the model®wady can typically be represented by the
general form

dX_ T
i X" h(x), (16)

wherex = [x4, X2, ...,xn]" is the vector of population (biomass) densities! = [hy, hy, ...,hy]"
is the vector of functionk;(x) = [gi(X) — m(X)]/x;.

In real systems, the simple food chains discusbeueaare likely imbedded within larger
and more complex food webs, but for the purposemany theoretical ecology studies, the
tritrophic food chain has proven useful in analgzlvoth qualitative and quantitative trends in

population fluctuation.

2.2 Equilibrium States
Equilibrium states are defined by the condition

dx

-
—=x h(x)=0, 17
o (x) 17)
subject to
x>0. (18)

Once values for all of the model parameters haen lspecified, Eq. (17) representshx N

system of nonlinear equations which can be soleedHe equilibrium states. For food chain
models as described above, there may be a largberuwhsolutions; however, typically some of
these solutions will not satisfy Eqg. (18) and tkk be infeasible. Note that the solution of Eq.



(17) can be thought of as consisting 8fsibproblems, one for the case of all nonzerand
requiring the solution ofh(x) = 0, and 2' —1 subproblems corresponding to different
combinations ok; set to zero, each combination requiring the sotutf a systen; = 0,i € S
where S indicates the set of indices corresponding to aomz,. In general, each of the
subproblems that must be solved (except for the xas0) may have multiple solutions or no
solutions, and so the total number of equilibriusatess may be unknowa priori. For simple
models, it may be possible to solve for many ofdhailibrium states analytically, but for more
complex models a computational method is neededdtepable of finding, with certaintgll
the solutions of a nonlinear equation system. iftexval-Newton procedure described below is
tested here for this purpose. It is applied diyetct the solution of Eq. (17) rather than to arfy o
the several subproblems.

The stability of an equilibrium state can be deteed by evaluating the Jacobian matrix
at this state and then examining its eigenvallk@sm Eq. (17), the Jacobian matdxf interest
has the elements

Ji, =
ik O,

(19)

According to linear stability analysis, for an dduium state to be stable, all of the eigenvalues
of the Jacobian must have negative real parts.

Examining equilibrium states can give us informaton how the behavior of the system
changes with changes in the model parameters. eSine parameters in the model are
representative of physical and biological charasties of the system, the model parameters can
be altered in order to represent changes in asyséém. Tracking the changes in the equilibrium
states can give us information on how a real systaight behave when undergoing

perturbations in the system parameters.

2.3 Codimension-One Bifurcations

To find bifurcations of codimension one, all mogarameters but one are specified, and
then the values of the remaining parameter at wthieke is a sudden change in the nature of an
equilibrium state are found. Of interest herefatd and transcritical bifurcations of equilibria
and Hopf bifurcations. Mathematically, when an &quum state undergoes either a fold or a

transcritical bifurcation, an eigenvalue of its dlsi@an becomes zero. In this case, there are two



equilibria that “collide” as the free parametervaried. In a fold bifurcation, these equilibria
mutually annihilate, thus the number of equilibrigtates changes by two as the free parameter
is increased or decreased. On the other hand,tianacritical bifurcation, the two colliding
equilibria do not disappear, but may simply exclestability. In a system with a single state
variable, there will always be an exchange of $itgpbbut if the number of state variables is
more than one, there may or may not be an exchaihgtbility, depending on the sign of the
other eigenvalues. Mathematically, a Hopf bifutmatoccurs when its Jacobian has a pair of
complex conjugate eigenvalues and the sign of tleail part changes; i.e. when this complex
conjugate pair of eigenvalues is purely imagindrya system with two state variables, this will
result in a change in the stability of the equilibn state, but if the number of state variables is
more than two, there may or may not be stabilitgnge, depending on the sign of the other
eigenvalues. If the Hopf bifurcation occurs iniaiependent two-variable subset of state space,
this is referred to as a planar Hopf bifurcation.

The locations of these bifurcations can be contpig solving a nonlinear equation
system that includes the equilibrium conditions, @), together with an augmenting (or test)
function that represents the mathematical condition the type of bifurcation sought.
Kuznetsov (1998) discusses in detail the developroérsuch test functions for the types of
bifurcations of interest here. Generally thesé¢ fisctions are designed to avoid the need for
direct computation of eigenvalues.

At a fold or transcritical bifurcation, an eigenwalofJ is zero. Since the determinant of
a matrix is equal to the product of its eigenvalube determinant of will be zero at a fold or
transcritical bifurcation, thereby providing a cement test function. Thus, to locate a fold or

transcritical bifurcation of equilibrium, a nonlisweequation system that can be solved is
xTh(x,a) =0 (20)
detJ(x,a)] =0 (21)

This is a system dN + 1 equations in thdl + 1 variablesx and , wherea is the free model
parameter.

At a Hopf bifurcation,J has a complex conjugate pair of purely imaginaggmvalues.
This means that there must be a pair of eigenvahassums to zero (but note that the converse
is not true—having a pair of eigenvalues that stwnsero does not necessarily mean that they



are a complex conjugate pair with zero real patggcording to Stephanos’s theorem, forfam
N matrix J with eigenvalues, Ao, ..., An, the bialternate produdt® J has eigenvalueg 4, and
the bialternate productJ2® | has eigenvalued; + 4. Thus, to locate a Hopf bifurcation a
nonlinear equation system that can be solved is
xTh(x,a) =0 (22)
detRJI(x,a)®1]=0. (23)
Again, this is a system &f + 1 equations in the + 1 variablex anda. The bialternate product
of two n x n matricesA andB is anm x m matrix denoted byA ® B whose rows are labeled by

the multiindex p, ) wherep =2, 3, ...,nandqg =1, 2, ...,p— 1, whose columns are labeled by

the multiindex £, s) wherer =2, 3, ....nands=1, 2, ...r — 1, wheran=n(n— 1)/2, and whose

(A®B)(pq)rs) = %( J (24)

Note that solutions to this nonlinear equation exystwill include all Hopf bifurcations, but that

elements are given by
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there may be other solutions corresponding to #se of two eigenvalues that are real additive
inverses (and for which there thus is also a pagigenvalues that sums to zero). To identify
such “false positives” it is thus necessary to cotephe eigenvalues dfat each solution to Egs.
(22-23). Then any solutions for which the eigenealwdo not include a purely imaginary
complex conjugate pair can be discarded.

2.3 Codimension-Two Bifurcations

To find bifurcations of codimension two, all butdwnodel parameters are specified, and
then the values of the two free parameters at wiiete is a sudden change in the nature of an
equilibrium state are found, much in the same vhay todimension-one bifurcations are found.
On a bifurcation diagram (see examples below),medsion-two bifurcation points may occur
at the intersections of codimension-one bifurcaticurves; thus, these codimension-two
bifurcations are of interest since they serve asgdoizing centers” for the diagram.
Furthermore, codimension-one bifurcation curves ednibit qualitative, macroscopic changes
in number and/or type when passing through codimartsvo bifurcation points. Knowledge of

the codimension-two bifurcations alone, withoutedetination of an entire bifurcation diagram,

10



can be useful for comparison of models (Gragegai., 1998).

Corresponding to the types of codimension-onertéfiilons considered here, there are
three basic types of codimension-two bifurcatioridhey can be classified mathematically by
examining the eigenvalues of the unaugmented Jaicdhdefined by Eqg. (19). The Jacobian
can either have a pair of purely zero eigenvaldesitfle-fold or double-zero bifurcation), two
pairs of purely imaginary complex conjugate eigdémes (double-Hopf bifurcation), or a pair of
purely imaginary complex conjugate eigenvalues amtk zero eigenvalue (fold-Hopf
bifurcation). Since the examples used in this pape tritrophic, the double-Hopf case will not
be considered here, as these cannot occur in alwittidess than four equations (the double-
Hopf condition involves four eigenvalues). Theme also other types of codimension-two
bifurcations (e.g., cusp bifurcation) that are searched for directly here, but which may be
encountered (see Section 4.2).

Both double-fold and fold-Hopf bifurcations can beund be solving the doubly

augmented nonlinear system

X h(x,a, B) =0 (25)
det[J(x,a, 8)] =0 (26)
detRJ(x,a, B)®1]=0. (27)

This is a system dfl + 2 equations in thE + 2 variablex, «, andg, wherex andg are the free
model parameters. Eq. (26) applies since, at redhdouble-fold or fold-Hopf bifurcation]
must have an eigenvalue of zero. EqQ. (27) appdiese, whether it is the pair of zero
eigenvalues at a double-fold bifurcation or ther gai purely imaginary complex conjugate
eigenvalues at a fold-Hopf bifurcatiod,must have a pair of eigenvalues that sums to zero.
Once found, solutions to Egs. (25-27) must be se@dor points that have a pair of (nonzero)
eigenvalues that are purely real additive inverses] the points must be further sorted and
classified by type. Whether one is looking fordfaind transcritical bifurcations and solving Eqgs.
(20-21), looking for Hopf bifurcations and solviggs. (22-23), or looking for codimension-two
bifurcations by solving Eqgs. (25-27), the equatgstem that must be solved may have multiple
solutions, or no solutions, and the number of smhst may be unknowra priori. A

computational method is needed that is capablending, with certaintyall the solutions of

11



these nonlinear equation systems. The intervaltbieywrocedure described below is tested here

for this purpose.

3. COMPUTATIONAL METHODOLOGY

Recent monographs that introduce interval mathesatis well as computations with
intervals, include those of Neumaier (1990), Hand&92) and Kearfott (1996). Of particular
interest here is the use of an interval-Newton/gadeed-bisection (IN/GB) technique. Properly
implemented, this technique provides the powerind, fwith mathematical and computational
certainty, narrow enclosures @l solutions of a system of nonlinear equations pallétermine
with certainty that there are none, provided thital upper and lower bounds are available for
all variables (Neumaier, 1990; Hansen, 1992, Kéari®96). This is made possible through the
use of the powerful existence and uniqueness testdqed by the interval-Newton method. The
key ideas of the methodology used are summarizetlybhere.

Consider am x n nonlinear equation systef{x) = 0 with a finite number of real roots in
some initial intervalX®. The interval Newton methodology is applied tosequence of
subintervals ofX®. For a subintervak® in the sequence, the first step is fhiction range
test. An interval extensiofr (X®) of the functionf(x) is calculated, which provides upper and
lower bounds on the range of valuesf@d) in X®. Interval extensions are computed here by
substituting the given interval into the functiomdathen evaluating the function using interval
arithmetic. If there is any component of the ing¢rextensior(X®) that does not include zero,
then the interval can be discarded, since no swoluf f(x) = O can exist in this interval. The
next subinterval in the sequence may then be ceresid Otherwise, testing ¥f¥ continues.

The next step is thaterval-Newton test. The linear interval equation system
F/(X®YN® —x®)=—f(x%) (28)

is solved for a new interval®, whereF’(X¥) is an interval extension of the Jacobiarf(@j,
andx® is an arbitrary point iX®. It can be shown (Moore, 1966) that any root aimed inX®
is also contained in the imagé¥. This implies that wheX® ~ N® is empty, then no root
exists inX®, and also suggests the iteration sch&fie” = X% ~ N®. In addition, ifN® <
X® it can been shown (e.g., Kearfoot, 1996) thatetieaunique root contained irXx™® and thus

in N®. Thus, after computation 6%, there are three possibilities: X ~ N® = &, meaning

12



there is no root in the current intervé? and it can be discarded; 8% = X®, meaning that
there isexactly one root in the current interv®. 3. Neither of the above, meaning that no
conclusion can be drawn. In the last cas¥f~ N is sufficiently smaller thax®, then the
interval-Newton test can be reapplied to the resmlintersection. Otherwise, the intersection is
bisected, and the resulting two subintervals ameddo the sequence of subintervals to be
tested. If an interval containing a unique root baen identified, then this root can be tightly
enclosed by continuing the interval-Newton itematiovhich will converge quadratically to a
desired tolerance (on the enclosure diameter)er@Adtively, a point approximation of the root
can be found by using a routine point-Newton mettstdrting from any point in the interval
containing the unique root. This approach is reférto as an interval-Newton/generalized-
bisection (IN/GB) method. At termination, when thebintervals in the sequence have all been
tested, eitherll the real roots of(x) = O have been tightly enclosed or it is determined
rigorously that no roots exist. Additional detafsthe IN/GB algorithm used are summarized by
Schnepper and Stadtherr (1996).

An important feature of this approach is that,ikenlstandard methods for nonlinear
equation solving that require @oint initialization, the IN/GB methodology requires prén
initial interval, and this interval can be sufficiently large talese all feasible results. In recent
years, the IN/GB technique has been successfupliegpto a variety of problems in chemical
engineering, including phase equilibrium (Hetaal., 1998; Maieret al., 1998; Stradit al.,
2001; Xuet al., 2002), parameter estimation (Gau and Stadth€00,22002a,b; Gaet al.,
2000) and density functional theory (Maier and 8tad, 2001).

4. RESULTSAND DISCUSSION

In this section, we use the three tritrophic fobdin models introduced in section 2.1 as
test problems to explore the use of the IN/GB matihmgy for computing equilibrium states and
bifurcations of equilibria. It should be notedtthsince these are relatively simple models, it is
possible to perform some of these computationsyacally. However, since this may not be
possible for more complex models, all the resutesented below were computed numerically

using the IN/GB technique, without any analytidabi cuts.
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4.1 Rosenzweig-MacArthur Model

The Rosenzweig-MacArthur model used here is trittopfeaturing a logistic prey species
and hyperbolic (Holling Type II) predator and sypedator, and defined by Egs. (7-9). Much
of the literature work on the Rosenzweig-MacArthmodel has focused on the enrichment
paradox and chaos associated with alterationsedfiatbd chain carrying capacity (e.g., Gragnani
et al., 1998). To conform to these studies and to thosige a body of work with which to
compare our results, the growth rate constartd carrying capacitf were chosen as the initial
set of adjustable parameters to study. FollowinggB@aniet al. (1998), the remaining
parameters values were fixedsat= 5/3,b, = 1/3,e, = 1,d, = 0.4,a3 = 0.05,b3 = 0.5,e5 =1, and
ds = 0.01. Except as noted otherwise, these parametieies were used for all of the
computations done here with the Rosenzweig-MacArthadel, as well as with the other two
tritrophic models used.

4.1.1 Equilibrium States

As an initial test of the IN/GB methodology, we dsteto compute equilibrium states for
several sets df andr values. For example consider the cask ef1.0 and = 1.0. With these
values ofK andr, together with the other parameter values givaaveapthe IN/GB method was
used to solve Eq. (17) for all equilibrium statéhe initial interval used for each variable was
[0, 5000]; here the upper bound is simply an aahbifr large number. The results are shown in
Table 1, along with results of stability analysis €ach point. Four feasible steady states were
found, all of which are unstable. Note that théuga ofx reported in Table 1 (as well as in
Table 2 below) are rounded point representationthefinterval enclosures determined by the
IN/GB algorithm. For instance, the actual resatismputed for the first equilibrium state are the
enclosuresx; e [0.819245918, 0.81924609%, < [0.124999908, 0.125000008] and <
[9.808198838, 9.808199175]. Tighter enclosures lvandetermined if desired by setting a
smaller tolerance for the enclosure diameter.

As another example, consider the cas& ef 0.5 andr = 1.0. Results for this case are
listed in Table 2. Again there are four feasibdgiiBbrium states, with one stable state in this
case. Both cases considered feature a steadywsthtell species coexisting, along with a state
including the prey and predator only, a state idicig the prey only, and a state for which all
populations are zero. A zero population solutswiution 4) is always unstable. Physically, this
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means that the populations in any closed systensevirotial populations are zero will remain

zero. However, if the system is open and thera ssnall perturbation (increase) in the prey
population, then the prey population will grow a@tog to the logistic growth rate term until a

new steady state is reached (solution 3). Suchunbations are common in aquatic

environments due to flow and drift.

For a given set oK andr values, the computation of the equilibrium statsisig IN/GB

is quite fast. Computation times are on the oodd).05 sec. All computation times given here
and below are for a Dell workstation running a GHz Intel Xeon processor and using the Intel

Fortran Compiler 7.1 for Linux.
4.1.2 Solution Branch Diagrams

By comparing the two cases considered above, ibeaseen that an effect of increasing
K from 0.5 to 1.0 is that the coexistence equilitristate goes from stable to unstable. To see
the changes in the equilibrium states as one paeansevaried, solution branch diagrams can be
used. These are plots of both the stable and hiessteady states versus one of the parameters.
Figure 1 shows the solution branch diagrams for Rlesenzweig-MacArthur model 4§ is
varied withr = 1.0. These diagrams were generated by using\#i&B method to repeatedly
solve Eq. (17) for slightly different values Kf going fromK = 0 toK = 2 in steps oAK =
0.001, then analyzing the stability of each solutamd plotting the results (thick lines represent
stable equilibria, while thin lines represent ub&aequilibria). One should note that such
diagrams do not give the user any information anttansient behavior of the system beyond
knowledge of the stability of the equilibrium state

Examination of Figure 1 shows that lasncreases there are three valueXait which
macroscopic changes in the system behavior (bifioreg) occur. The first of these is lat~
0.105. Here a new steady state appears (thisdsravin thex; andx, diagrams only, as the new
steady state hag = 0). This is a transcritical bifurcation. Inrgeal, at a transcritical
bifurcation there will be two equilibrium statesatrcollide. However, in this case, one of the
colliding states is infeasible and so does not appe the solution branch diagram. There is
another similar transcritical bifurcation & ~ 0.201. Finally atk ~ 0.768, one of the
equilibrium states (the one with all species caegs changes from stable to unstable. This is a

Hopf bifurcation.
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Figure 1 also illustrates the paradox of enrichnaesndiscussed by Gragnanal. (1998),
among others. This paradox states that enrictiiegobttom level of a food chain in order to
increase the population of the top level specieg, nrafact, result in the decimation of the
species that are wanted in greater abundance.hidncase, enrichment of the food chain is
modeled by increasing the prey carrying capagityThe plot of superpredator populatixnin
Figure 1 illustrates that enriching the food chasults an increase in superpredator population,
but this is stable only to a point. By increasthg carrying capacity beyond this critical point,
the stable steady-state becomes unstable and m@mthmay become counterproductive.
Solution branch diagrams such as Figure 1 can beeasily and automatically generated using
the IN/GB methodology, with certainty that all eluium states (solution branches) have been
found. Two other solution branch diagrams weremaed. Figure 2 shows the caserfer 0.5,
and Figure 3 for = 0.4.

Figure 2 illustrates some bifurcation behavior famito Figure 1, but with distinct
differences. Here d$ is increased, the system undergoes a transciitiftalcation in which a
previously infeasible equilibrium state becomesifgla, colliding with another equilibrium state
and exchanging stabilities. This is followed byHapf bifurcation, which occurs for an
equilibrium state with a positive prey and predgtopulation, but with a zero superpredator
population. Therefore, this is a planar Hopf kihtion, as the bifurcation is occurring in a
subset of the state space of the model. KAt 0.872, a fold bifurcation occurs and two new
steady states appear (this is evident only in tots pf x; andxs, as the new steady states have
the same value o§). Finally there are two Hopf bifurcations. Orenmbserve that there is no
continuity between the equilibrium that undergdes first (planar) Hopf bifurcation and the
equilibrium that undergoes the second two (nonglaHopf bifurcations. From the plot g, it
is evident that the region of stable coexistencallbthree populations at equilibrium is in the
narrow interval oK values between the second two Hopf bifurcatiomgsoi However, in this
region, the trend of the enrichment paradox is egppa

Looking at Figure 3, one can see that the sligfainge made in the prey growth rate
constantr leads to a significant change in system behavibhe narrow band of stability in
Figure 2 that allows all three species to coexistlanger exists in Figure 3. Thus, at a
sufficiently low prey growth rate, no superpredatoan thrive in a stable population. It is also

very interesting to note that in Figure 3 the fblfurcation results in two equilibrium states
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(solution branches) that do not intersect othendinas (this is true even for larger valuesof
than shown on the plot). Such isolated soluticembhes (isola) can be very difficult to find
using continuation methods, especially for more glem models in which their existence may
not be suspected. However, using the IN/GB approagolated branches are easily found. In

fact, there is a mathematical and computatignatantee that they will be found.
4.1.3 Kvs. r Bifurcation Diagram

For fixedr, the values oK andx at which the bifurcations of equilibria observdzbae
occur can be computed directly by solving the appate augmented systems, namely Eqgs. (20-
21) for fold and transcritical bifurcations and E¢®2-23) for Hopf bifurcations. In K vs.r
bifurcation diagram the values Kfat which the bifurcations occur are plotted asracfion ofr.
Such a diagram was generated here by using theBINf@&thod to repeatedly solve the
augmented systems f&r andx for slightly different values of, going fromr = 0 tor = 2 in
steps ofAr = 0.005. There may be some values far which one of the augmented systems has
an infinite number of solutions fdf (i.e., a vertical line on thK vs. r diagram). This case
cannot be handled directly by the IN/GB techniquegould be missed entirely by the stepping
in r. Thus, to ensure that all of the bifurcations fatend, it is necessary to also scan in khe
direction. That is, the IN/GB method was also usetepeatedly solve the augmented systems
for r andx for slightly different values df, in this case going frold = 0 toK = 2 in steps oAK
= 0.005. To locate codimension-two bifurcation®ulle-fold and fold-Hopf), the IN/GB
method was used to solve the doubly augmentedmsygieen by Eqgs. (25-27) fdk, r andx.

The initial intervals used for the componentxafere again [0, 5000] and for the parametéers

andr were [0, 2]. The average CPU time for each souinf Egs. (20-21) for fold and

transcritical bifurcations was about 0.6 seconds, far each solution of Egs. (22-23) for Hopf
bifurcations was about 1.4 seconds. Solving EBS-2() for codimension-two bifurcations
required about 39 seconds.

Figure 4 shows thK vs.r bifurcation diagram generated for the RosenzweagMthur
tritrophic food chain model using the IN/GB methoéold and transcritical of equilibria curves
were both found, and are labeled FE and TE resdgti Hopf bifurcation curves were also
found, and are labeled H or, Kfor planar Hopf). A single fold-Hopf bifurcatiowas located,;

this point is represented as an open diamond deleld FH (no double-fold bifurcations were
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found). This bifurcation diagram corresponds dyautith the knownK vs. r bifurcation
diagram for this model, as reported by Gragreiral. (1998). This confirms the utility and
accuracy of the IN/GB algorithm for computing bdation of equilibria diagrams. Bifurcation
diagrams such as Figure 4 can be very easily atomatically generated using the IN/GB
methodology, with complete certainty that all bdation curves have been found. Two other

bifurcation diagrams were computeld,vs.K andr vs.d..
4.1.4 d,vs. K Bifurcation Diagram

Using the same procedure as described abowk,va. K bifurcation diagram for the
Rosenzweig-MacArthur model was generated. Thegptoedieath rate constamitis now a free
parameter, andis now a fixed parameter setrat 1. The average CPU time for each solution
of Eqgs. (20-21) for fold and transcritical bifuricats was about 0.8 seconds, and for each
solution of Eqgs. (22-23) for Hopf bifurcations walsout 2.1 seconds. Solving Egs. (25-27) for
codimension-two bifurcations required about 31 sdso The resulting bifurcation diagram is
shown in Figure 5. This diagram illustrates thaa @onstant prey carrying capacity and growth
rate constantr(= 1), increasing or decreasing the predator destth will cause macroscopic
changes in system behavior. For relatively smalues ofK, there are two transcritical
bifurcations that occur ad, is changed, and for larger values Kfthere are also two Hopf
bifurcations. No double-fold or fold-Hopf codimems-two bifurcations were found. In order to
more closely observe these changes in behaviarti@olbranch diagrams were generated using
IN/GB for the case oK = 1. Figure 6 gives the solution branch diagréons asd, is varied
from O to 2.

Based on the bifurcation diagramkat 1, we would expect that dsis increased from 0
to 2, there should be observed first a Hopf biftioca(the planar Hopf is not observed in this
case, due to the sign of the third eigenvalue)thad two transcritical bifurcations. This is what
is in fact seen in Figure 6. These diagrams ilaistthat there is a minimum predator death rate
constantd, that results in stable system behavior. At lowdator death rates, the system is
unstable and likely exhibits cycles of populatiovoins and busts. As the predator death rate
increases, enough predators are dying off at argngime to prevent the cycles from occurring,
and the cycles collapse to a stable steady-stateHiopf bifurcation.

These results also give a sense of the effectslefsing a toxin that specifically targets

the predator trophic level, and increases the poed#eath rate constant. Prior to examining
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these diagrams, one would expect that such a eelgasld have an impact on both the predator
and the superpredator populations. The plogah Figure 6 shows that increasing the predator
death rate constant causes a linear decrease istdbke superpredator biomass. However,
according to the plot of, in Figure 6, the stable predator population is aft¢cted until the
superpredator population reaches zero. Though e thessults may seem somewhat
counterintuitive, they are indicative of the comyplateractions that may occur in food chains.
An ecotoxin released at a very low concentrationld@ffect organisms at different trophic
levels to varying degrees. For the case consideeed, one might observe an impact on the
superpredator population and thus assume thatffibet ef the ecotoxin was at that level, even
though the actual impact is on the predator levgsing models such as this one can obtain

insights into the impacts of an ecotoxin that migbtt otherwise be apparent.
4.1.5 r vs. d; Bifurcation Diagram

Again using the IN/GB methodology, aws.d, bifurcation diagram for the Rosenzweig-
MacArthur model was generated, wiKhfixed atK = 1. This set of free parameters is of interest
since both could be affected by an ecotoxin. Stheeprey growth rate constant represents the
net growth (accounting for both birth and natural #¢atn ecotoxin affecting the prey trophic
level could decrease the prey growth rate. Fa& pioblem, the average CPU time for each
solution of Egs. (20-21) for fold and transcritidafurcations was about 2.4 seconds, and for
each solution of Egs. (22-23) for Hopf bifurcatiomas about 2.2 seconds. Solving Egs. (25-27)
for codimension-two bifurcations required about 22@8onds. The resulting bifurcation diagram
is shown in Figure 7.

Figure 7 displays a wide variety of bifurcation heior, including a codimension-two
fold-Hopf bifurcation. This diagram illustratesatihchanging either the prey growth rate constant
or the predator death rate constant can cause stagic changes in system behavior. Two
solution branch diagrams were generated in IN/GBntwe closely examine the changes in
species biomass as the parameter variables argathafrigure 8 is the solution branch diagram
asd, is changed at a constart 0.5, and Figure 9 is the solution branch diageamis changed
at a constand, = 0.4.

The solution branch diagrams in Figurer8(0.5;K = 1.0) illustrate behavior somewhat
similar to the solution branch diagrams illustratedrigure 6 ( = 1.0;K = 1.0), with important

differences. First, in Figure 8 a third transcatibifurcation is observed, at a valuedafvery
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close to the Hopf bifurcation. Also, compared tQuFe 6, the Hopf bifurcation now occurs at a
lower value ofd,, as does the point where the system can no laggrort superpredators and
they become extinct. However, the point at whiaod predator population becomes extinct does
not change, nor does the rate of superpredatoiméeciTherefore, with a decrease in the prey
growth rate constant from= 1.0 tor = 0.5, the system actually has a wider rangd,ahat
results in a stable system, and a wider rangk of which all three species can coexist.

Figure 9 illustrates the effect of increasing piney growth rate constant on a system with
constant carrying capacitg = 1.0 and constant predator death rate consktart0.4. These
solution branch diagrams tie together Figur&4/$.r at constantl, = 0.4) and Figure # s.d,
at constankK =1.0) in that they are evaluated at a parametefKse 1.0;d, = 0.4) common to
both diagrams. Asincreases, the solution branch diagrams illusdraté=igure 9 exhibit a fold
bifurcation, then a Hopf bifurcation, followed vegjosely by a transcritical bifurcation, and
finally another Hopf bifurcation. The location tifese bifurcations can be verified by both
Figure 4 (following the lind = 1 upwards) and Figure 7 (following the lide= 0.4 upwards).
This example and those above are useful in conigntihat the IN/GB methodology is indeed
successfully computing all equilibrium states aifdrbations of equilibria for this model. The
solution branch diagrams of Figure 9 show a singigon of stability for the model, and in this
region all three species coexist. In this regioareasing the prey growth rate constant causes an
increase in prey and superpredator population,thistoccurs only to a point. This type of
phenomenon is similar to the paradox of enrichmé#.the prey species replaces its population
more quickly, more organisms are able to thriveninithe food chain, but eventually if the prey

population grows too quickly, the system becomesalbie.
4.2 Tritrophic Model with Sigmoidal Predator and Superpredator Responses

In view of the success in applying the IN/GB meitblody to generate bifurcation
diagrams and solution branch diagrams for the Rogeig-MacArthur model, the methodology
was tested on two other food chain models. Tha fif these is the tritrophic model with
sigmoidal (Holling Type 1ll) predator and superpmgat functional responses, as given by Eqs
(10-12).
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4.2.1 Bifurcation Diagram

The dynamics of this system have received onlytéichistudy (Turchin, 2003; Yodzis,
1989), and there are apparently no published lafion diagrams for it. Following the
procedures outlined above, the IN/GB methodology @pplied to compute the bifurcation
diagram for the case ofandK as free parameters. The average CPU time for gzlakion of
Egs. (20-21) for fold and transcritical bifurcatiowas about 3.6 seconds, and for each solution
of Eqgs. (22-23) for Hopf bifurcations was about &8conds. Solving Eqgs. (25-27) for
codimension-two bifurcations (double-fold or folabld) required about 71 seconds. The
resulting bifurcation diagram is shown in Figure 10

At least for the range of parameters studied, opfHbifurcations were found, and no
double-fold or fold-Hopf codimension-two bifurcati® were found. Note that the range of prey
carrying capacity values studied was increase@,td][in order to more closely examine the pair
of fold of equilibria curves discovered. Thesewvesr are isolated from the transcritical of
equilibria bifurcation curves in the parameteretspace in which Egs. (20-21) are solved, and
so could be difficult to detect using continuatimethods. The intersection of the two fold of
equilibria bifurcation curves without the occurrenaf a double-fold bifurcation suggests that
this point is a cusp bifurcation. Note that thypd of codimension-two bifurcation cannot be
found by solving Egs. (25-27). In order to invgate the behavior of the system near the cusp,

solution branch diagrams were generated for therca®.7 using the IN/GB methodology.
4.2.2 Solution Branch Diagrams

A set of solution branch diagrams was generatedhie model that examines the effect
of increasing the prey carrying capackKyon the biomasses of the three trophic levels while
holdingr constant at a value of 0.7. This value was chosemtersect with the fold bifurcation
curves close to the cusp. Figure 11 gives thetisallbranch diagrams. These illustrate the
crossing of two transcritical bifurcations followdxy two fold bifurcations. One equilibrium
created by the first fold bifurcation collides withe equilibrium that appears in the second
transcritical bifurcation and the two mutually amfate in the second fold bifurcation, forming
an S shaped curve typical of behavior near a ciigpchtion. Note that there is a region where
two stable steady-states exist in which all thigecges can coexist; this region also contains an

unstable-steady state (this is not seen in thefpiot, since all three of these solutions have the
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samex, value). It also appears, according to this mottel{ the enrichment paradox does not
hold for systems of generalist predators, as irsingd does not ultimately result in an unstable

system. However, it should be noted that in thigtesn the two fold bifurcations are catastrophic
because they result in an abrupt change in sys&ravior. For instance, if the system is at the
stable high-population (prey and superpredator)libgum state, and the prey carrying capacity

K is decreasing, then, at the leftmost fold bifuoat this state suddenly disappears and is
replaced by a low-population equilibrium state. eThansient behavior by which the new low-

population state is approached is not investighesd.

4.3 Tritrophic Model with Hyperbolic Predator and Sigmoidal Super predator Responses

The last of the food chain models used as a testigmn here is the tritrophic model with
a hyperbolic (Holling Type I1l) predator responsedaa sigmoidal (Holling Type IlI)
superpredator response, as given by Egs (13-15).

4.3.1 Bifurcation Diagram

This model has apparently received little, if apyevious study. Using a hyperbolic
(specialist) predator and a sigmoidal (generaBsperpredator is justifiable in that organisms
that are higher up on a food chain tend to haveendorersity in the types of organisms that
compose their diets. Again the IN/GB methodologgsvapplied to compute the bifurcation
diagram for the case ofandK as free parameters. The average CPU time for szlakion of
Egs. (20-21) for fold and transcritical bifurcatsowas about 2.1 seconds, and for each solution
of Eqgs. (22-23) for Hopf bifurcations was about %&conds. Solving Eqgs. (25-27) for
codimension-two bifurcations (double-fold or folabld) required about 62 seconds. The
resulting bifurcation diagram is shown in Figure 12

The bifurcation diagram illustrates a range otdess, including fold and transcritical of
equilibria bifurcations, Hopf bifurcations, and adimension-two bifurcation point classified as
a fold-Hopf bifurcation. The fold and transcritidafurcation curves appear to be quite similar
to those seen in the Rosenzweig-MacArthur modelever the Hopf bifurcation behavior is
quite different in that the Hopf curve that origies at the fold-Hopf bifurcation point does not
double back in the diagram for this model. Alse thld-Hopf point occurs at a significantly

larger value of.
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4.3.2 Solution Branch Diagrams

Using the IN/GB methodology, solution branch dags were generated for this model
that examine the effect of increasing the preyywagr capacityK on the biomasses in the three
trophic levels, while holding constant at a value of 1.0. These diagrams aersin Figure
13. The solution branch diagrams illustrate a dcatical bifurcation followed by a Hopf
bifurcation and then a fold bifurcation. An intstieg feature to note is that the Hopf bifurcation
that causes a change in system stability is, ity &a@lanar Hopf bifurcation. A second Hopf
bifurcation is encountered with no change in sysgability. This Hopf bifurcation is non-
planar, but a change in stability does not occuthassign of the third eigenvalue is already
positive. As one equilibrium created in the foltulration approachds = 2.0, it grows close to
a transcritical bifurcation. This model displaysegion of instability between the Hopf and fold
bifurcations. However, the model does not exHeihavior in accordance with the enrichment
paradox. While increasing the prey carrying cdyatbes take the system through a region of
instability, the presence of a generalist supergidcauses the system to be stable for larger

values ofK, at least for the parameter values at which tlaigrdm was generated.
4.4 Computational Performance

Average computation times are given above for Isirgplutions of the appropriate
nonlinear equation systems for determination ofldgjium states, codimension-one bifurcations
and codimension-two bifurcations. To generate @ulidrium solution branch diagram or a
bifurcation diagram requires that these equatiatesys be solved multiple times. For instance,
a solution branch diagram generated over a paramatge [0, 2] with a step size of 0.001
would require 2000 solutions of Eq. (17) for theusiérium states. With a solution time on the
order of 0.05 seconds for an individual systems timeans that the entire solution branch
diagram requires roughly 100 seconds of computatime. Bifurcation diagrams are more
costly since both Egs. (20-21) and Eqgs (22-23) rhastolved repeatedly, and Egs. (25-27) once.
For example, thé& vs. r bifurcation diagram for the Rosenzwieg-MacArthuodal requires
about 1640 seconds of computation time. We daaonsider computational effort on this order
to be unreasonable, especially since the methogalegd provides a guarantee of reliability.

Furthermore, since the diagrams can be generatednatically, without user intervention to
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deal with initialization issues, the actual elapset to generate a bifurcation diagram for a new
model may actually be significantly less than whretialization-dependent methods are used.
Since all of the nonlinear equation systems thagtrbe solved to generate a diagram are
independent of each other, one obvious way to ingm@mputational performance is to use
parallel computing. Distribution of the indepentlequation systems across multiple processors
will result in essentially linear speedup. Furthere, the IN/GB methodology itself can be
readily parallelized; for example, Gau and Stadtl{g002c) have described an MPI-based
implementation of IN/GB that provides very efficieprocessor utilization. The serial
performance of the methodology can also be easijyraoved by using additional tools from
interval analysis, including constraint propagatemmd the exploitation of function properties
(e.g., monotonicity) in evaluating interval extemms. The work of Maier and Stadtherr (2001)
on an application arising in the modeling of ph&aasitions in nanopores demonstrates the use

of these types of techniques.

5. CONCLUDING REMARKS

Using several examples drawn from three diffetettophic food chain models, we have
demonstrated a new methodology for computing allildgium states and bifurcations of
equilibria (fold, transcritical, Hopf, double-foldnd fold-Hopf). This technique is based on
interval analysis, in particular an interval-Newigeneralized bisection (IN/GB) approach.
Using this methodology it was possible to easilyl aautomatically, without any need for
initialization or a priori insight into expected system behavior, generatapbete solution
branch diagrams and bifurcation diagrams. Furtbeenthis could be done with certainty, since
the technique provides a mathematical and computtguarantee that all solutions to a system
of nonlinear equations are enclosed. Since ththnique is essentially initialization
independent, it can provide a powerful alternativéraditional continuation methods, which in
general are initialization dependant and thus maty be completely reliable. Although the
systems studied here were relatively simple, wécipate that the methodology used can be
applied to larger and more complex problems, ad aslin the analysis of other dynamical

systems of interest in chemical engineering.
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Table 1. Computed equilibrium states for the Raseig-MacArthur model withiK = 1.0 andr

=1.0.

Solution #

A WD

X1
0.819
0.105
1.000

X2
0.125
0.235

0

X3
9.808
0
0
0

Stability
Unstable
Unstable
Unstable
Unstable
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Table 2: Computed equilibrium states for the Raseig-MacArthur model withK = 0.5 andr

=1.0.

Solution #

A WD

X1
0.347
0.105
0.500

X2
0.125
0.208

0

X3
5.624
0
0
0

Stability
Stable
Unstable
Unstable
Unstable
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Figure 2. Solution branch diagrams illustrating thange in species biomass with the change in
the prey carrying capacity for the Rosenzweig-MacArthur model. From leftight: prey,
predator, and superpredator biomasses 0.5 for all three plots.

Figure 3. Solution branch diagrams illustrating thange in species biomass with the change in
the prey carrying capacity for the Rosenzweig-MacArthur model. From leftight: prey,
predator, and superpredator biomasses.0.4 for all three plots.
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Figure 5. Bifurcation diagram &f (prey carrying capacity) ve, (predator death rate constant) for
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the predator death rate constdnfor the Rosenzweig-MacArthur model. From leftight:
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Figure 7. Bifurcation diagram df (predator death rate constant) w§prey growth rate constant)
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Figure 8. Solution branch diagrams illustrating thange in species biomass with the change in
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Figure 9. Solution branch diagrams illustrating thange in species biomass with the change in
the prey growth rate constantor the Rosenzweig-MacArthur model. From leftigght:
prey, predator, and superpredator biomaskes.1.0 andd, = 0.4 in all three plots.

Figure 10. Bifurcation diagram &f (prey carrying capacity) vs.(prey growth rate constant) for
the tri-trophic, sigmoidal response model.

Figure 11. Solution branch diagrams illustrating change in species biomass with the change in
the prey carrying capacity for the tri-trophic, sigmoidal response modelorkrleft to

right: prey, predator, and superpredator biomassed).7 for all three plots.
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Figure 12. Bifurcation diagram &f (prey carrying capacity) vs.(prey growth rate constant) for
the tri-trophic model with a hyperbolic predatodansigmoidal superpredator.

Figure 13. Solution branch diagrams illustrating change in species biomass with the change in
the prey carrying capacity for the tri-trophic model with a hyperbolic predaand a
sigmoidal superpredator. From left to right: presedator, and superpredator biomasses.

= 1.0 for all three plots.
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Figure 1. Solution branch diagrams illustrating thange in species biomass with the change ipréyecarrying capaciti for the
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Figure 2. Solution branch diagrams illustrating thange in species biomass with the change ipréyecarrying capaciti for the

Rosenzweig-MacArthur model. From left to righteprpredator, and superpredator biomasses0.5 for all three plots.
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the Rosenzweig-MacArthur model.= 1.0.
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for the Rosenzweig-MacArthur model. From leftight: prey, predator, and superpredator biomaskes.1.0 and r = 1.0 for all

three plots.
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Figure 7. Bifurcation diagram df (predator death rate constant) w§prey growth rate constant)

for the Rosenzweig-MacArthur modek = 1.0.
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Figure 9. Solution branch diagrams illustrating thange in species biomass with the change iprédyegrowth rate constanfor
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the tri-trophic, sigmoidal response model.
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Figure 13. Solution branch diagrams illustrating change in species biomass with the changesipréty carrying capacity for
the tri-trophic model with a hyperbolic predatodansigmoidal superpredator. From left to righéyp predator, and superpredator

biomassesr = 1.0 for all three plots.

44



