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Abstract

Standard techniques for solving the optimization problem arising in parameter estimation

by the error-in-variables (EIV) approach offer no guarantee that the global optimum has been

found. It is demonstrated here that the interval-Newton approach can provide a powerful,

deterministic global optimization methodology for the reliable solution of EIV parameter

estimation problems in chemical process modeling, offering mathematical and computational

guarantees that the global optimum has been found. Though this methodology is typically

regarded as being applicable only to very small problems, it is shown here that it can be

successfully applied to problems with over 200 variables. The technique is general-purpose

and is applied here to a diverse group of problems, including examples in reactor modeling,

in modeling vapor-liquid equilibrium, and in modeling a heat exchanger network.



1 Introduction

Parameter estimation is a central problem in the development of mathematical models

that represent the physical phenomena underlying chemical process operations, and is thus

an important issue in process systems engineering. In the classical least-squares approach to

parameter estimation, it is assumed that there is a set of independent variables not subject

to measurement error. The error-in-variables (EIV) approach differs in that it is assumed

that there are measurement errors in all variables. Accounting for error in all the variables

has been demonstrated (e.g., Duever et al., 1987; Patino-Leal and Reilly, 1982) to lead to

unbiased estimates of the parameter values, and thus to more accurate models.

Consider the problem of estimating the parameters θ = (θ1, θ2, . . . , θq)
T in a model of

the general form f (θ, z) = 0, where z is a vector of n state variables for the system to

be modeled, and f is a vector of p model functions. When the EIV approach is used, the

optimization problem that must be solved has the form

min
θ,z̃i

m∑
i=1

n∑
j=1

(z̃ij − zij)
2

σ2
j

(1)

subject to

f(θ, z̃i) = 0, i = 1, . . . , m. (2)

Here zi = (zi1, ..., zin)T represents measurements of the state variables from i = 1, . . . , m

experiments, z̃i = (z̃i1, ..., z̃in)T represents the unknown “true” values associated with each

measurement, and σj represents the standard deviation associated with the measurement

of state variable j. Details concerning the formulation of this optimization problem are

available elsewhere (e.g., Kim et al., 1990; Esposito and Floudas, 1998), as are several good
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introductions to the general problem of nonlinear parameter estimation (e.g, Bard, 1974;

Gallant, 1987; Seber, 1989).

The presence of the true values z̃i, i = 1, . . . , m, as variables in the optimization problem

has a number of practical implications. It means that, in solving the EIV problem, not only

are parameter estimation results obtained, but also data reconciliation results. However,

this comes at the expense of a substantial increase in the dimensionality of the optimization

problem, which at nm + p is now a function of the number of experiments. Furthermore,

since the optimization is over both θ and z̃i, this is likely to be a nonlinear optimization

problem even for models that are linear in the parameters. Thus, in general, the optimization

problem is nonlinear and potentially nonconvex, indicating the need to be concerned about

the possible existence of multiple local minima.

Various methods have been used to solve the optimization problem defined by Eqs. (1)

and (2). These include gradient-based methods such as Gauss-Newton or Gauss-Marquardt

(e.g., Britt and Luecke, 1973; Fabries and Renon, 1975; Anderson et al., 1978; Schwetlick

and Tiller, 1985; Valko and Vajda, 1987), generalized reduced gradient (Kim et al., 1990),

and successive quadratic programming (e.g., Tjoa and Biegler, 1991, 1992), as well as direct

search methods, such as the simplex pattern search (e.g. Vamos and Hass, 1994). However,

these are all local methods that offer no assurance that the global minimum in the opti-

mization problem has been found. Towards finding the global optimum, one approach is to

introduce a randomized element, either in the selection of multiple initial guesses (e.g., Va-

mos and Hass, 1994), or in the search procedure itself (e.g., Luus and Hernaez, 2000). These

stochastic methods still provide no guarantee that the global optimum has been found. To

obtain any such guarantee requires the use of deterministic global optimization procedures.
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Deterministic methods can provide a guarantee that the global optimum within some spec-

ified search domain is found. The search domain can be made large enough to enclose all

physically feasible and statistically significant behavior.

A powerful deterministic approach is that suggested by Esposito and Floudas (1998),

who reformulate the optimization problem in terms of convex underestimating functions and

then use a branch-and-bound procedure. This method provides a mathematical guarantee

of global optimality. One drawback to this approach is that in general it may be necessary

to perform problem reformulations and develop convex underestimators specific to each new

application. Also, in principle, branch-and-bound methods implemented in floating point

arithmetic may be vulnerable to rounding error problems, and thus lose their mathematical

guarantees. Another deterministic approach is that suggested recently by Gau and Stadtherr

(2000a), who use an interval-Newton approach. This is a general-purpose methodology

that provides a mathematical guarantee of global optimality, as well as a computational

guarantee, since rounding issues are dealt with through the use of interval arithmetic. In their

preliminary study, Gau and Stadtherr (2000a) demonstrated the potential of the interval

methodology by applying it to some small problems (12 to 32 variables) and finding the

approach to compare favorably to the Esposito and Floudas (1998) method in terms of

computational efficiency.

In this paper, we further explore the feasibility of using the interval methodology to

provide a deterministic global optimization tool for solving EIV parameter estimation prob-

lems. In particular, we consider some problems that are much larger (up to 264 variables)

than considered previously. A diverse group of problems is considered, including examples

in reactor modeling, in modeling vapor-liquid equilibrium, and in modeling a heat exchanger

network. 3



2 Methodology

For many practical problems, the p model equations can be easily solved algebraically for

p of the n state variables. Thus, by substitution into the objective function, an unconstrained

formulation of the optimization problem can be obtained. The unconstrained problem can

be stated

min
θ,ṽi

φ(θ, ṽi) (3)

where ṽi, i = 1, . . . , m, refers to the n − p independent state variables not eliminated using

the model equations, and φ(θ, ṽi) is the objective function in Eq. (1) after the p dependent

state variables have been eliminated by substitution. This unconstrained formulation of the

problem will be used here. However, it should be noted that the accompanying reduction

in the dimensionality of the problem does not necessarily make it any easier to solve, since

the objective function in the reduced space of θ and ṽi may be a much more complicated

function than the objective function in the original space of θ and z̃i.

For the global minimization of φ(θ, ṽi), an approach based on interval analysis is used.

Good introductions to interval analysis, as well as interval arithmetic and computing with

intervals, include those of Neumaier (1990), Hansen (1992) and Kearfott (1996). Of particu-

lar interest here is the interval-Newton technique. Given a nonlinear equation system with a

finite number of real roots in some initial interval, this technique provides the capability to

find (or, more precisely, to enclose within a very narrow interval) all the roots of the system

within the given initial interval. To apply this technique to the optimization problem of

interest here, it is used to seek stationary points; that is, to solve the nonlinear equation
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system

g(y) = g(θ, ṽi) ≡ ∇φ(θ, ṽi) = 0, (4)

where for convenience the vector of independent variables has been denoted y = (θ, ṽi)
T.

The global minimum will be a root of this nonlinear equation system, but there may be many

other roots as well, representing local minima and maxima and saddle points. To identify the

global minimum, one approach is to simply find all the stationary points and then identify

the point with the minimum value of the objective function. Alternatively, by including an

objective range test in the solution procedure, as explained by Gau and Stadtherr (2000a),

one can effectively combine the interval-Newton approach with an interval branch-and-bound

technique, so that roots of g(y) = 0 that cannot be the global minimum need not be found.

If the constrained formulation of the problem is used, then instead of applying interval-

Newton to solve the stationarity conditions, it is applied to solve the Karush-Kuhn-Tucker

(KKT) conditions (or, more generally, the Fritz-John conditions). Note that the search for

stationary points (or KKT points), and thus the search for the global optimum, occurs only

within the specified initial interval; however, this search domain can be made arbitrarily

large.

A summary of the solution algorithm used has been given previously (Gau and Stadtherr,

2000a). Applied to nonlinear equation solving, the methodology is basically a branch-and-

prune scheme on a binary tree, while for optimization it is a branch-and-bound scheme. It

should be noted that recent enhancements (Gau and Stadtherr, 2002) to the methodology,

involving the formulation and solution of the interval-Newton equation, and including the

use of a new preconditioning strategy, play an important role in achieving computational

efficiency on the problems considered here. A systematic study of the impact of this en-
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hanced methodology is given by Gau and Stadtherr (2002). For most of the large problems

considered below, use of this enhanced methodology is essential in order to achieve tractable

computation times. It should be emphasized that, when applying this solution procedure,

the user must specify an initial interval Y (0) that provides upper and lower bounds on the

independent variables. This initial interval can be chosen to be sufficiently large to enclose

all physically feasible and statistically significant behavior. This is in contrast to conven-

tional local solution methods in which an initial point is needed, often resulting in a highly

initialization-dependent procedure. It is assumed here that the global optimum will occur

at an interior stationary minimum of φ(y) and not at the boundaries of Y (0). Since the

estimator φ is derived based on a product of Gaussian distribution functions corresponding

to each data point, this is a very reasonable assumption for regression problems of the type

considered here. When properly implemented, the interval-Newton method provides a pro-

cedure that is mathematically and computationally guaranteed to find the global minimum

of φ(y), or, if desired (by turning off the objective range test), to enclose all of its stationary

points.

3 Catalytic Reactor Model

This problem involves the modeling of an isothermal pseudo-differential reactor for the

catalytic hydrogenation of phenol on a palladium catalyst, as described by Rod and Hancil

(1980). The experimental kinetic data for this gas-phase reaction involves 28 measured data

points of the partial pressure of phenol, P1 (atm), the partial pressure of hydrogen, P2 (atm),

and the initial reaction rate r (mol/kg hr). It is desired to fit this kinetic data (Rod and
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Hancil, 1980) to a semi-empirical model of the form

r =
θ1θ

2
2θ3P1P

2
2

(1 + θ1P1 + θ2P2)3
, (5)

where θ1 (atm−1), θ2 (atm−1) and θ3 (mol/kg hr) are the parameters to be estimated. The

vector of state variables is z = (P1, P2, r)
T. The standard deviations for the measurements of

the state variables are known (Rod and Hancil, 1980) and given by σ = (0.0075, 0.0075, 2.5)T.

In order to formulate the EIV parameter estimation problem as an unconstrained opti-

mization problem, the model, Eq. (5) is used to eliminate r. Thus, the vector of independent

state variables is v = (P1, P2)
T. In the optimization problem the independent variables are

θ (three variables) and ṽi, i = 1, . . . , 28 (28 vectors of two variables each), for a total of

59 independent variables. This is roughly twice the size of the largest EIV parameter esti-

mation problem solved previously (Gau and Stadtherr, 2000a) using the interval approach.

Since, as noted by Rod and Hancil (1980), the values of θ = (7.27, 0.681, 1602)T are sus-

pected of being good parameters, the initial intervals on the parameters were taken here as

θ1 ∈ [6, 9] atm−1, θ2 ∈ [0.5, 8] atm−1 and θ3 ∈ [1600, 1900] mol/kg hr. The initial inter-

vals on the state variables were set using plus and minus three standard deviations; that is,

P̃1i ∈ [P1i − 3σ1, P1i + 3σ1] and P̃2i ∈ [P2i − 3σ2, P2i + 3σ2] for i = 1, . . . , 28. Statistically,

these initial intervals provide a 99.7% probability of containing the true values of the state

variables.

Using the interval methodology discussed above, the globally optimal parameter values

obtained were θ1 = 7.39696 atm−1 , θ2 = 0.63782 atm−1 and θ3 = 1769.71 mol/kg hr with

an objective value of 30.3072. These results, along with the results (not shown here) for

the ṽi, are consistent with those of Rod and Hancil (1980). It should be noted that, while
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point approximations are reported here, and in subsequent examples, for the parameter

estimation results, we have actually determined verified enclosures of the corresponding

stationary points. Each such enclosure is an extremely narrow interval known to contain a

unique stationary point, based on the interval-Newton uniqueness test (e.g., Kearfott, 1996).

The CPU time required for this 59-variable global optimization problem was 2588 seconds

on a Sun UltraServer2/2200 workstation (one processor). Given the size of the problem, and

the fact that a rigorous global minimum was obtained, this degree of computational effort

is quite reasonable. By turning off the objective range test, thus allowing the technique

to enclose all the stationary points, not just the global minimum, it was also ascertained

that, for this problem, there was only one stationary point (the global minimum) in the

specified initial interval. For this problem, finding all the stationary points requires about

5% additional computation time compared to using the objective range test to find the

global optimum only; however, the savings provided by using the objective range test can

vary significantly from problem to problem.

4 Heat Exchanger Network Model

This problem involves the modeling of a steady state heat exchanger network as described

by Biegler and Tjoa (1993). The network is shown schematically in Figure 1. This system

consists of four heat exchangers, with cold stream A1 to be heated using hot streams B1, C1

and D1. It is assumed that all streams have the same constant heat capacity. As the first step

in simulation of this system, it is necessary to have an estimate of the rating parameter UA

(product of overall heat transfer coefficient and heat transfer area) for each exchanger. This
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parameter vector θ = ((UA)1, (UA)2, (UA)3, (UA)4)
T can be estimated from experimental

measurements. Measurement data (in arbitrary units) are given by Biegler and Tjoa (1993)

for six flowrates and thirteen temperatures. In particular, the measured state variable vec-

tor is z = (FA1, FB1, FC1, FD1, FA3, FA6, TA1, TA2, TA4, TA5, TA7, TA8, TB1, TB2, TB3, TC1, TC2,

TD1, TD2)
T, with standard deviations of 0.5 and 0.001 for the flowrate and temperature vari-

ables respectively. The measurements were created by Biegler and Tjoa (1993) from the

parameter values θ∗ = (4.85, 4.00, 6.80, 5.35)T with added noise.

The model used here is given by

FA1(TA2 − TA1) = (UA)1
(TB2 − TA2) − (TB3 − TA1)

ln
(

TB2 − TA2

TB3 − TA1

) (6)

FB1(TB1 − TB2) = (UA)2
(TB1 − TA4) − (TB2 − TA3)

ln
(

TB1 − TA4

TB2 − TA3

) (7)

FC1(TC1 − TC2) = (UA)3
(TC1 − TA5) − (TC2 − TA4)

ln
(

TC1 − TA5

TC2 − TA4

) (8)

FD1(TD1 − TD2) = (UA)4
(TD1 − TA7) − (TD2 − TA6)

ln
(

TD1 − TA7

TD2 − TA6

) (9)

FA1 − FA3 − FA6 = 0 (10)

FA1TA8 − FA3TA5 − FA6TA7 = 0. (11)

Additional balance equations are available, and could be included in the model, especially

for a case in which data reconciliation was the primary goal.

In order to formulate the EIV parameter estimation problem as an unconstrained opti-

mization problem, the model, Eqs. (6)–(11), is used to solve for the six flowrate variables,

FA1 = (UA)1
(TB2 − TA2) − (TB3 − TA1)

(TA2 − TA1) ln
(

TB2 − TA2

TB3 − TA1

) , (12)
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FB1 = (UA)2
(TB1 − TA4) − (TB2 − TA2)

(TB1 − TB2) ln
(

TB1 − TA4

TB2 − TA2

) , (13)

FC1 = (UA)3
(TC1 − TA5) − (TC2 − TA4)

(TC1 − TC2) ln
(

TC1 − TA5

TC2 − TA4

) , (14)

FD1 = (UA)4
(TD1 − TA7) − (TD2 − TA2)

(TD1 − TD2) ln
(

TD1 − TA7

TD2 − TA2

) , (15)

FA3 = (UA)1

(
TA8 − TA7

TA5 − TA7

)
(TB2 − TA2) − (TB3 − TA1)

(TA2 − TA1) ln
(

TB2 − TA2

TB3 − TA1

) , (16)

FA6 = (UA)1

(
TA5 − TA8

TA5 − TA7

)
(TB2 − TA2) − (TB3 − TA1)

(TA2 − TA1) ln
(

TB2 − TA2

TB3 − TA1

) , (17)

which are then eliminated from the objective function. The vector of independent state

variables is thus v = (TA1, TA2, TA4, TA5, TA7, TA8, TB1, TB2, TB3, TC1, TC2, TD1, TD2)
T.

Following Biegler and Tjoa (1993), five versions of the parameter estimation problem

were solved, differing in the number of data points, which ranges from m = 4 for the

smallest problem to m = 20 for the largest. In the optimization problem, the number of

independent variables (13m + 4) thus ranges from 56 to 264 variables. To the best of the

authors’ knowledge, the 264-variable problem is the largest global optimization problem ever

attempted using interval methodology. The initial intervals on the parameters were set at

θi ∈ [1, 10] for i = 1, . . . , 4. The initial intervals on all independent temperature variables

were set using plus and minus 1.5 standard deviations.

Results for solving the parameter estimation problem using the interval-based global

optimization methodology for each of these five data sets is shown in Table 1. Clearly the

results for the parameters are consistent with the values from which the measurement data

were created by Biegler and Tjoa (1993). However, for the larger problems the CPU times
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required are much larger than that required by the local SQP algorithm used by Biegler

and Tjoa (1993). This of course reflects the trade-off between computational speed and

the guarantee that a global optimum has been found. Considering the very large size of

these problems in the context of deterministic global optimization, the computation time

requirements are actually quite remarkable.

In our experience, and that of others (e.g., Kearfott and Novoa, 1990), the difficulty

of solving problems using an interval-Newton approach does not necessarily correlate well

with the number of variables, and can in fact be quite unpredictable, which is not surprising

considering the NP-hard nature of the problems being solved. This unpredictability can be

seen in the CPU time results for this problem, which indicate a reduction in CPU time in

going from 160 variables to 212 variables. To better interpret this result, we also present

in Table 1 a measure of the size of the binary search tree for each problem. This measure

is the number of leaves in the tree; a leaf represents a subinterval beyond which no further

branching occurs, since the subinterval has been shown either to contain no root (stationary

point), to contain a unique root, or to not contain the global optimum. We note that the

size of the search tree (number of leaves) does not vary predictably with problem size. This

occurs in part because, in a branch-and-bound scheme, the size of the search tree will depend

significantly on how quickly a good upper bound on the global optimum is found, and this

may have little relation to problem size. We also note that, when viewed in terms of CPU

time per leaf, the computational effort does increase with problem size as expected.
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5 Vapor-Liquid Equilibrium Model

This problem involves the modeling of vapor-liquid equilibrium (VLE) using the Wil-

son equation for liquid-phase activity coefficient. Of interest is the binary system ben-

zene(1)/hexafluorobenzene(2). Ten data sets, taken from the DECHEMA VLE Data Col-

lection (Gmehling et al., 1977-1990), are considered, each providing measurements of the

state variable vector z = (x1, y1, P, T )T, where P is the system pressure (mmHg), T is

the system temperature (K), x1 is the liquid-phase mole fraction of component 1, and y1

is the vapor-phase mole fraction of component 1. A standard deviation vector of σ =

(0.001, 0.01, 0.75, 0.1)T is assumed. Parameter estimation for these ten data sets was con-

sidered by Gau and Stadtherr (2000b) using a simple least-squares approach, and is treated

here using the EIV approach.

The model used to describe the VLE can be written as

P = γ1x1p
0
1(T ) + γ2(1 − x1)p

0
2(T ) (18)

y1 =
γ1x1p

0
1(T )

γ1x1p
0
1(T ) + γ2(1 − x1)p

0
2(T )

, (19)

where the pure component vapor pressures p0
1(T ) and p0

2(T ) are given by the Antoine rela-

tionships

p0
1(T ) = exp

[
15.8412 − 2755.64

T − 53.99

]

p0
2(T ) = exp

[
16.1940 − 2827.54

T − 57.66

]
,

and the activity coefficients γ1 and γ2 are given by the Wilson equation

ln γ1 = − ln(x1 + Λ12x2) + x2

[
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

]
(20)
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ln γ2 = − ln(x2 + Λ21x1) − x1

[
Λ12

x1 + Λ12x2

− Λ21

Λ21x1 + x2

]
. (21)

Here the binary parameters Λ12 and Λ21 are given by

Λ12 =
v2

v1
exp

[
− θ1

RT

]
(22)

Λ21 =
v1

v2
exp

[
− θ2

RT

]
, (23)

where v1 and v2 are the pure component liquid molar volumes, and θ1 and θ2 are the energy

parameters (cal/mol) that need to be estimated.

In order to formulate the EIV parameter estimation problem as an unconstrained opti-

mization problem, the model, Eqs. (18)–(19), is used to eliminate P and y1 in the objective

function. Consequently, the vector of independent state variables is v = (x1, T )T. In the

unconstrained optimization problem, the independent variables are θ = (θ1, θ2)
T and ṽi,

i = 1, . . . , m (m vectors of two variables each), for a total of 2m + 2 independent variables.

For the ten benzene/hexafluorobenzene data sets considered, the number of data points

ranges from m = 9 to m = 29; thus the number of independent variables in the global

optimization problem ranges from 20 to 60. The initial intervals on the parameters θ1 and θ2

were both taken as [−10000, 200000], which covers the range of physical interest as described

by Gau and Stadtherr (2000b). The initial intervals on the independent state variables were

set using plus and minus three standard deviations.

The results of solving the EIV parameter estimation problem using the interval method-

ology for global optimization are shown in Table 2 for each of the ten data sets. By turning

off the objective range test, the number of local minima for each case was also determined.

Note that for the first two data sets there are two local minima. For data set 1, there is

a local but not global minimum at θ1 = 407.3, θ2 = −406.9, and φ = 53.886. Similarly,
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for data set 2, there is a local but not global minimum at θ1 = 374.4, θ2 = −373.8, and

φ = 67.799. In both cases, the global optimum was readily found using the interval approach.

The presence of multiple local minima emphasizes the importance of using a deterministic

global optimization approach to solve the EIV parameter estimation problem. As noted by

Gau and Stadtherr (2000b), convergence to a local, but not global, optimum in parameter

estimation problems for VLE models is a not uncommon occurrence. This can lead to the

dismissal of a model as inadequate, when in fact the model may be fine, provided that the

parameter estimation problem is solved correctly to a global optimum.

6 Concluding Remarks

We have demonstrated here that the interval-Newton approach is a powerful, determin-

istic global optimization methodology for the reliable solution of EIV parameter estimation

problems in chemical process modeling. The approach provides both mathematical and

computational guarantees that the global optimum in the parameter estimation problem has

been found. It is a general-purpose approach that has been applied here to a diverse group

of problems. Though this methodology is typically regarded as being applicable only to very

small problems, we have shown here that it can be successfully applied to problems with

over 200 variables. The guaranteed reliability of the interval approach comes at the expense

of significantly higher computation time requirements in comparison to local methods that

provide no such guarantees. Thus, modelers must consider this trade-off, and ultimately

decide how important it is to know for sure that the correct answer has been obtained.
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Figure 1: Flow diagram for heat exchanger network example.
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Table 1: Computational results for heat exchanger network problem.

Number of Data Points 4 8 12 16 20

(UA)1 4.850851 4.837711 4.840830 4.841813 4.842804

(UA)2 3.999357 3.999918 3.999853 4.000018 4.001031

(UA)3 6.796941 6.800698 6.801176 6.801033 6.812213

(UA)4 5.350317 5.350150 5.350694 5.350535 5.350411

Objective Function 0.01225901 4.82968895 5.03713956 5.03980518 5.08279327

Number of Variables 56 108 160 212 264

CPU time (s)∗ 0.17 440.0 1243.1 1172.3 2157.5

Leaves in Search Tree 1 763 720 380 315

CPU time (s) per Leaf 0.17 0.58 1.73 3.09 6.85

∗CPU time is on a Sun UltraServer2/2200 workstation (one processor).
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Table 2: Parameter estimation results for benzene(1)/hexafluorobenzene(2) system using EIV approach.

Data Volume: Number of T (◦C) or CPU

Set Page† Data Points P (mmHg) θ1 θ2 φ Minima Time (s)∗

1 7:228 10 T=30 -472 1274 11.899 2 39.4

2 7:229 10 40 -462 1197 11.170 2 44.9

3 7:230 10 50 -455 1139 9.9312 1 54.4

4 7:233 11 50 -461 1116 19.525 1 62.4

5 7:231 10 60 -445 1086 9.9352 1 58.8

6 7:232 9 70 -424 1007 8.5034 1 66.0

7 7:234 17 P=300 -478 1189 37.399 1 109.1

8 7:235 16 500 -444 1090 13.786 1 234.1

9 7:236 17 760 -435 1080 5.1490 1 328.4

10‡ 7:226 29 760 -421 1060 16.925 1 9396.6

∗CPU time is on a Sun UltraServer2/2200 workstation (one processor).
†Refers to volume and page numbers in DECHEMA VLE Data Collection (Gmehling et al., 1977-1990)
‡Initial intervals on state variables are taken as ±2.5 standard deviations.
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