New Interval Methodologies for Reliable Process Modeling

Chao-Yang Gau, Robert W. Maier
and Mark A. Stadtherr1
Department of Chemical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA

1Author to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu
Motivation

• In process modeling, chemical engineers frequently need to solve nonlinear equation systems in which the variables are constrained physically within upper and lower bounds; that is, to solve:

\[f(x) = 0 \]
\[x^L \leq x \leq x^U \]

• These problems may:
 – Have multiple solutions
 – Have no solution
 – Be difficult to converge to any solution
Motivation (continued)

- There is also frequent interest in globally minimizing a nonlinear function subject to nonlinear equality and/or inequality constraints; that is, to solve (globally):

\[
\min_{x} \phi(x)
\]

subject to

\[
\begin{align*}
 h(x) &= 0 \\
 g(x) &\geq 0 \\
 x^L &\leq x \leq x^U
\end{align*}
\]

- These problems may:
 - Have multiple local minima (in some cases, it may be desirable to find them all)
 - Have no solution (infeasible NLP)
 - Be difficult to converge to any local minima
Motivation (continued)

- *One* approach for dealing with these issues is *interval analysis*.

- Interval analysis can
 - Provide the engineer with tools needed to solve modeling and optimization problems with complete certainty.
 - Provide problem-solving reliability not available when using standard local methods.
 - Deal automatically with rounding error, thus providing both mathematical and computational guarantees.
Motivation (continued)

- We have successfully applied interval Newton/generalized bisection (IN/GB) methods for
 - General process modeling problems (Schnepper and Stadtherr, 1996).
 - Phase stability and equilibrium problems using several different thermodynamic models (Stadtherr et al., 1994; Hua et al., 1996,1998,1999; Xu et al., 1998,1999).
 - Computation of azeotropes (homogeneous, reactive, heterogeneous) of multicomponent mixtures (Maier et al., 1998,1999).
 - Computation of mixture critical points (Stradi et al., 1998)

- However, the IN/GB algorithm applied to date is very basic, and its performance is unacceptable on some problems.
Interval Method Used

- Interval Newton/Generalized Bisection (IN/GB)
 - Given a system of equations to solve, an initial interval (bounds on all variables), and a solution tolerance
 - IN/GB can find (enclose) *with mathematical and computational certainty* either all solutions or determine that no solutions exist. (e.g., Kearfott 1987, 1996; Neumaier 1990).
 - IN/GB can also be extended and employed as a deterministic approach for global optimization problems (e.g., Hansen, 1992).

- A general purpose approach; in general requires no simplifying assumptions or problem reformulations.

- Current implementation based on modifications of routines from INTBIS and INTLIB packages (Kearfott and coworkers)
Interval Method (Cont’d)

Problem: Solve $f(x) = 0$ for all roots in interval $X^{(0)}$.

Basic iteration scheme: For a particular subinterval (box), $X^{(k)}$, perform root inclusion test:

- (Range Test) Compute an interval extension of each function in the system.

 - If 0 is not an element of any interval extension, delete the box.

 - Otherwise,

- (Interval Newton Test) Compute the image, $N^{(k)}$, of the box by solving the linear interval equation system

\[F'(X^{(k)})(N^{(k)} - x^{(k)}) = -f(x^{(k)}) \]

- $x^{(k)}$ is some point in the interior of $X^{(k)}$.
- $F'(X^{(k)})$ is an interval extension of the Jacobian of $f(x)$ over the box $X^{(k)}$.
There was no solution in $X^{(k)}$
Unique solution in $X^{(k)}$
This solution is in $N^{(k)}$
Point Newton method will converge to it
Any solutions in $X^{(k)}$ are in intersection of $X^{(k)}$ and $N^{(k)}$

If intersection is sufficiently small, repeat root inclusion test; otherwise bisect the result of the intersection and apply root inclusion test to each resulting subinterval.
Interval Method (Cont’d)

Some areas for potential algorithm improvement

• Tightening interval extensions of functions and Jacobian elements.

• Use of different tessellation schemes.

• Tighter bounds on the image \(N^{(k)} \) that encloses the solution set of the interval Newton equation.

 – Preconditioning strategies (focus of this presentation).
Solving the Interval Newton (IN) Equation

• Usually done by one iteration of preconditioned Gauss-Seidel scheme:

 – Solve

 \[Y^{(k)} F'(X^{(k)}) (N^{(k)} - x^{(k)}) = -Y^{(k)} f(x^{(k)}) \]

 – The scalar preconditioning matrix \(Y^{(k)} \) is often chosen to be an inverse midpoint preconditioner \(Y^{inv} \): inverse of the midpoint of the interval Jacobian matrix, or inverse of the Jacobian matrix at midpoint of the interval.

• One performance goal: Find smallest possible enclosure \(N \) of the solution set of the IN equation. The preconditioner used can have a strong effect on performance in this regard.

• Preconditioners that are optimal in some sense have been proposed by Kearfott (1990,1996) based on LP strategies
Preconditioning Strategies

• The preconditioner can be \textit{designed} row by row during the Gauss-Seidel process try to achieve desired goals.

• Consider the \textit{i}-th step of Gauss-Seidel and the \textit{i}-th preconditioner row, \(y_i \),

\[
N_i = x_i - \frac{Q_i(y_i)}{D_i(y_i)}
\]

\[
y_i f(x) + \sum_{j=1}^{n} y_i A_j (X_j - x_j)
\]

\[
= x_i - \frac{y_i A_i}{y_i A_i}
\]

then take \(N_i \cap X_i \). (\(A_i \) is the \textit{i}-th column of the \(F'(X) \) matrix.)

• Elements of \(y_i \) can be chosen to try to meet a desired goal.
Preconditioning Strategies

- Practical optimality criteria for preconditioner row y_i:
 - Width-optimal preconditioner row: minimize width of $N_i \cap X_i$.
 - Endpoint-optimal preconditioner row: maximize the lower bound of N_i or minimize the upper bound of N_i.

- Optimality can be approached by a scheme in which the preconditioner row contains only one nonzero element. This can be called a pivoting preconditioner Y^P.

- We use a new hybrid scheme in which one or more of Y^{INV}, width-optimal Y^P, or endpoint-optimal Y^P are used, depending on the situation, and following heuristic rules.
Numerical Experiments

• Both equation-solving and global optimization problems were selected to illustrate the improvements that can be achieved using the new hybrid preconditioner.

 – Problem 1: Error-in-variables parameter estimation.
 – Problem 2: Phase stability analysis for LLE system.
 – Problem 3: Computation of critical points of mixtures.
 – Problem 4: Computation of heterogeneous azeotropes.

• We compared use of Y^{INV} alone to use of the new hybrid preconditioner on a Sun Ultra 2/1300 workstation.
Results and Discussion

• Problem 1: Error-in-variables parameter estimation
 – Global optimization with 2 parameter variables and 10 state variables.
 – Point evaluations of objective function done at the midpoint of current box used for bounding in objective range test.
 – Use Van Laar equation to model experimental vapor-liquid equilibrium data.
 – Using Y^{inv} alone took > 4 CPU days.
 – Using new hybrid preconditioner took 1504 CPU seconds.
Results and Discussion (cont.)

- Problem 2: Phase stability analysis for LLE system
 - Equation-solving problem with 6 independent variables.
 - Use UNIQUAC model to for computing excess Gibbs energy.
 - Using Y^{inv} alone took 50217 CPU seconds
 - Using new hybrid preconditioner took 152 CPU seconds.
Results and Discussion (cont.)

- Problem 3: Computation of critical points of mixtures
 - Equation-solving problem with 6 variables (four component mixture).
 - Use Peng-Robinson equation of state to model both the liquid and gas phases.
 - Using Y_{inv} alone took 2094 CPU seconds.
 - Using new hybrid preconditioner took 658 CPU seconds.
Results and Discussion (cont.)

• Problem 4: Computation of heterogeneous azeotropes
 – Equation-solving problem with 11 variables (3 components).
 – Use NRTL activity coefficient model.
 – Using Y^{inv} alone took > 1 CPU days
 – Using new hybrid preconditioner took 270 CPU seconds.
Concluding Remarks

• Use of the new hybrid pivoting preconditioner scheme provides an approach to manipulate the interval Gauss-Seidel process to achieve greater efficiency.

• This has led to large reductions in CPU time for all problems tested, and in some cases, reductions of 2 or more orders of magnitude.

• For difficult problems, the additional work required to construct the preconditioner is easily overcome by a large reduction in the number of intervals that must be processed.

• For more details, please see the Poster 213c in the High Performance Computing Poster Session, Wednesday, 7pm, Khmer Pavilion.

• These slides will be available next week at http://www.nd.edu/~markst/presentations.html
Acknowledgments

- ACS PRF 30421-AC9
- NSF CTS95-22835, NSF DMI96-96110, NSF EEC97-00537-CRCD
- EPA R824731-01-0, R826734-01-0
- DOE DE-FG07-96ER14691
- Sun Microsystems, Inc.