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Abstract

Dynamic process models frequently involve uncertain parameters and inputs. Propagating these

uncertainties rigorously through a mathematical model to determine their effect on system states

and outputs is a challenging problem. In this work, we describe a new approach, based on the use of

Taylor model methods, for the rigorous propagation of uncertainties through nonlinear systems of

ordinary differential equations (ODEs). We concentrate on uncertainties whose distribution is not

known precisely, but can be bounded by a probability box (p-box), and show how to use p-boxes in

the context of Taylor models. This allows us to obtain p-box representations of the uncertainties

in the state variable outputs of a nonlinear ODE model. Examples having two to three uncertain

parameters or initial states and focused on reaction process dynamics are used to demonstrate the

potential of this approach. Using this method, rigorous probability bounds can be determined at

a computational cost that is significantly less than that required by Monte Carlo analysis.



Introduction

Systems of ordinary differential equations (ODEs) are the basis for many mathematical models

in engineering and science. For example, models of reactor dynamics are based on unsteady-state

material and energy balances, and thus take the form of a system of first-order ODEs, which

typically is nonlinear. Generally the problem of interest is an initial value problem (IVP), in which

an initial state is given and the system then integrated numerically until some final time (time

horizon) is reached, thus determining numerical approximations of the final state, as well as of the

trajectory followed to reach it.

Often these dynamic models involve uncertainties in parameters and/or initial states. Analysis

of the impact of such uncertainties is clearly important in models of process dynamics, as used, for

example, in state and parameter estimation1,2 and process control.3–5 It is a challenging problem

to propagate uncertainties through a nonlinear ODE system to rigorously predict the uncertainty in

the model outputs. The problem is further complicated by the fact that the probability distributions

describing the uncertainties may not be known precisely, if they are known at all. If there is no

known probability distribution for an uncertain quantity, but only bounds, then the uncertainty

can be modeled using an interval. If some knowledge of the probability distribution is available,

but it is imprecise, then this can be modeled using a probability box6 (p-box), which provides

interval-like upper and lower bounds on the cumulative probability distribution function for the

uncertain quantity.7 We will consider both cases here, but concentrate on the latter case in which

p-boxes are used to represent imprecise distributions of uncertainty.

A common approach for studying the effect of uncertainties in this and other contexts is the use

of repeated sampling. This is frequently based on Monte Carlo methods, but alternative techniques

(e.g., Latin hypercube, quasirandom sequences) are also available and can be more efficient. In

general, it is not possible to investigate the complete space of uncertainties in a finite number
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of samples. Thus, sampling methods such as Monte Carlo cannot produce rigorous bounds, as

they may fail to capture all system behaviors, especially when nonlinearities are involved. Monte

Carlo methods have other limitations8 as well, especially in dealing with uncertainties that have

unknown dependencies or that cannot be characterized by a precise probability distribution. The

latter case can be dealt with using a “second-order” Monte Carlo approach9,10 in which the space

of the probability distributions is sampled in an outer loop, with this sample distribution then used

in a “standard” Monte Carlo simulation of the parameter uncertainty in an inner loop. Sampling

methods can also become quite expensive computationally, especially if a second-order approach is

needed, as the number of samples needed to obtain a meaningful analysis of the uncertainty may

be very large.

We will describe here a much different approach, not based on sampling, for the analysis of

uncertainty in nonlinear dynamic systems. Given interval bounds on the uncertain quantities,

this approach can be used to rigorously bound all possible trajectories of an IVP for an uncertain

ODE model. Furthermore, given bounds (p-boxes) on the probability distributions of the uncertain

quantities, this approach can be used to bound rigorously the probability distributions of model

outputs at specified points in time. This method is enabled by the use of Taylor models to represent

the solution of an IVP with uncertain parameters and/or initial states, as described recently by

Lin and Stadtherr.11

This paper is divided as follows. In the next section, we will provide a formal statement of the

problems to be addressed. This will be followed by a section in which we provide general background

on the tools used here, including intervals, p-boxes, and Taylor models. Then, we introduce the

proposed solution methods, and finally, we present a number of examples that demonstrate this

method, with comparisons to results obtained from Monte Carlo analysis.
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Problem Statement

Consider an IVP for a parametric, autonomous ODE with uncertain parameters and initial

states:

dy

dt
= f(y,θ), y(t0) = y0 ∈ Y0, θ ∈ Θ. (1)

Here y is the n-dimensional vector of state variables with initial value y0, θ is a p-dimensional

vector of time-invariant parameters, and t ∈ [t0, tf ] for some tf > t0. The vectors Y0 and Θ are

intervals that enclose uncertainties in the initial states and parameters, respectively. Furthermore,

information about the probability distribution of the uncertainty is available for at least one com-

ponent of Y0 or Θ, and this information is expressed as a p-box, as formally defined in the next

section. We also assume that f can be represented by a finite number of standard functions, and

that f is (k− 1) times continuously differentiable with respect to y and (q + 1) times continuously

differentiable with respect to θ. Here k is the order of the truncation error in the interval Taylor

series (ITS) method used in the solution procedure, and q is the order of the Taylor model used in

the solution method to represent dependence on parameters and initial values. ODE models that

are nonautonomous, or that involve parameters with known time dependence, can be converted to

the form of Eq. (1) by the introduction of additional state variables.

There are two goals. First, we seek to obtain verified (mathematically and computationally

guaranteed) enclosures Yj of the state variables yj = y(tj) at the endpoints tj ∈ [t0, tf ] of each

time step in the numerical integration procedure used to solve Eq. (1). Second, but of particular

interest here, for any such enclosure Y j ∋ yj , we seek to determine verified bounds, in the form of

a p-box, on the probability distribution for the values of yj. Thus, we can obtain rigorous bounds

on the probabilities that desired outcomes are achieved.
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Background

Uncertainties can be represented in a variety of ways. A typical approach is to use real-valued

variables characterized by some type of probability distribution. However, in many cases, the

true probability distribution is not known precisely. This leads to the concept of a probability

distribution variable (PDV), as described by Li and Hyman,12 which can be characterized using

a generalized probabilistic discretization (GPD), such as a p-box. If there is no knowledge at all

about the probability distribution, with only upper and lower bounds on the uncertain quantity

available, then this can be represented by an interval, which can be regarded as a limiting case

of the p-box. Depending on the type of information that is available, other representations of

uncertain knowledge may be appropriate, such as the use of fuzzy numbers13,14 or clouds.15 We

will focus here on the use of intervals and p-boxes, and provide some background on these topics.

We also provide background on Taylor models, which provide a key tool for use in the computational

method described here.

Interval Analysis

A real interval X is the set of real numbers between (and including) a specified lower bound

(denoted X) and upper bound (denoted X). That is, X = [X,X ] = {x ∈ ℜ | X ≤ x ≤ X}. A real

interval vector X = (X1,X2, ...,Xn)T has n real interval components and can be interpreted as an n-

dimensional rectangle or box. Interval matrices are similarly defined. Basic arithmetic operations

are defined on intervals according to X op Y = {x op y | x ∈ X, y ∈ Y }, op ∈ {+,−,×,÷}.

Division in the case of Y containing zero is allowed in extensions of interval arithmetic.16 Addition

and multiplication are commutative and associative but only subdistributive. Interval versions of

the elementary functions can also be defined. When implemented with outward rounding (lower

bound rounded down, upper bound rounded up), interval operations can be used to obtain rigorous
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bounds on function ranges.

For a real function f(x), the interval extension F (X) encloses the range of f(x) for x ∈ X.

That is, {f(x) | x ∈X} ⊆ F (X). When f(x) can be expressed as a series of arithmetic operations

and elementary functions, the “natural” interval extension can be obtained by substituting the

given interval X into the expression for f(x) and evaluating using interval arithmetic. If any

variable occurs more than once in the expression for f(x), then computing an interval extension

in this way may result in overestimation of the function range due to the “dependency” problem.

While a variable may take on any value within its interval, it must take on the same value each time

it occurs in an expression. However, this type of dependency is not recognized when the natural

interval extension is computed. In effect, when the natural interval extension is used, the range

computed for the function is the range that would occur if each instance of a particular variable

was allowed to take on a different value in its interval range.

Another source of overestimation that may arise in the use of interval methods is the “wrapping”

effect.17 This occurs when an interval is used to enclose (wrap) a set of results that is not an interval.

If this overestimation is propagated from step to step in an integration procedure for ODEs, it can

lead quickly to the loss of a meaningful enclosure. Historically, the problems of wrapping and

dependency have caused interval methods to acquire a reputation for producing overly loose and

conservative bounds of limited usefulness. However, current interval methods, including the use of

techniques such as Taylor models, as discussed below, can often yield rigorous bounds with very

little overestimation.

Several good introductions to interval analysis, as well as interval arithmetic and other aspects

of computing with intervals, are available.16,18–21 Implementations of interval arithmetic and ele-

mentary functions are also readily available, and recent compilers from Sun Microsystems directly

support interval arithmetic and an interval data type.
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P-boxes

Intervals give upper and lower bounds only and provide no knowledge about the distribution of

uncertainties. If additional knowledge about the distribution is available, then we will capture this

through the use of p-boxes and the methods of probability bounds analysis.

Ideas about the use of bounds on probabilities have appeared throughout the development

of probability theory. The first methods of probability bounds analysis that could be routinely

used in practical applications (e.g., environmental risk assessments) were developed in the 1980s.

Yager22 described the elementary procedures by which it is possible to determine bounds on convo-

lutions computed from probability distributions for independent random variables. (The operation

of finding the probability distribution of a sum—or a product, difference, quotient, etc.—of ran-

dom variables specified by probability distributions is a convolution.) At about the same time,

Frank et al.23 solved the problem of bounding distributions of sums of random variables when no

information about their interdependency is available. Extending this approach, Williamson and

Downs7 developed a semi-analytical approach that computes rigorous bounds on the cumulative

distribution functions of convolutions without assuming independence between the operands. Fer-

son et al.6 coined the name “probability box,” or p-box, for the envelope of the bounds on the

distribution function. They applied several new and classic results on bounding probabilities to

develop a suite of p-box shapes to express a wide array of states of knowledge involving possible

information about the range, moments, order statistics, and other shape information about the

distributions of random variables.24,25 Berleant and Zhang26 described a complementary interme-

diate approach based on mathematical programming for the case when the correlation but not the

dependence function can be specified. In this subsection, we discuss the basic idea of a p-box and

describe how operations with p-boxes can be performed.

A p-box provides interval-like bounds on the cumulative distribution function (CDF) describing

6



a probability distribution. For some quantity (variable or parameter) x, the CDF Fx(z) gives the

probability that x ≤ z. An example CDF is shown in Fig. 1, which is marked to indicate that,

for this CDF, the probability that x ≤ 0 is 50%. In practice, it is possible that the probability

distribution describing some uncertain quantity is itself uncertain. In this case, a p-box can be used

to bound the uncertain probability distribution. A p-box PB(x) = (Lx, Rx) is the set of all CDFs

enclosed by two bounding CDFs Lx(z) and Rx(z) with finite support. That is, PB(x) = (Lx, Rx) =

{Fx(z) | Lx(z) ≥ Fx(z) ≥ Rx(z)}. For a given value of z, the left bound Lx(z) of the p-box gives

the upper bound on the probability that x ≤ z and the right bound Rx(z) gives the lower bound

on this probability. This is shown for an example p-box in Fig. 2(a), which is marked to indicate

that, for this p-box, the probability that x ≤ 1.5 is bounded by the interval [14.2, 23.3]%. Similarly,

for a given value of the cumulative probability, Lx(z) and Rx(z) give the lower and upper bounds

on the values of x for which this probability is possible. For the example p-box in Fig. 2(b), this

is marked to indicate that the 20th percentile value of x is bounded by the interval [1.44, 1.59].

P-boxes may be constructed from any available information about an uncertain quantity, or

may be generated from distributions of a specified shape but uncertain distribution parameters.

Fig. 3 shows four p-boxes created from different types of information. Fig. 3(a) is a p-box for

the case in which only the minimum and maximum values of an uncertain quantity are known;

that is, this is the p-box representation of an interval. If the minimum, maximum, and median are

known, this gives the p-box in Fig. 3(b). For the p-box in Fig. 3(c), the bounding distributions

are obtained by specifying a uniform distribution with known median and uncertain but bounded

maximum and minimum. For the p-box in Fig. 3(d), the bounding distributions are obtained

by specifying a normal distribution of known mean and uncertain standard deviation. Since the

bounding distributions are assumed to have finite support, the normal distributions must be trun-

cated to a finite range (as in Monte Carlo methods), which here corresponds to the 99th percentile.
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When a p-box is formed using bounding distributions of a specified shape, as in Figs. 3(c) and

3(d), the p-box may still enclose distributions of other shapes. For example, the p-box in Fig. 3(c)

has uniform bounding distributions, but still contains non-uniform distributions.

Williamson and Downs7 have described methods for rigorously bounding the results of arith-

metic operations on random variables when only their bounding distributions are known. This can

be done without assuming any knowledge of possible correlation between the operands. It can also

be done under the assumption that the operands are independent (or that they are the same, as in

a polynomial or other expression with a repeated operand).

In general, these methods are implemented numerically using discretizations of the bounding

distributions. To do the discretization, the p-box bounds are enclosed using an ordered set of N

intervals, each representing a probability range of equal weight 1/N . For example, if the p-box

discretization is done using N = 4 intervals, then each one represents a quartile of probability. An

example discretization with N = 4 is shown in Fig. 4(a). Here a p-box with uniform bounding

distributions (median = 2, minimum = [1.1, 1.28], maximum = [2.72, 2.9]) is represented by the

ordered set of intervals {[1.1, 1.64], [1.55, 2], [2, 2.45], [2.36, 2.9]}. Note that this discretization com-

pletely encloses the p-box, though with significant overestimation due to the coarse discretization.

Obviously, a tighter enclosure can be obtained using a finer discretization. Fig. 4(b) shows the same

p-box discretized with N = 10 intervals. For all of the computations done here we use N = 100

intervals to discretize a p-box.

To demonstrate the process of arithmetic operations with p-boxes, we will consider two inde-

pendent (uncorrelated) variables, x and y, with probability bounds given by the p-boxes PB(x)

and PB(y), and compute the probability bounds for the sum x + y, that is, the p-box PB(x + y).

PB(x) and PB(y), discretized with N = 4 intervals of weight 1/4, are shown in Fig. 5. For PB(x),

the intervals are [1, 3], [2, 5], [3, 5], and [4, 6], and for PB(y) the intervals are [0, 2], [1, 3], [2, 5], and
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[4, 5]. To determine PB(x + y), each interval in PB(x) must be added to each interval in PB(y).

This results in N2 = 16 intervals, all of which are equally likely with weight 1/16, since x and y

have independent distributions. To construct PB(x + y), these 16 intervals are sorted and ordered

so that both the left bounding distribution (as indicated by the interval lower bounds) and the right

bounding distribution (as indicated by the interval upper bounds) are nondecreasing. The result for

this example is shown in gray in Fig. 6. The first four intervals in the sorted and ordered set of 16

intervals are [1, 3]+[0, 2] = [1, 5], [1, 3]+[1, 3] = [2, 6], [2, 5]+[0, 2] = [2, 7], and [3, 5]+[0, 2] = [3, 7].

This p-box provides rigorous bounds on the probability distribution for x+y. Analogous procedures

can be used to compute probability bounds for the other arithmetic operations, as well as for other

functions (logarithm, integral powers, etc.). Furthermore, the results of bounding the probability

distribution of one operation can then be used as input for other operations. So, for example, if

there is a third independent variable u with known PB(u), then PB(x + y + u) can be computed

from PB(x + y) and PB(u). In general, it is possible to compute p-boxes PB(f(x, y, u)) for quite

complicated functions f(x, y, u) from the p-boxes representing the individual variables.

While PB(x) and PB(y) are both described by four intervals, PB(x + y) is described by 16

intervals. To prevent continued growth in the number of intervals required for the results of an

arithmetic operation, it is convenient to require that all p-box operands and results be expressed

in terms of the same number of intervals N . For this example then, the 16-interval result is an

intermediate one, which must be then be wrapped using a four-interval p-box to obtain the final

result. This final result is shown in blue in Fig. 6. Obviously, this wrapping process results

in overestimation, so it is desirable to use a relatively large N . As noted previously, for our

computations with p-boxes we will use N = 100.

Because the operands are assumed to be independent, the dependency problem for computations

with expressions involving repeated variables also occurs in this context. For example, using the
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same PB(x) as above, we have computed PB(x+x) and PB(2x), with the results compared in Fig.

7 on the basis of N = 4 intervals per p-box. The probability bounds from PB(2x) (blue) are tighter

than those for PB(x + x) (gray).

P-box operations are available for the case of independent operands, as well as for the case

of operands for which no assumption about dependence or independence can be made. P-box

operations can be performed using the risk analysis software RAMAS Risk Calc.24 Basic p-box

arithmetic operations may also be performed using Statool.37 For the p-box computations done in

the examples presented below, we used our own basic Matlab implementation of p-box arithmetic.

Taylor Models

To alleviate the problems of dependency and wrapping that occur in using traditional interval

methods, and which lead to the overestimation of bounds, Makino and Berz27 described a remainder

differential algebra (RDA) approach for bounding the ranges of functions.28 In this method, a

function is represented using a “Taylor model,” consisting of a Taylor polynomial and an interval

remainder bound.

One way of forming a Taylor model of a function is by using the Taylor theorem. Consider a

real function f(x) that is (q + 1) times partially differentiable on X and let x0 ∈ X. The Taylor

theorem states that for each x ∈X, there exists a real ζ with 0 < ζ < 1 such that

f(x) = pf (x− x0) + rf (x− x0, ζ), (2)

where pf is a q-th order polynomial (truncated Taylor series) in (x − x0) and rf is a remainder,

which can be quantitatively bounded over 0 < ζ < 1 and x ∈X using interval arithmetic or other

methods to obtain an interval remainder bound Rf . A q-th order Taylor model Tf = pf + Rf for

f(x) over X consists of the polynomial pf and the interval remainder bound Rf and is denoted by

Tf = (pf , Rf ). Note that f(x) ∈ Tf for x ∈X, and thus Tf encloses the range of f(x) over X.
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In practice, it is more useful to compute Taylor models of functions by performing Taylor

model operations. Arithmetic operations with Taylor models can be done using the RDA operations

described by Makino and Berz,27–29 which include addition, multiplication, reciprocal, and intrinsic

functions. Using these operations, it is possible to start with simple functions such as the constant

function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi, for which

Tf = (xi0 + (xi − xi0), [0, 0]), and then to compute Taylor models for very complicated functions.

This can be implemented using operator overloading, which makes it easy to compute a Taylor

model for any function representable by standard arithmetic operations and elementary functions.

It has been shown that, compared to other rigorous bounding methods, the Taylor model often

yields sharper bounds for modest to complicated functional dependencies.27,28, 30 A discussion of

the uses and limitations of Taylor models has been given by Neumaier.30

Solution Procedure

In this section, we describe the methods used to achieve the two goals established in the Problem

Statement section.

Enclosure of State Variables

The first goal is to solve the uncertain ODE system given by Eq. (1), obtaining mathematically

and computationally guaranteed enclosures Yj of the state variables yj = y(tj) at the endpoints

tj ∈ [t0, tf ] of each time step in the numerical integration.

Interval methods (also called validated methods or verified methods) for ODEs provide a nat-

ural approach for computing the desired enclosure of the state variables. Traditional interval

methods generally employ two processes at each integration step. In the first process, existence

and uniqueness of the solution are proven, and a rough enclosure of the solution is computed. In
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the second process, a tighter enclosure of the solution is computed. In general, both processes are

implemented by applying interval Taylor series (ITS) expansions with respect to time, and using

automatic differentiation to obtain the Taylor coefficients. An excellent review of the traditional

interval methods has been given by Nedialkov et al.,31 and more recent work has been reviewed by

Neher et al.32 For addressing this problem, there are several packages available, including AWA,33

VNODE,31,34 COSY VI,35 and ValEncIA-IVP.36 In this study, we will use the recently developed

solver VSPODE,11 which is capable of determining guaranteed bounds on the solutions of dynamic

systems with interval-valued initial states and parameters, and which offers significant performance

improvements over the popular VNODE package. The method makes use, in a novel way, of the

Taylor model approach27–29 to deal with the dependency and wrapping problems involving the

uncertain quantities (parameters and initial values).

Assuming an interval enclosure Yj of the state variables at time tj, VSPODE determines a

time step hj = tj+1 − tj and an enclosure Yj+1 of the state variables at tj+1. In the first phase

of the algorithm, a coarse enclosure Ỹj is determined such that a unique solution y(t) ∈ Ỹ j is

guaranteed to exist over the time interval [tj, tj+1] for every yj ∈ Y j and every θ ∈ Θ. This is

done with a high-order ITS with respect to time, using the Picard-Lindelöf operator and Banach

fixed-point theorem. The time step used can be specified, but may be reduced if necessary, or an

automatic step size procedure can be used. This represents an extension, to parametric ODEs, of

the traditional interval approach used in VNODE.

In the second phase of the algorithm, Taylor models in terms of the uncertain quantities are

used. The uncertain initial states and parameters are expressed as Taylor model identity functions

T y0
and T θ. Then, Taylor models T

f [i] of the ITS coefficients f [i](yj ,θ) are obtained by using RDA

operations to compute T
f[i] = f [i](T yj

,T θ). Using an ITS expansion for yj+1 with coefficients

given by T
f[i] , and incorporating an approach for using the mean value theorem on Taylor models,
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one can obtain T yj+1
(y0,θ), the desired Taylor model of yj+1 in terms of the parameters θ and

initial states y0. In this process, the wrapping effect of traditional interval methods is reduced by

using a new type of Taylor model that uses a parallelepiped (as opposed to interval) remainder

bound.11 The Taylor model T yj+1
(y0,θ) can then be bounded11 over y0 ∈ Y0 and θ ∈ Θ to obtain

Yj+1.

Probability Distribution of State Variables

The second goal is to determine rigorous bounds, in the form of a p-box, on the probability

distributions for the values of yj ∈ Y j, given p-box bounds on the probability distributions of the

uncertain quantities.

Using the method summarized above, we can obtain, for a time tj of interest, a Taylor model

T yj
(y0,θ), that gives the state variables yj = y(tj) as a polynomial function of the initial states

y0 ∈ Y 0 and the parameters θ ∈ Θ, plus a small remainder bound. If probability distributions

(p-boxes) are available for y0 and for θ, then these can be substituted directly into T yj
(y0,θ),

and a p-box giving bounds on the probability distribution for yj can be computed using p-box

operations.

Straightforward application of p-box operations to evaluate the Taylor model T yj
(y0,θ) may

lead to significant overestimation of bounds on the true probability distribution of the state vari-

ables, due to the dependency problem and the wrapping effect, as discussed in the Background

section. One method to obtain a much tighter enclosure is subinterval reconstitution (SIR). In

this procedure,25 each of the N intervals in the discretized p-box used for arithmetic operations is

partitioned into d subintervals. Arithmetic operations are then done on each subinterval separately.

The overall results are reconstituted by taking the union of the results from each subinterval within

a discretization interval. SIR is available as an option in RAMAS Risk Calc, as well as in our own
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Matlab implementation of p-box arithmetic. SIR is only useful for cases in which the expression to

be evaluated involves repeated uncertain quantities, as occurs in the polynomial part of the Taylor

model representing the state variables. Unless otherwise noted, in the examples given below, we

will use SIR with d = 100 subintervals per variable. The second example provides a comparison of

results with and without use of SIR.

Examples

To demonstrate the potential of this approach for studying the effect of uncertainties with im-

precise probability distributions, we will present here several examples focused on reaction process

dynamics. The first two examples involve linear models, and the remainder are nonlinear. In each

case, unless otherwise stated, VSPODE was used with an ITS order of k = 17 and a Taylor model

order of q = 5. For the integration procedure, a constant step size h = 0.01 was specified for

the first two examples and h = 0.2 for the last three examples, though the step size is automati-

cally reduced by VSPODE if necessary. Taylor model remainder bounds in VSPODE are obtained

using a QR-factorization process.11 P-boxes are discretized using N = 100 intervals, and p-box

arithmetic is done using SIR with d = 100 subintervals per variable unless otherwise noted. In all

cases, we assume that the uncertain quantities are independent (uncorrelated). Computations using

VSPODE and p-box arithmetic were done using an Intel Pentium 4 (3.2 GHz) machine running

Red Hat Enterprise Linux (RHEL). VSPODE was implemented using C++. P-box arithmetic was

implemented using Matlab, with outward rounding of interval operations done using techniques

described by Lambov38 that do not require repeated switching of rounding mode. Second-order

Monte Carlo simulations used as comparisons were implemented using Matlab and run using AMD

dual-core Opteron 175 (2.2 GHz) hardware running RHEL. To facilitate comparisons of computa-

tional effort, CPU times on the Pentium 4 (3.2 GHz) have been converted to equivalent times on
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the faster Opteron 175 (2.2 GHz). This was done based on the PassMark CPU Benchmark, on

which the performance scores are 1022 for the Opteron 175 (2.2 GHz) and 512 for the Pentium

4 (3.2 GHz). Thus, CPU times on the Pentium 4 (3.2 GHz) have been multiplied by a factor of

512/1022 ≈ 0.5 (we have also confirmed this performance ratio with our own direct comparisons).

First-order Irreversible Series Reaction

In this example, we consider the irreversible series reaction

A
k1−→ B

k2−→ C

occurring in a batch reaction process. Each individual reaction is first-order in the concentration of

reactant. However, the rate constants k1 and k2 are uncertain. The balance equations describing

the concentrations of A and B are

dCA

dt
= −k1CA (3)

dCB

dt
= k1CA − k2CB. (4)

The concentrations CA and CB are treated as dimensionless (relative to the constant total number

of moles). Initially the reactor contains only species A; that is, CA = 1 and CB = 0 at time t = 0.

The time horizon of interest is tf = 1 day. We will consider three cases for this linear ODE model,

with increasing levels of uncertainty in the rate constants, which have mean values of k1 = 5 day−1

and k2 = 1 day−1. For each case, the goals are to bound the possible concentration profiles CA(t)

and CB(t) and to bound the probability distribution of CB values at t = tf = 1 day.

Case 1 has 5% uncertainty in the rate constants: k1 ∈ [4.75, 5.25] day−1 and k2 ∈ [0.95, 1.05]

day−1. The distribution of the uncertainties is not known precisely, but can be enclosed by p-boxes

whose bounding distributions are obtained from a truncated (99th percentile) normal distribution

of known mean and uncertain standard deviation. For k1 the standard deviation is in the interval
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[0.05, 0.095] day−1, and for k2 the standard deviation is in the interval [0.01, 0.019] day−1. These

p-boxes are illustrated in Fig. 8.

VSPODE was used to determine rigorous bounds on the trajectories CA(t) and CB(t) over the

time horizon of interest. These results are shown as the black curves in Fig. 9, which represent

mathematically and computationally guaranteed bounds on the possible trajectories. Since interval

methods may produce loose bounds, we checked the tightness of the VSPODE bounds by compari-

son to the results of a Monte Carlo simulation with 200 trials. For each trial, real values of k1 and k2

were selected at random from within their specified interval bounds. Bounds obtained from Monte

Carlo analysis are not guaranteed and in general yield an inner estimate of the true bounds (the

guaranteed VSPODE bounds represent an outer estimate). The Monte Carlo simulation results

are shown by the shaded areas in Fig. 9. On the scale of these figures, there is no apparent gap

between the VSPODE bounds and the Monte Carlo simulation results, indicating that VSPODE

provides very tight bounds on the possible concentration trajectories for this system. Of course, for

this simple linear system, an analytic solution can be obtained and used for bounding. In general,

however, no analytic solution is available for the problems of interest.

The Taylor model from VSPODE at tf = 1 day then was used to compute bounds on the

probability distribution for CB(1). This was done both with and without the use of the SIR

procedure for tightening the bounds. The results are shown as p-boxes in Fig. 10(a), with the

p-box obtained with SIR in blue and the p-box obtained without SIR in gray. Clearly it is possible

to obtain tighter bounds using SIR, and this procedure is used in all of the remaining examples.

The SIR p-box indicates, for example, as shown in Fig. 10(b), that the probability of CB(1) ≤ 0.44

is in the interval [0, 7]% and that the probability of CB(1) ≤ 0.47 is in [98, 100]%. The CPU

time necessary to compute p-box bounds without SIR is about 2 seconds, and with SIR the time

necessary is about 13 seconds. The computation time does not increase by a factor equal to the
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number of SIR subintervals (100 × 100). P-box computations without SIR require use of a sort

function with every function call, but when SIR is used, there are some savings in the amount of

sorting work that can be achieved.

For Case 2, there is 10% uncertainty in the rate constants: k1 ∈ [4.5, 5.5] day−1 and k2 ∈ [0.9, 1.1]

day−1. As in Case 1, the distribution of the uncertainties can be bounded by p-boxes whose

bounding distributions are obtained from a truncated (99th percentile) normal distribution of known

mean and uncertain standard deviation. For k1 the standard deviation is in the interval [0.1, 0.19]

day−1, and for k2 the standard deviation is in the interval [0.02, 0.038] day−1. VSPODE bounds on

the concentration trajectories, along with comparison to Monte Carlo simulation results, are given

in Fig. 11. Again, the bounds determined using VSPODE appear to be very tight. The probability

bounds for CB(1) are shown in Fig. 12(a). Now, as shown by Fig. 12(b), the probability that

CB(1) ≤ 0.44 is in the interval [2, 23]%, and the probability that CB(1) ≤ 0.47 is in [89, 100]%. The

range of standard deviations for this case is outside that of the first case, so it is not necessarily

expected that these probability bound results enclose those from the first case.

Finally, for Case 3, we consider 80% uncertainty in k2 so that it lies in the interval [0.2, 1.8]

day−1 with a standard deviation in [0.160, 0.304], while k1 remains at 10% uncertainty as described

in the previous case. As shown in Fig. 13, VSPODE again provides very tight bounds on the

concentration trajectories. For this case, as well as for the first two cases, continued integration

with VSPODE past tf = 1 day tightly bounds the trajectories as they approach the ultimate

steady state, where CA = CB = 0. The probability bounds shown in Fig. 14 now indicate that the

probability that CB(1) ≤ 0.44 is in the interval [39, 48]%, and the probability that CB(1) ≤ 0.47 is

in [55, 65]%.
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First-order Reversible Series Reaction

In this example, we consider a batch reaction system similar to that in the previous subsection,

but now with reversible reactions:

A
k1−−→←−−

k
−1

B
k2−−→←−−

k
−2

C.

We assume that the second reaction has been well studied and that there is no uncertainty in these

rate constants, which are k2 = 40 day−1 and k−2 = 20 day−1. However, for the first reaction, we

assume that there are very large uncertainties in the rate constants, which are bounded by k1 ∈ [2, 6]

day−1 and k−1 ∈ [1, 3] day−1. The distribution of the uncertainties is not known precisely, but can

be enclosed by p-boxes whose bounding distributions are obtained from a uniform distribution of

fixed median and uncertain minimum and maximum. For k1 the median is fixed at 4 day−1, the

minimum is in the interval [2, 2.4], and the maximum in [5.6, 6]. For k−1 the median is fixed at

2 day−1, the minimum is in the interval [1, 1.2], and the maximum in [2.8, 3]. These p-boxes are

illustrated in Fig. 15.

The balance equations describing the dimensionless concentrations (relative to the constant

total number of moles) of components A, and B are

dCA

dt
= −k1CA + k−1CB (5)

dCB

dt
= k1CA − (k−1 + k2)CB + k−2(1− CA − CB) (6)

Initially the reactor contains only species A; that is, CA(0) = 1 and CB(0) = 0. The time horizon

of interest is tf = 0.5 day. The goals are to bound the possible concentration trajectories CA(t) and

CB(t) out to the time horizon, and to bound the probability distribution of CA and CB values at

a point halfway (t = 0.25 day) to the time horizon.

VSPODE was applied to these equations to bound the concentration trajectories, with the

results as shown by the black curves in Fig. 16. These curves represent rigorously guaranteed
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bounds on the possible trajectories. For comparison, a Monte Carlo analysis with 2000 samples

was done, the results of which are shown by the shaded areas in Fig. 16. It can be seen that, up

to t = tf = 0.5 day, the bounds from VSPODE are quite good. We also integrated with VSPODE

past tf = 0.5 day, and the quality of the computed bounds gradually decreased as time increased,

as compared to the known analytic solution. This was not surprising given the very large intervals

of uncertainty in this problem. If integration continues beyond t = 1 day, the bounds computed

by VSPODE will ultimately enclose physically impossible solutions and thus become unusable. To

resolve this situation it would be necessary to divide the large intervals of uncertainty into multiple

smaller subintervals, then integrate with VSPODE to determine bounds corresponding to each

subinterval, and then combine the results.

The Taylor model from VSPODE at t = 0.25 day was used to compute bounds on the probability

distributions for values of CA(0.25) and CB(0.25). The resulting p-boxes are shown in Fig. 17. This

computation required a total of about 13 seconds of CPU time (of which only about 0.1 seconds

was spent in VSPODE).

For comparison, we also did a second-order Monte Carlo analysis to obtain probability distri-

butions for CA(0.25) and CB(0.25). In the outer loop of this procedure, uniform distributions were

chosen at random from the set of distributions enclosed by PB(k1) and PB(k−1). Then in the

inner loop, the k1 and k−1 intervals were repeatedly sampled based on the probability distribution

chosen in the outer loop, and for each sample the ODE system was solved. CDFs for CA(0.25) and

CB(0.25) were then constructed using the inner loop samples. Such CDFs result for each outer loop

used. The concentration p-boxes PB(CA(0.25)) and PB(CB(0.25)) computed using the VSPODE

Taylor model (Fig. 17) are rigorous bounds on the CDFs for CA(0.25) and CB(0.25), respectively,

provided that these CDFs are themselves rigorous, which in principle would require an infinite

number of inner loop samples. In practice, this means that CDFs determined from an insufficient
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number of inner loop samples are not necessarily enclosed by the rigorous p-box bounds.

To determine an appropriate basis for comparison, we performed second-order Monte Carlo

simulations using varying numbers of outer and inner loops, with results characterized by the cases

presented in Fig. 18. For the case of 1000 outer loops and 1000 inner loops, as shown in Figs. 18(a)

and (b), a careful comparison to the rigorous probability distribution bounds determined using

the VSPODE Taylor models, as shown in Fig. 17, indicates that not all of the CDFs obtained

from the Monte Carlo analysis lie within these rigorous bounds. This implies that 1000 is an

insufficient number of inner loop samples. The computational time for this second-order Monte

Carlo simulation was about 74.5 minutes (versus about 13 seconds to compute the rigorous bounds

using the Taylor model method described here). If the number of inner loop samples is increased

to 10, 000 and the number of outer loops reduced to 100, to keep the computational effort the same

as in the previous case, then the results are as shown in Figs. 18(c) and (d). Now all the CDFs

lie within the rigorous bounds of Fig. 17, and tighter bundles of CDFs are obtained. To determine

whether 100 is an adequate number of outer loops, we also considered the case of 1000 outer loops

(and again 10, 000 inner loops). This computation required about 745 minutes, with the results

as shown in Figs. 18(e) and (f). These bundles of CDFs are only very slightly wider than those

obtained using 100 outer loops (Figs. 18(c) and (d)), and still are within the rigorous bounds of

Fig. 17. In subsequent examples for which second-order Monte Carlo analysis is done to provide

a comparison, we will use 100 outer loops and 10, 000 inner loops, as this appears to provide a

reasonable balance between accuracy and computational effort.

A shortcoming of the second-order Monte Carlo approach used here for comparison, besides its

long execution time, is that only uniform distributions are sampled in the outer loop. The p-box

bounds obtained using the Taylor model approach enclose all CDFs from any shape distribution

enclosed by the input p-boxes PB(k1) and PB(k−1).
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Exothermic Batch Reactor

In this example, we model the conversion X and temperature T of a first-order exothermic

reaction A → B taking place in a batch reactor with cooling jacket. The result is a nonlinear ODE

model for which we will assume some relatively large uncertainties. The model is obtained from

material and energy balances on the system:

dX

dt
= k0exp

(
−

Ea

RT

)
(1−X) (7)

dT

dt
=

UA

CA0V Cp
(Ta − T )−

∆HRk0

Cp
exp

(
−

Ea

RT

)
(1−X). (8)

Here the uncertain quantities are the initial reactor temperature T (0) = T0 and the cooling jacket

temperature Ta. Other model parameters have fixed values and are described in Table 1. The

distribution of the uncertainties in T0 and Ta is not known exactly, but can by bounded by p-boxes

with bounding distributions obtained from a truncated (99th percentile) normal distribution with

fixed mean and uncertain standard deviation. For T0 the mean is 360 K, and the standard deviation

is in the interval [10, 19] K. For Ta the mean is 300 K, and the standard deviation is in the interval

[2, 3.8] K. Based on these p-boxes, T0 ∈ [310, 410] K, and Ta ∈ [290, 310] K. The time horizon of

interest is tf = 60 s. The goals are to bound the trajectories X(t) and T (t) out to this time horizon

and then to bound the probability distributions of X and T at this time.

Fig. 19 shows the results of modeling this reactor from t = 0 to t = 60 s using VSPODE; these

rigorously guaranteed bounds on the possible trajectories are given as black curves. Also shown in

Fig. 19 are the results of a Monte Carlo analysis with 200 samples, shown by the shaded areas. It

can be seen that, up to the time horizon of tf = 60 s, the bounds from VSPODE are again quite

good. Integration with VSPODE can continue beyond the time horizon to a simulation time of

about 270 s before the bounds decrease in quality.

The Taylor model supplied by VSPODE at tf = 60 s was used to compute bounds on the
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probability distributions for values of X(60) and T (60). The resulting p-boxes are shown by the

solid curves (blue) in Fig. 20. This computation required a total of about 13 seconds of CPU time

(only about 0.1 s of this was required by VSPODE). This shows, for example, that the probability

that the conversion in the reactor is at least 0.22 is in the interval [30, 42]%, or that the probability

that the temperature in the reactor is at least 470 K is in the interval [32, 46]%.

For comparison, we also performed a second-order Monte Carlo analysis to obtain probability

distributions for X(60) and T (60). This procedure was the same as described in the previous

subsection, except that in the outer loop of the procedure, truncated normal distributions were

chosen at random from the set of distributions enclosed by the p-boxes PB(T0) and PB(Ta). Based

on the simulations discussed in the previous subsection, we used 100 outer loops and 10, 000 inner

loops in the second-order Monte Carlo analysis. The computation time was about 66.5 minutes.

The results are shown by the shaded areas (red) in Fig. 20. It can be seen that these results are

consistent with the p-boxes obtained using the Taylor model approach. The Monte Carlo results

and Taylor model results are not directly comparable, since in the Monte Carlo analysis only normal

distributions were sampled from the input p-boxes, while in the Taylor model case distributions of

all possible shapes within the input p-boxes are accounted for.

Microbial Growth Model with Haldane Kinetics

In this example, we consider another nonlinear reactor model with uncertain parameters, and

aim to track the evolution with time of the probability bounds for the state variables. The model

equations for microbial growth in a simple bioreactor1,39 are

dX

dt
= (µ− αD)X (9)

dS

dt
= D(Sf − S)− kµX, (10)
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where X represents the concentration in kg/m3 of biomass in the system, and S represents the

concentration of substrate, also in kg/m3. The growth rate of cells, µ, is dependent on S and may

take a variety of forms. In this example, we consider Haldane kinetics,39 for which

µ =
µmaxS

KS + S + KIS2
. (11)

The uncertain quantities in this example are the initial concentration of cells X0 ∈ [0.8, 0.85]

g/L and the maximum growth rate µmax ∈ [1.1, 1.2] day−1. These quantities have probability

distributions that are enclosed by p-boxes with bounding distributions obtained from a truncated

(99th percentile) normal distribution with known mean and uncertain standard deviation. The

p-box for X0 is based on a mean of 0.825 and standard deviation in [0.005, 0.0095] g/L, and the

p-box for µmax is based on a mean of 1.15 and standard deviation of [0.01, 0.019] day−1. The model

parameters and initial states are fixed and are given in Table 2. For this example, we want to

determine bounds on the cell concentration X(t) up to a final time of tf = 10 days, and bounds on

the probability distribution for X(t) every 2.5 days.

VSPODE was applied to bound the cell and substrate concentration trajectories from t = 0

to t = 10 days, with the results as shown by the black curves in Fig. 21. These curves represent

rigorously guaranteed bounds on the possible trajectories. For comparison, a Monte Carlo analysis

with 200 samples was done, the results of which are shown by the shaded areas in Fig. 21. It can

be seen that, up to the time horizon of tf = 10 days, the bounds from VSPODE are again quite

good. Integration can be continued in VSPODE beyond the time horizon to a simulation time of

33 days before the bounds decrease in quality.

The Taylor model supplied by VSPODE at each time of interest was used to compute bounds on

the probability distributions for values of X(2.5), X(5), X(7.5) and X(10). The resulting p-boxes

are shown by the solid curves (blue) in Fig. 22. This computation required a total of about 51

seconds of CPU time, representing about 12.75 seconds each for the SIR computations for the four
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times of interest (again only a fraction of a second was required by VSPODE). We can observe, for

example, that the probability that the concentration of cells in the reactor is greater than 0.81 g/L

is in the interval [77, 90]% at t = 2.5 days, in [50, 63]% at t = 5 days, in [14, 24]% at t = 7.5 days,

and in [0, 7]% at t = 10 days.

For comparison, we also performed a second-order Monte Carlo analysis to obtain probability

distributions for these concentrations, using the same nested-loop procedure described in the pre-

vious subsection, again with 100 outer loops and 10,000 inner loops. The computation time for the

second-order Monte Carlo simulation was about 62 minutes. The results obtained are shown by

the shaded areas (red) in Fig. 22 and are consistent with the p-boxes computed from the Taylor

model method. The Monte Carlo and Taylor model results are not directly comparable, however.

The Taylor model approach accounts for all possible distribution shapes within the input p-boxes,

while the Monte Carlo approach used accounts for only a subset of the distribution shapes, namely

truncated normal distributions.

Three-State Bioreactor Model

The final example involves another nonlinear bioreactor model, but one for which we will con-

sider a larger number of uncertain parameters than in the previous example. We consider a biore-

actor1 in which the consumption of substrate (concentration x2) promotes the growth of biomass

(concentration x1) and the formation of a product (concentration x3). This process can be modeled

by

dx1

dt
= (µ−D)x1 (12)

dx2

dt
= D(x2f − x2)−

µx1

Y
(13)

dx3

dt
= −Dx3 + (αµ + β)x1 (14)
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with the growth rate µ given by

µ =
µmax [1− (x3/x3m)]x2

ks + x2
. (15)

In this example, the uncertain quantities are the initial concentration of cells x10 ∈ [6.45, 6.55] g/L,

the maximum growth rate µmax ∈ [0.46, 0.47] h−1 and the saturation parameter ks ∈ [1.05, 1.1] g/L.

All other parameter and initial state values are assumed to be known precisely; these are listed

in Table 3. The distribution of the uncertainties is not known precisely, but can be enclosed by

p-boxes whose bounding distributions are obtained from a uniform distribution of fixed median

and uncertain minimum and maximum. For x10 the median is fixed at 6.50 g/L, the minimum is

in the interval [6.45, 6.46] g/L, and the maximum in [6.54, 6.55] g/L. For µmax the median is fixed

at 0.465 h−1, the minimum is in the interval [0.460, 0.461] h−1, and the maximum in [0.469, 0.470]

h−1. For ks, the median is fixed at 1.075 g/L, the minimum is in the interval [1.05, 1.055] g/L, and

the maximum in [1.095, 1.1] g/L.

This problem has three uncertain quantities. For a Taylor model of order q = 5, this means

that the number of polynomial terms increases from 21 (as in the previous examples with two

uncertain quantities) to 56. (The number of terms in a polynomial of order q in m variables is

(q +m)!/(q!m!).) While VSPODE can still efficiently provide fifth-order Taylor models of the state

variables in terms of this larger number of uncertain quantities, the increased number of terms

leads to an increase in the amount of work (p-box arithmetic) needed to compute the p-boxes of

the state variables. Furthermore, the increased number of uncertain quantities will also increase

the work required to implement SIR, which goes as dm, where d is the number of SIR subintervals

used for each variable, and m is the number of uncertain quantities. Thus, for this problem we have

considered the effect of using either a smaller value of q or a smaller value of d. Specifically, we have

considered the case of d = 100 with q = 3 (this reduces the number of Taylor model polynomial

terms to 20) and the case of d = 50 with q = 5 (the previous examples were done using d = 100
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with q = 5).

Fig. 23 shows the results of modeling this reactor from 0 to 10 hours using VSPODE with

q = 3; these rigorously guaranteed bounds on the possible trajectories are given as black lines. Also

shown in Fig. 23 are the results of a Monte Carlo analysis of 200 samples, as shown by the shaded

areas. It can be seen that as the time horizon of 10 hours is approached, the bounds determined

from VSPODE appear to become a bit loose. This is seen especially in Fig. 23(a), the cell biomass

trajectory x1(t). When q = 5 was used (not shown), tightness of bounds was restored.

The third-order Taylor models were used with d = 100 to compute bounds on the probability

distributions for values of x1(5), x1(7.5), and x1(10). This computation required a total of about

13.6 minutes of CPU time. The resulting p-boxes are shown by the solid curves (blue) in Fig.

24. The loosening of bounds seen in Fig. 23(a) is clearly apparent here as well, especially for the

result at t = 10 hours. We repeated the computation of probability bounds using fifth-order Taylor

models with d = 50. This required about 4.7 minutes of CPU time (with q = 5 and d = 100, the

CPU time required is about 39.5 minutes). These results are shown by the solid curves (blue) in

Fig. 25. At t = 5 hours, the probability bounds are not quite as tight as those of the q = 3 and

d = 100 case (Fig. 24), as at this time the effect of using more SIR subintervals has a greater

tightening effect than the higher-order Taylor model. However, for the larger times, especially

t = 10 hours, the probability bounds are tighter with the use of the fifth-order Taylor model, even

with fewer SIR subintervals. Clearly, what is most important is using a polynomial order large

enough to obtain a high-quality Taylor model in the first place, one that is capable of providing

tight trajectory bounds. No amount of additional SIR subintervals can tighten the probability

bounds if the trajectory bounds provided by the Taylor model are loose. Computation times for

determining the probability bounds using p-box arithmetic can be reduced by using the various

acceleration techniques noted by Ferson and Hajagos.25
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For comparison, we also performed a second-order Monte Carlo analysis to obtain probability

distributions for x1(5), x1(7.5), and x1(10). The procedure used was the same as described pre-

viously, here with uniform distributions contained in the p-boxes PB(x10), PB(ks), and PB(µmax)

chosen at random in an outer loop, and then used in an inner loop for sampling values of x10,

ks, and µmax. As in the previous example, we used 100 outer loops and 10, 000 inner loops. The

computation time was 58.5 min. The results are shown by the shaded areas (red) in both Fig. 24

and Fig. 25 and are consistent with results obtained from the Taylor model approach. We note

again that the Monte Carlo and Taylor model results are not directly comparable, since the former

accounts for only a subset (uniform distributions) of the input distributions accounted for by the

latter.

Concluding Remarks

We have described here a method for the direct computation (without need for sampling) of

probability bounds for the outputs of an uncertain nonlinear dynamic system. This method uses

Taylor models that represent the state variables of interest in terms of the uncertain quantities

(parameters and/or initial states). The Taylor models are computed using the verified ODE solver

VSPODE,11 which provides a powerful tool for bounding the solutions of nonlinear parametric

ODEs. Given p-box representations of the uncertainties in initial states and parameters, the Tay-

lor models can be used to directly compute probability bounds (p-boxes) for the state variables, as

demonstrated in several example problems. This technique is best suited to problems in which the

effect of relatively few uncertain quantities is to be investigated. Assuming that efficient matrix

factorization and multiplication methods are used in connection with VSPODE, it should be pos-

sible to handle problems with a relatively large number of state variables, though to date we have

little experience with such problems.
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Table 1: Parameter values and initial states for the exothermal batch reactor example.

Parameter Description Value

k0 Reaction rate constant 0.022 s−1

CA0 Initial concentration of A in reactor 10 mol/m3

V Reactor volume 0.1 m3

Cp Heat capacity of reactor contents 60 J/mol K

Ea Activation energy for reaction 6000 J/mol

R Ideal gas constant 8.314 J/mol K

∆HR Heat of reaction −140, 000 J/mol

UA Product of overall heat transfer coefficient and area 3 W/K

Ta Cooling jacket temperature [290, 310] K

T0 Initial reactor temperature [310, 410] K

X0 Initial conversion 0
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Table 2: Parameter values for the microbial growth model

Parameter Description Value

α Biomass resistance to washout 0.5

D Dilution rate 0.36 day−1

Sf Feed concentration of substrate 5.7 kg/m3

k Yield coefficient 10.53 kg substrate/ kg cells

KS Saturation constant 7.0 kg/m3

KI Inhibition parameter 0.005 m3/kg

µmax Maximum growth rate [1.1, 1.2] day−1

X0 Initial concentration of cells [0.8, 0.85] kg/m3

S0 Initial concentration of substrate 0.8 kg/m3
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Table 3: Parameter values for the three-state bioreactor model

Parameter Description Value

D Dilution rate 0.202 h−1

x2f Feed concentration of substrate 20 kg/m3

Y A yield parameter 0.4 kg cells/kg substrate

α A yield parameter 0.5 kg product/kg cells

β A yield parameter 0.2 h−1

x3m Maximum product concentration 50 kg/m3

µmax Maximum growth rate [0.46, 0.47] h−1

ks Saturation parameter [1.05, 1.1] kg/m3

x10 Initial concentration of cells [6.45, 6.55] kg/m3

x20 Initial concentration of substrate 5 kg/m3

x30 Initial concentration of product 15 kg/m3
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List of Figure Captions

Figure 1. Example cumulative probability density function (CDF). Here, P (x ≤ 0) = 50%.

Figure 2. Interpretation of a p-box PB(x): (a) The probability that x ≤ 1.5 is bounded by the

interval [14.2, 23.3]%. (b) The 20th percentile value of x is bounded by the interval [1.44, 1.59].

Figure 3. Example p-boxes: a) P-box of an interval (known minimum and maximum only).

b) P-box for known minimum, maximum and median. c) P-box with uniform bounding

distributions. d) P-box with normal bounding distributions. See text for further discussion.

Figure 4. Discretizations of a p-box with uniform bounding distributions: (a) N = 4. (b) N = 10.

Figure 5. P-boxes used in arithmetic examples: (a) PB(x). (b) PB(y).

Figure 6. Intermediate (gray) and final (blue) results for PB(x + y).

Figure 7. Results of PB(x + x) (gray) and PB(2x) (blue) to illustrate dependency issue.

Figure 8. P-boxes used for Case 1 in irreversible series reaction example: (a) PB(k1). (b) PB(k2).

Figure 9. Trajectories of CA and CB for irreversible series reaction example with Case 1 parame-

ters. VSPODE bounds are in black and Monte Carlo simulation results (200 samples) are in

gray.

Figure 10. Probability distribution bounds for CB(1) for irreversible series reaction example with

Case 1 parameters: (a) Computed PB(CB(1)) when using SIR (blue) and when not using

SIR (gray). (b) Determining probability bounds for CB(1) ≤ 0.44 and CB(1) ≤ 0.47.

Figure 11. Trajectories of CA and CB for irreversible series reaction example with Case 2 param-

eters. VSPODE bounds are in black and Monte Carlo simulation results (200 samples) are

in gray.
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Figure 12. Probability distribution bounds for CB(1) for irreversible series reaction example

with Case 2 parameters: (a) Computed PB(CB(1)). (b) Determining probability bounds for

CB(1) ≤ 0.44 and CB(1) ≤ 0.47.

Figure 13. Trajectories of CA and CB for irreversible series reaction example with Case 3 param-

eters. VSPODE bounds are in black and Monte Carlo simulation results (2000 samples) are

in gray.

Figure 14. Probability distribution bounds for CB(1) for irreversible series reaction example

with Case 3 parameters: (a) Computed PB(CB(1)). (b) Determining probability bounds for

CB(1) ≤ 0.44 and CB(1) ≤ 0.47.

Figure 15. P-boxes used for reversible series reaction example: (a) PB(k1). (b) PB(k−1).

Figure 16. Trajectories of CA and CB for reversible series reaction example. VSPODE bounds

are in black and Monte Carlo simulation results (2000 samples) are in gray.

Figure 17. Probability distribution bounds (based on all distribution shapes for k1 and k−1)

computed using VSPODE Taylor models for dimensionless concentrations of A and B at

t = 0.25 day: (a) PB(CA(0.25)). (b) PB(CB(0.25)).

Figure 18. Probability distributions of CA and CB at t = 0.25 day for reversible reaction model

using second-order Monte Carlo analysis (based only on uniform distributions for k1 and

k−1): (a)(b) 1000 outer loop samples, each with 1000 inner loop samples. (c)(d) 100 outer

loop samples, each with 10000 inner loop samples. (e)(f) 1000 outer loop samples, each with

10000 inner loop samples. See text for discussion.

Figure 19. Trajectories of reactor temperature T and conversion X for exothermic batch reactor

example. VSPODE bounds in black and Monte Carlo simulation (200 samples) results in
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gray.

Figure 20. Solid curves (blue) show probability distribution bounds (based on all distribution

shapes for T0 and Ta) computed using VSPODE Taylor models for reactor temperature and

conversion at t = 60 s: (a) PB(T (60)). (b) PB(X(60)). Shaded areas (red) show probability

distributions for T (60) and X(60) as determined using second-order Monte Carlo analysis

(based only on normal distributions for T0 and Ta; 100 outer loop samples, each with 10000

inner loop samples). See text for discussion.

Figure 21. Trajectories of cell concentration X and substrate concentration S for bioreactor

example with Haldane kinetics. VSPODE bounds in black and Monte Carlo simulation (200

samples) results in gray.

Figure 22. Solid curves (blue) show probability distribution bounds (based on all distribution

shapes for X0 and µmax) for X computed using VSPODE Taylor models at times (from left

to right) of t = 2.5, t = 5, t = 7.5, and t = 10 days. Shaded areas (red) show probability

distribution for X at the same times as computed using secondorder Monte Carlo analysis

(based only on normal distributions for X0 and µmax; 100 outer loop samples, each with 10000

inner loop samples). See text for discussion.

Figure 23. Trajectories of cell biomass concentration x1, substrate concentration x2, and product

concentration x3 for three-state bioreactor. VSPODE bounds are in black, and Monte Carlo

simulation (200 samples) results are in gray.

Figure 24. Solid curves show probability distribution (based on all distribution shapes for x10,

µmax, and ks) of x1 for three-species bioreactor at times (from left to right) of t = 10, t = 7.5,

and t = 5 hours, as computed with p-boxes using a 3rd-order Taylor model and SIR with 100

discretizations. Shaded areas (red) show probability distribution of x1 at the same times as
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computed with Monte Carlo simulations (based only on uniform distributions for x10, µmax,

and ks) . See text for discussion.

Figure 25. Solid curves show probability distribution (based on all distribution shapes for x10,

µmax, and ks) of x1 for three-species bioreactor at times (from left to right) of t = 10, t = 7.5,

and t = 5 hours, as computed with p-boxes using a 5th-order Taylor model and SIR with 50

discretizations. Shaded areas (red) show probability distribution of x1 at the same times as

computed with Monte Carlo simulations (based only on uniform distributions for x10, µmax,

and ks). See text for discussion.
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Figure 1: Example cumulative probability density function (CDF). Here, P (x ≤ 0) = 50%.
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Figure 2: Interpretation of a p-box PB(x): (a) The probability that x ≤ 1.5 is bounded by the
interval [14.2, 23.3]%. (b) The 20th percentile value of x is bounded by the interval [1.44, 1.59].
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Figure 3: Example p-boxes: a) P-box of an interval (known minimum and maximum only). b)
P-box for known minimum, maximum and median. c) P-box with uniform bounding distributions.
d) P-box with normal bounding distributions. See text for further discussion.
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Figure 4: Discretizations of a p-box with uniform bounding distributions: (a) N = 4. (b) N = 10.
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Figure 5: P-boxes used in arithmetic examples: (a) PB(x). (b) PB(y).
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Figure 6: Intermediate (gray) and final (blue) results for PB(x + y).
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Figure 7: Results of PB(x + x) (gray) and PB(2x) (blue) to illustrate dependency issue.

46



4.8 4.9 5 5.1 5.2
0

20

40

60

80

100

Rate constant for A → B (day−1)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

(a)

0.95 1 1.05
0

20

40

60

80

100

Rate constant for B → C (day−1)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

(b)

Figure 8: P-boxes used for Case 1 in irreversible series reaction example: (a) PB(k1). (b) PB(k2).
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Figure 9: Trajectories of CA and CB for irreversible series reaction example with Case 1 parameters.
VSPODE bounds are in black and Monte Carlo simulation results (200 samples) are in gray.
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Figure 10: Probability distribution bounds for CB(1) for irreversible series reaction example with
Case 1 parameters: (a) Computed PB(CB(1)) when using SIR (blue) and when not using SIR
(gray). (b) Determining probability bounds for CB(1) ≤ 0.44 and CB(1) ≤ 0.47.
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Figure 11: Trajectories of CA and CB for irreversible series reaction example with Case 2 parameters.
VSPODE bounds are in black and Monte Carlo simulation results (200 samples) are in gray.
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Figure 12: Probability distribution bounds for CB(1) for irreversible series reaction example with
Case 2 parameters: (a) Computed PB(CB(1)). (b) Determining probability bounds for CB(1) ≤
0.44 and CB(1) ≤ 0.47.
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Figure 13: Trajectories of CA and CB for irreversible series reaction example with Case 3 parameters.
VSPODE bounds are in black and Monte Carlo simulation results (2000 samples) are in gray.
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Figure 14: Probability distribution bounds for CB(1) for irreversible series reaction example with
Case 3 parameters: (a) Computed PB(CB(1)). (b) Determining probability bounds for CB(1) ≤
0.44 and CB(1) ≤ 0.47.
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Figure 15: P-boxes used for reversible series reaction example: (a) PB(k1). (b) PB(k−1).
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Figure 16: Trajectories of CA and CB for reversible series reaction example. VSPODE bounds are
in black and Monte Carlo simulation results (2000 samples) are in gray.
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Figure 17: Probability distribution bounds (based on all distribution shapes for k1 and k−1) com-
puted using VSPODE Taylor models for dimensionless concentrations of A and B at t = 0.25 day:
(a) PB(CA(0.25)). (b) PB(CB(0.25)).
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Figure 18: Probability distributions of CA and CB at t = 0.25 day for reversible reaction model
using second-order Monte Carlo analysis (based only on uniform distributions for k1 and k−1):
(a)(b) 1000 outer loop samples, each with 1000 inner loop samples. (c)(d) 100 outer loop samples,
each with 10000 inner loop samples. (e)(f) 1000 outer loop samples, each with 10000 inner loop
samples. See text for discussion.
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Figure 19: Trajectories of reactor temperature T and conversion X for exothermic batch reactor
example. VSPODE bounds in black and Monte Carlo simulation (200 samples) results in gray.
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Figure 20: Solid curves (blue) show probability distribution bounds (based on all distribution shapes
for T0 and Ta) computed using VSPODE Taylor models for reactor temperature and conversion at
t = 60 s: (a) PB(T (60)). (b) PB(X(60)). Shaded areas (red) show probability distributions for
T (60) and X(60) as determined using second-order Monte Carlo analysis (based only on normal
distributions for T0 and Ta; 100 outer loop samples, each with 10000 inner loop samples). See text
for discussion.
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Figure 21: Trajectories of cell concentration X and substrate concentration S for bioreactor example
with Haldane kinetics. VSPODE bounds in black and Monte Carlo simulation (200 samples) results
in gray.
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Figure 22: Solid curves (blue) show probability distribution bounds (based on all distribution shapes
for X0 and µmax) for X computed using VSPODE Taylor models at times (from left to right) of
t = 2.5, t = 5, t = 7.5, and t = 10 days. Shaded areas (red) show probability distribution for X
at the same times as computed using second-order Monte Carlo analysis (based only on normal
distributions for X0 and µmax; 100 outer loop samples, each with 10000 inner loop samples). See
text for discussion.
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Figure 23: Trajectories of cell biomass concentration x1, substrate concentration x2, and prod-
uct concentration x3 for three-state bioreactor. VSPODE bounds are in black, and Monte Carlo
simulation (200 samples) results are in gray.
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Figure 24: Solid curves show probability distribution (based on all distribution shapes for x10,
µmax, and ks) of x1 for three-species bioreactor at times (from left to right) of t = 10, t = 7.5, and
t = 5 hours, as computed with p-boxes using a 3rd-order Taylor model and SIR with 100 discretiza-
tions. Shaded areas (red) show probability distribution of x1 at the same times as computed with
Monte Carlo simulations (based only on uniform distributions for x10, µmax, and ks) . See text for
discussion.
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Figure 25: Solid curves show probability distribution (based on all distribution shapes for x10,
µmax, and ks) of x1 for three-species bioreactor at times (from left to right) of t = 10, t = 7.5, and
t = 5 hours, as computed with p-boxes using a 5th-order Taylor model and SIR with 50 discretiza-
tions. Shaded areas (red) show probability distribution of x1 at the same times as computed with
Monte Carlo simulations (based only on uniform distributions for x10, µmax, and ks). See text for
discussion.

64


