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Abstract

The reliable solution of nonlinear parameter estimation problems is an important computational
problem in chemical process engineering, both in on-line and off-line applications.  Conventional
solution methods may not be reliable since they do not guarantee convergence to the global optimum
sought in the parameter estimation problem.  We demonstrate here a technique, based on interval
analysis, that can solve the nonlinear parameter estimation problem with complete reliability, providing
a mathematical and computational guarantee that the global optimum is found.  As an example, we
consider the estimation of parameters in vapor-liquid equilibrium (VLE) models.  Twelve VLE data
sets are fit to the Wilson equation.  Results indicate that several sets of published parameter values
correspond to local optima only, with new globally optimal parameter values found by using the
interval approach.
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Introduction

Parameter estimation is a common problem in many areas
of process modeling, both in on-line applications such as
real time optimization and in off-line applications such as
the modeling of reaction kinetics and phase equilibrium.
The goal is to determine values of model parameters that
provide the best fit to measured data, generally based on
some type of least squares or maximum likelihood
criterion.  In the most general case, this requires the
solution of a nonlinear and frequently nonconvex
optimization problem.

It is not uncommon for the objective function in
nonlinear parameter estimation problems to have multiple
local optima. However, the standard methods used to
solve these problems are local methods that offer no
guarantee that the global optimum, and thus the best set
of model parameters, has been found. Thus, there is a
need for global optimization in nonlinear parameter
estimation.  One approach that has been suggested is the
use of convex underestimating functions in connection

with a branch and bound procedure (Esposito and
Floudas, 1997).  An alternative approach for global
optimization is the use of interval analysis (e.g., Hansen,
1992).  We demonstrate here the use of interval methods
for determining a global optimum in nonlinear parameter
estimation problems of interest in process engineering.

As an example, we consider the estimation of
parameters in vapor-liquid equilibrium (VLE) models.
We demonstrate that even for simple models, such as the
Wilson equation, multiple local optima can occur in
parameter estimation.  It is also shown that for some data
sets, published parameter values (Gmehling et al., 1977-
1990) correspond to a local but not global optimum. We
then demonstrate how a simple global optimization
procedure based on interval analysis can be used to
reliably determine the globally optimal parameter values.
The method used involves the use of an interval Newton
technique combined with interval branch and bound.
This method provides a mathematical and computational
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guarantee of global optimality in parameter estimation.
The reliability of the method is demonstrated using
several VLE data sets, and the globally optimal
parameters compared to published values obtained using
local methods.

Background

Good introductions to the parameter estimation
problem are provided by Bard (1974), Gallant (1987) and
Seber (1989).  Suppose that observations yµi of  i = 1,...,q
response variables from µ = 1,...,p experiments are
available, and that the responses are to be fit to a model of
the form yµi = fi(xµ, θ), with independent variables xµ =
(xµ1,xµ2,...,xµm)T and parameters θ = (θ1,θ2,...,θn)

T.  To
determine optimal values of the parameters (i.e., the
“best” fit), a maximum likelihood criterion is most
appropriate in many circumstances.  However, with some
assumptions this can be simplified to the widely used
relative least squares criterion, which requires minimizing
the function

φ(θ)  =  
i

q p

= =
∑ ∑

1 1µ
[(yµi -  fi(xµ, θθ)) / yµi] 

2.

This can be treated either as a constrained or, if the
experimental observations are substituted directly into the
objective function, unconstrained minimization problem.
We will consider only the unconstrained formulation of
the problem here.  For minimizing φ, a wide variety of
standard minimization techniques are available.
However, in general, these are local methods that provide
no assurance that a global minimum has been found.
What is needed is a technique that can find the global
minimum of φ, and do so with mathematical and
computational certainty.  The use of interval analysis
provides such a technique.

Interval Analysis

A real interval Z is defined as the set of real numbers
lying between (and including) given upper and lower
bounds; i.e., Z = [zL,zU] = {z ∈ ℜ | zL ≤ z ≤ zU}.  A real
interval vector Z = (Z1,Z2,...,Zn)

T has n real interval
components and can be interpreted geometrically as an n-
dimensional rectangle.  Note that in this section lower
case quantities are real numbers and upper case quantities
are intervals.  Several good introductions to interval
analysis are available (e.g., Neumaier, 1990; Hansen,
1992; Kearfott, 1996).

Of particular interest here is the interval Newton
technique.  Given a nonlinear equation system with a
finite number of real roots in some initial interval, this
technique provides the capability to find (or, more
precisely, narrowly enclose) all the roots of the system
within the given initial interval.  For the unconstrained
minimization of the relative least squares function φ(θ), a

common approach is to use the gradient of φ(θ) and seek a
solution of g(θ) ≡ ∇φ(θ) = 0.  The global minimum will
be a root of this nonlinear equation system, but there may
be many other roots as well, representing local minima
and maxima and saddle points.  Thus, for this approach to
be reliable, the capability to find all the roots of g(θ) = 0
is needed, and this is provided by the interval Newton
technique.  In practice, the interval Newton procedure can
also be combined with an interval branch and bound
technique, so that roots of g(θ) = 0 that cannot be the
global minimum need not be found.

For the system of nonlinear equations g(θ) = 0 with θ
∈ Θ(0), the basic iteration step in interval Newton methods
is, given an interval Θ(k), to solve the linear interval
equation system G′(Θ(k)) (N(k) – θ(k)) = −g(θ(k)) for a new
interval N(k), where k is an iteration counter, G′(Θ(k)) is an
interval extension of the Jacobian of g(θ), i.e., the Hessian
of φ(θ), over the current interval Θ(k), and θ(k) is a point in
the interior of Θ(k).  The interval extension of a real
function over an interval is an enclosure of the range of
the function over the interval, and can be computed by
substituting interval quantities for the corresponding real
quantities and using interval arithmetic, or in other ways.
It can be shown (Moore, 1966) that any root θ* ∈ Θ(k) of
g(θ) = 0 is also contained in the image N(k), implying that
if there is no intersection between Θ(k) and N(k), then no
root exists in Θ(k), and suggesting the iteration scheme
Θ(k+1) = Θ(k) ∩ N(k).  In addition to this iteration step,
which can be used to tightly enclose a solution, the
following property can be proven (e.g., Neumaier, 1990;
Kearfott, 1996):  If N(k) is contained completely within
Θ(k), then there is one and only one root contained within
Θ(k).  This property is quite powerful, as it provides a
mathematical guarantee of the  existence and uniqueness
of a root when it is satisfied.  The foregoing suggests a
series of tests to determine whether a stationary point
(root of g(θ) = 0) that might be the global minimum of
φ(θ) can be contained in Θ(k):

1.  (Function Range Test)  Compute an interval
extension G(Θ(k)) containing the range of g(θ)
over the current interval Θ(k) and test to see
whether it contains zero.  Clearly, if  0 ∉
G(Θ(k)) ⊇ {g(θ) | θ ∈ Θ(k)}, then there can be
no solution of g(θ) = 0 in Θ(k) and this
interval need not be further tested since it
cannot contain a stationary point of φ(θ).

2.  (Objective Range Test)  Compute an interval
extension Φ(Θ(k)) containing the range of
φ(θ) over the current interval Θ(k).  If the
lower bound of Φ(Θ(k)) is greater than a
known upper bound on the global minimum
of φ(θ), then Θ(k) cannot contain the global
minimum and need not be further tested (see
step 3b).

3.  (Interval Newton Test)  Compute the image
N(k) as described above.



Nonlinear Parameter Estimation Using Interval Analysis 3

a.  If Θ(k) ∩ N(k) = ∅, then there is no root
of g(θ) = 0 in Θ(k) and it need not be
further tested since it cannot contain a
stationary point of φ(θ).

b.  Evaluate φ(θ(k)) and use to determine and
update an upper bound on the global
minimum for use in step 2.

c.  If N(k) ⊂ Θ(k), then there is exactly one
root of g(θ) in Θ(k), which may
correspond to the global minimum.

d.  If neither of the above is true, then no
further conclusion can be drawn.

In the last case, one could then repeat the root inclusion
test on the next interval Newton iterate Θ(k+1), assuming it
is sufficiently smaller than Θ(k), or one could bisect Θ(k+1)

and repeat the root inclusion test on the resulting
intervals.  This is the basic idea of interval
Newton/generalized bisection (IN/GB) methods.  A more
detailed description of an IN/GB algorithm has been
given by Schnepper and Stadtherr (1996).  Through the
addition of steps 2 and 3b, it has been combined with a
simple interval branch and bound scheme.  Our current
implementation of the IN/GB method is based on
appropriately modified routines from the packages
INTBIS (Kearfott and Novoa, 1990) and INTLIB
(Kearfott et al., 1994).  The worst-case computational
complexity of the IN/GB algorithm is exponential in the
number of variables.  However, process modeling
problems involving over a hundred variables have been
successfully solved using this approach (Schnepper and
Stadtherr, 1996).

Example

As an example, we consider the estimation from
binary vapor-liquid equilibrium (VLE) data of the energy
parameters in the Wilson equation for liquid phase
activity coefficient.  Expressed in terms of the reduced
excess Gibbs energy gE for a binary system and the liquid-
phase mole fractions x1 and x2, the Wilson equation is gE

= −x1ln(x1 + Λ12x2) − x2ln(x2 + Λ21x1), from which
expressions for the activity coefficients γ1 and γ2 are
readily obtained.  The binary parameters Λ12 and Λ21 are
given by Λ12 = (v2/v1) exp(−θ1/RT) and Λ21 = (v1/v2)
exp(−θ2/RT), where v1 and v2 are the pure component
liquid molar volumes, T is the system temperature and θ1

and θ2 are the energy parameters that must be estimated.
From VLE measurements, experimental values γ1,exp

and γ2,exp of the activity coefficients can be obtained.  For
the parameter estimation problem, the relative least
squares objective

φ(θ)  =  ∑∑
==

p

i 1

2

1 µ
[(γµi,exp -  γµi,calc(θ)) / γµi,exp] 

2.

can be used, where γµi,calc(θ) is determined from the
Wilson equation at the same conditions (temperature,
pressure and composition) as in the measurement of γµi,exp.
This parameter estimation problem has been solved for a
large number of systems and results presented in the
DECHEMA Vapor-Liquid Equilibrium Data Collection
(Gmehling et al., 1977-1990), along with the raw VLE
data.

For the example here we consider the binary system
water(1)–formic acid(2).  Twelve VLE data sets, at
various pressures, from the DECHEMA Collection were
studied.  For each data set, the DECHEMA Collection
gives the raw VLE data and the results of parameter
estimation for θ1 and θ2 based on the relative least squares
objective.  Since Gmehling et al., (1977-1990) use a local
method for minimizing φ(θ) in this parameter estimation,
it is possible that the values of θ1 and θ2 obtained do not
correspond to a global minimum in φ(θ).  To investigate
this, we resolved each parameter estimation problem for
the global minimum using our modification of INTBIS.

Results and Discussion

The results for θ1 and θ2 and φ(θ) from DECHEMA
and from the interval approach (INTBIS) suggested here
are summarized in Table 1, along with the number of
local minima found for each problem (for purposes of
determining the number of local minima, the branch and
bound steps 2 and 3b were turned off).  It can be seen that
each problem has multiple local minima, and that in five
of the twelve cases (data sets 7–11) the results presented
in DECHEMA are not globally optimal.  As shown
schematically in Fig. 1, the parameter values given in
DECHEMA are clustered in two different regions, with
results from five data sets falling in one region (θ2 > θ1)
and results from seven others falling in the second region
(θ1 > θ2).  When the global optimum is obtained in the
parameter estimation problem the results are much more
consistent, with results from ten of the twelve data sets
clustered in one region (θ2 > θ1) and only two yielding
substantially different results.

We now look more closely at the results for one data
set, namely data set 10.  For this case, INTBIS (with the
branch and bound steps turned off) found five stationary
points, three minima and two saddle points, in the initial
interval Θ1

(0) = Θ2
(0) = [−10000, 10000].  These results are

summarized in Table 2.  The global minimum at θ =
(−329, 1394)T (root P5) has an objective function value
φ(θ) = 0.0819 that is only about half the magnitude of the
local minimum at θ = (452, −664)T (root P3) found by
Gmehling et al. (1977-1990) and reported in the
DECHEMA Collection.  As is often the case in least
squares problems of this sort, all the minima found lie in
a relatively flat valley in the parameter space.

The performance of the two different parameter sets,
corresponding the local minimum P3 (DECHEMA) and
global minimum P5 (INTBIS), in predicting the activity
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coefficients for water and formic acid with the Wilson
equation is shown in Fig. 2.  It is clear that when the
globally optimal parameter values from INTBIS are used
in the Wilson equation, it results in less deviation from
the experimental values in comparison to the case in
which the locally optimal parameters reported in
DECHEMA are used.

It should be emphasized that the sort of difficulties
observed in the water–formic acid system, namely the
failure of standard local optimization techniques to find
the globally optimal parameters, is not restricted to this
system and model.  This difficulty can be observed in
other systems reported in the DECHEMA Collection.
This should not be surprising, since with traditional local
solution techniques, it is extremely unlikely that the
global optimum will always be found.

In determining the global minimum with the interval
approach, initial parameter intervals of Θ1

(0) = Θ2
(0) =

[−10000, 10000] were used for each data set, which
should be wide enough to enclose any physically feasible
solution.  The ability to provide a wide initial interval, as
opposed to an initial point guess, means that the method
is essentially initialization independent.  For each data
set, the computation time needed to perform the global
optimization was from roughly 10 to 50 seconds on a Sun
Ultra 2/1300 workstation.  The difference in times is due
to the differing number of data points in each data set,
and the differing number of stationary points found.  It
should be emphasized that at this point, no significant
efforts have been made to optimize the efficiency of the
code.  The use of techniques for tightening the evaluation
of interval function extensions, as suggested by Tessier
(1997) and Hua et al. (1998) can potentially provide an
order of magnitude improvement in computational
efficiency.

While, in comparison to traditional local methods,
additional computation time will typically be required to
implement the interval approach, this may be well
compensated by the guaranteed reliability of the results.
Continuing advances in computing hardware (both in
single processor performance and multiprocessing) and
software (e.g., compiler support for interval arithmetic)
will make this approach even more attractive.

Concluding Remarks

We have described here a new method for reliably
solving nonlinear parameter estimation problems.  The
method is based on interval analysis, in particular an
interval Newton/generalized bisection algorithm.  The
approach provides a mathematical and computational
guarantee that the global optimum in the parameter
estimation problem is found.  We applied the technique
here to several data sets in which the Wilson activity
coefficient model was used.  However, the technique is
model independent and can be applied in connection with
any thermodynamic model for vapor-liquid equilibrium.

The approach presented is general purpose and can also
be used in connection with other objective functions, such
as maximum likelihood, and other types of VLE
measurements.  It can also be applied to a wide variety of
other nonlinear parameter estimation problems in
chemical process engineering.
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Table 1. Summary of parameter estimation results for the water(1)  and formic acid(2) system, showing
parameters θ1 and θ2 and objective function φ(θ).  Values shown in bold are globally optimal parameters that

differ from those given in DECHEMA.

Data P DECHEMA INTBIS No. of
Set (mm Hg) θ 1 θ 2 φ (θθ) θ 1 θ 2 φ (θθ) Minima
1 760 -195 759 0.0342 -195 759 0.0342 2
2 760 -278 1038 0.0106 -278 1038 0.0106 2
3 760 -310 1181 0.0151 -308 1167 0.0151 2
4 760 -282 985 0.353 -282 984 0.353 2
5 760 -366 1513 0.0257 -365 1509 0.0257 3
6 760 1067 -1122 0.0708 1065 -1120 0.0708 2
7 200 892 -985 0.141 -331 1250 0.0914 2
8 200 370 -608 0.0459 -340 1404 0.0342 3
9 100 539 -718 0.165 -285 996 0.111 2
10 100 450 -663 0.151 -329 1394 0.0819 3
11 70 558 -762 0.0399 -330 1519 0.0372 3
12 25 812 -1058 0.0502 807 -1055 0.0502 2

Table 2. Details for roots (stationary points) found using INTBIS for data set 10.  Point P3 is the local minimum
presented in DECHEMA, while point P5 is the global minimum.

Root Position (θ 1, θ 2) Eigenvalues of Hessian φ (θθ) Status
P1 (1958, -1251)  7.55E-5, 2.58E-7 0.164 minimum 
P2 (1165, -1083) 6.83E-5, -1.44E-7 0.178 saddle
P3 (452, -664) 6.97E-5, 9.42E-8 0.151 minimum
P4 (-37.8, 38.5) 9.08E-5, -3.54E-7 0.19 saddle
P5 (-329, 1394) 1.23E-4, 1.47E-7 0.0819 global minimum
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Figure 1.  Comparison of estimation results from DECHEMA and INTBIS.
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Figure 2.  The relative error in data set 10 between calculated and experimental activity coefficients for water
(top) and formic acid (bottom) resulting from the locally optimal DECHEMA values and the globally optimal

values found using INTBIS.  For water (top), the relative error for a data point at x1 = 0.0802 is off scale
(roughly at  –0.22) for both cases.


