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Abstract

For the computation of chemical and phase equilibriurcoastant temperature
and pressure, there have been proposed a wide variety @démprdormulations and
numerical solution procedures, involving both direct mination of the Gibbs energy
and the solution of equivalent nonlinear equation systen®till, with very few
exceptions, these methodologies may fail to solvecttemical and phase equilibrium
problem correctly. Nevertheless, there are many agistolution methods that are
extremely reliable in general and fail only occasionallyo take good advantage of this
wealth of available technigques, we demonstrate here an a&ppioawhich such
techniques can be combined with procedures that have the fovatidate results that
are correct, and to identify results that are incaorreleurthermore, in the latter case,
corrective feedback can be provided until a result daat be validated as correct is
found. The validation procedure dgterministic, and provides a mathematical and
computationabuarantee that theglobal minimum in the Gibbs energy has been found.
To demonstrate this validated computing approach to theicakamd phase equilibrium
problem, we present several examples involving reactidenanreactive components at

high pressure, using cubic equation-of-state models.



1. Introduction

Knowledge of phase equilibrium, with or without simuéans chemical reactions,
is clearly important in the design and analysis of dewiariety of chemical processing
operations, including reactors and separation units. BEvethel case of kinetically-
limited reactions, knowledge of chemical and phase dquiin can offer insight into the
behavior of a system by pointing out thermodynamic &tiohs on expected
conversions. We will concentrate here primarily o& ¢ase in which the operation is at
high pressure and there are reactive components.

In computing chemical and phase equilibrium the basic gaedsto correctly
determine the number and type of phases present andsthibuion of components
amongst the phases at the equilibrium state. For dke of fixed temperature and
pressure, which will be the focus here, the fundamentadition that must be achieved
is the global minimization of the Gibbs energy. Though easily stategrinciple, in
practice the computation of chemical and phase equilbris a very challenging
problem. As a result, there is a very large andgtiliving body of literature devoted to
the solution of this problem. As reviewed by Seider and @ddd1], there have been
proposed a wide variety of problem formulations and nuwaksolution procedures,
involving both direct optimization and the solution eduivalent nonlinear equation
systems. Still, with very few exceptions, as notddwgthese methodologies may fail to
solve the chemical and phase equilibrium problem correditie demonstrate here an
approach in which existing solution methodologies, sometoétware very reliable in
general and fail only occasionally, can be combined teithniques that have the power

to validate results that are correct, and to identify resuléd Hre incorrect. Furthermore,



in the latter case, corrective feedback can be providedaurgsult that can be validated
as correct is found.

In general, in order to provide a completely reliable metloo computing chemical
and phase equilibrium it is necessary to apply some fofndeterministic global
optimization procedure. Such procedures can be appliectldite the minimization of
the Gibbs energy, but are more commonly applied indiredtising phase stability
analysis. For example, McDonald and Floudas [2-4] appBeterministic global
optimization procedure for stability analysis when chamend phase equilibrium is
computed from various excess Gibbs energy models, and Haadihg-loudas [5] do
likewise for the case in which cubic equation of stabel@s are used. In this work [2-5],
the a-BB approach [6,7], which is based on a branch-and-bouatkgtr with convex
underestimating functions, is used. An alternative detéstiinprocedure for phase
stability analysis is the use of an interval-NewtonAgeal-bisection (IN/GB) approach
[8]. This has been demonstrated for the case of exdbbs @&nergy models by Stadtherr
et al. [9], McKinnon et al. [10], and Tessier et al. [1drjd for the case of cubic equations
of state by Hua et al. [12—14]. Recently Xu et al. [15] adgles approach to the case in
which the Gibbs energy is determined using a statisticalcaging fluid theory (SAFT)
model. Both thea-BB and IN/GB procedures are deterministic and thus provide a
mathematicaguarantee that the phase stability problem is correctly solvetie IN/GB
procedure, since it uses interval arithmetic througholgp grovides a rigorous
computational guarantee of global optimality [16].

To demonstrate the IN/GB procedure for phase stabilitglyais using cubic
equation of state models, Hua [17] developed a package call€&LAEH for

computing phase equilibrium. Likewise, for the case@ess Gibbs energy models,
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McDonald and Floudas [18] demonstrated td3B procedure for phase stability
analysis by developing a package for chemical and phasebequrilicalled GLOPEQ.
However, efforts such as these do not take good advantade avdalth of already
available software for computing chemical and phaseibguin. There are many good
routines available that provide no guarantee of religbisince they do not employ a
deterministic global optimization approach, but which megertheless often extremely
reliable. What is needed is a way to validate thaltesf such routines when they are
correct, and to provide feedback in the occasional casehfich the results are incorrect.
We demonstrate here a strategy for doing this, basedeouasthof the IN/GB approach
for phase stability analysis. In particular, we adogersion [19] of the code CHASEOS
for computing chemical and phase equilibrium from cubic gooaf-state models (a
version of this code is also available as an “in hopset of the IVC-SEP package [20]).
CHASEOS implements the algorithm of Castier et al.,[ah]extension of the techniques
of Michelsen [22,23] and Myers and Myers [24]. We show lits results can be
validated, with corrective feedback as needed, using thee@tability algorithm of Hua

et al. [14].

2. Methodology
Consider the problem of computing chemical and multiphgsdilerium at constant
temperature and pressure in a systerNGfcomponents. This problem can be stated

fundamentally as one of seeking the global minimuieftotal Gibbs energy function

NC NP

G=Y S NIy (1)

i=1 j=1



with respect to the number of phadeB and the mole numberfl”. Here N{”

indicates the number of moles of componer phasej, and u” is the chemical
potential of componentin phasg, which depends on the composition of phaaad on
the given temperaturg and pressur®. The mole numbers are constrained by the atom
balances

AIN=b 2)
and nonnegativity constraints

N >0, i=1..,NC, j=1...NP. (3)

Here the elementd,; of the matrix A indicate the number of atoms admneéntk in a

NP .
molecule of componerit the elementsN; =>° N of the vectoN indicate the total
i=1

number of moles of componentand the elements of the vectoib indicate the given
total abundance of elemektn the system. Nonreactive (inert) species cahdelled
by treating them as “elements” when constructirgrttatrix A.

Solution of the problem in the above form would uieg the use of constrained
optimization techniques. Alternatively, the prablean be reformulated in various ways
to permit the use of unconstrained methods. Qastial. [21] follow the stoichiometric

formulation approach. Here a setR = NC —rank(A) independent chemical reactions

is first determined, and then the mole numbersapeessed in terms of the yield factors
g =—_ i=1..,NC, j=1..,NP, (4)
and the extents of reactiajy , defined by

NR
Ni =Ni,0+zvik<(k’ i=1,...,NC, (5)
k=1



with v, indicating the stoichiometric coefficient of compohein reactionk, and N; ,

the initial mole number of component Note that not all of the yield factors are

independent, as they are related by
NP '
Zé’i‘”:L i=1...,NC. (6)
j=1

Thus, in this problem formulation, the independent variablestlae NR extents of
reaction and theNC(NP —1) independent yield factors. In Castier et al.gpoathm [21],

a local minimum ofG is sought using the second-order unconstrainedmization
algorithm of Murray [25]. To initialize the minimation procedure, ideas are adapted
from Myers and Myers’s work [24] on the chemicalu#i@rium problem and
Michelsen’s work [23] on the phase equilibrium pesb.

Once a local minimum i@ has been located, it is then tested for globahagity in
Castier et al.’s algorithm [21] by using Michelseréchnique [22] for implementing the
phase stability test given by Baker et al. [26]hisTtest is based on tangent plane
analysis. Assume that the system to be testedahplsase with composition (mole
fraction) vectorz. Then consider the molar Gibbs energy vs. cortipagimole fraction)
surfaceg(x) and a hyperplane tangentd(x) atx = z. If this tangent plane ever crosses
(goes above) the Gibbs energy surface, then themyseing tested is not stable (i.e., it is
either unstable or metastable). This conditioofien stated in terms of the tangent plane

distance function

D() =93 - g, —Z[g—f] (x - 2) ™

that gives the distance of the Gibbs energy surfaceeaih@ tangent plane (the subscript

zero indicates evaluation at z). If D(x) is negative for any value af then the system
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being tested is not stable. To determirie i§ ever negative, its minimum is sought. If a
stationary point (local minimum) of D is found for whi® < 0, then this indicates that
the system being tested is not stable. The composita®sponding to this stationary
point is also useful to provide an initial compositiortireate for a possible new
equilibrium phase. Note that if a multiphase equititn is to be tested, then it is actually
necessary to use only one of the phases in the stdedity since they share the same
tangent plane at the equilibrium compositions to beetesin Castier et al.’s algorithm
[21], if it is found that the equilibrium determined fratme local minimization is not
stable (not globally optimal), then a new phase is ddded the composition at the
stationary point yielding a negatii2 is used to reinitialize before performing another
local minimization of G. The minimization ofG includes provisions for possible
removal of a phase. Complete details of this algoriftaomcomputing chemical and
phase equilibrium are given by Castier et al [21].

While the algorithm outlined above is very reliable, @ncfail if the global
minimum inD is not found during phase stability analysis. If thebgl minimum inD is
negative, but is missed during the phase stability analyssscan result in a situation in
which the algorithm returns a result that is not a staguilibrium state. It is this
difficulty that motivated the work referred to above be use of deterministic global
optimization in doing phase stability analysis.

Because the results of Castier et al.’s [21] code (EHBS (or any other code for
chemical and phase equilibrium not based on deterngirg&ibal optimization) may not
be correct, there is a need for a validation procedufer this, we apply here the
technigue of Hua et al. [14] for performing phase stabilitalgsis. This is a

deterministic technique that provides a mathematical and computatguaahntee that



the global minimum in the tangent plane distance functivms found. The method is
based on interval mathematics, in particular an ialedewton approach combined with
generalized bisection (IN/GB).

For general background on interval mathematics, includmegrval-Newton
methods, there are several good sources [16,27,28]. Detdise particular IN/GB
algorithm employed here are given by Schnepper and Sta@@hemd Hua et al. [14].
An important feature of this approach is that, unlike dhath methods for nonlinear
equation solving and/or optimization that requirepant initialization, the IN/GB
methodology requires only an initiaiterval, and this interval can be sufficiently large to
enclose all feasible results. Thus, in the casehag@ stability analysis, all composition
variables (mole fractions) can be initialized to thesiival [0,1]. Intervals are searched
for stationary points using a powerful root inclusion tessed on the interval-Newton
method. This test can determine with mathematicahireyt if an interval contains no
stationary point or if it contains unique stationary point. If neither of these results can
be proven, then typically the interval is bisected #w&l root inclusion test applied to
each subinterval. On completion, the IN/GB algorittuii have determined narrow
enclosures o#fll the stationary points dD, and the global minimum can be readily
determined. Alternatively, IN/GB can be applied in canio® with a branch-and-bound
scheme, which will lead directly to the global minimwithout finding any of the other
stationary points. This IN/GB approach for phase stabilas implemented by Hua et
al. [14] in the code referred to here as INTSTAB.

When the code CHASEOS implementing Castier et dgsrshm [21] returns a
result, the composition of one of the phases (or efaly phase if it is a single phase

result) is passed to INTSTAB for validation using phaabeibty analysis. If INTSTAB



determines that the system is stable, then this vadiddtat the result found by
CHASEOS is indeed correct. If INTSTAB determines thatsystem is not stable, then
this indicates that the results returned by CHASEOSimrerrect. In this case, the
stationary point corresponding to the global minimar®iwill have a negative value of
D. The composition at this stationary point is thenneed to CHASEOS, where a new
phase is added and the composition at the stationary pséat to reinitialize before
performing another local minimization @. This process appears to the CHASEOS
code just as if it were a stationary point with negab value found by its own stability
analysis routine. Castier et al.’s algorithm [21] isrthexecuted until a new result is
returned for validation by INTSTAB. This type of twage strategy in which phase
split computations (local minimization d&) alternates with phase stability analysis
(global optimality check on local minimum &) can be shown (e.g., [10]) to converge in
a finite number of steps to the equilibrium state (glahinimum ofG) provided that a
deterministic procedure is used to globally minimize #regént plane distance function
in doing phase stability tests. In fact, CHASEOS dlyaases such a two-stage strategy
[22,23] internally, but the procedure used to test phaseistabiihot deterministic and
may fail to give the correct result.

What we have described here is the integration of Hual.'st[14] INTSTAB
with Castier et al.’s [21] CHASEOS to provide validatof the results from CHASEOQOS,
as well as corrective feedback if needed. This validab@dpating approach could be
used in connection with many other codes for chemical hadgequilibrium as well. If
validation alone is desired, then the chemical andepbgsilibrium code can be treated
simply as a black box. If corrective feedback i®alesired, then access to the source

code is required, so that feedback can be inserted ptdper point in the code.
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3. Results and Discussion

We test here the validated version of CHASEOS, whiehwill refer to as
V-CHASEOS, for several cases involving chemical andseheaquilibrium at high
pressure. In these examples, cubic equation-of-stals)Enodels, either Soave-
Redlich-Kwong (SRK) or Peng-Robinson (PR), are used stdindard van der Waals
mixing rules incorporating a single binary interaction paeterk; per component pair.
Since the original CHASEOS code is in our experiencesqeiiable, our anticipation is
that in most cases, V-CHASEOS will serve simply validate the results from
CHASEOQOS, and that no corrective feedback will be needed.
3.1 Problem 1. Methanol Synthesis

This system has five reactive components, CO,, G, H,O and CHOH, and
one inert, CH. It is a system that has been studied previously bgwsauthors [21,29—
32]. There are two independent reactions:

CO+2H, « CH,OH
CO, +H, «~ CO+H,O.

This reactive system was modeled at 473.15 K and 300 atm, usi@RK EOS model
to be consistent with the work of Jalali-Frahani and Sef@de32]. Formation dataAG
and AH), heat capacity data, and critical properties for eamhponent were obtained
from Reid et al. [33] and thk; used are the same as those used by Jalali-Frahani and
Seader [31]. The feed consists of 15 moles of CO, 8 nbIES,, 74 moles of K, and 3
moles of CH, values also taken from [31].

Table 1 shows the results of applying V-CHASEOS to thiblpm. The first

part of the table shows the composition (mole frasiptotal amount (moles) and molar
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volume (cni/mole) of each phase as determined by CHASEOS. Thmdemrt of the
table shows the stationary points found in the phasailigstaanalysis when using
INTSTAB to validate these equilibrium phase resu&ce none of the stationary points
has a negative value of the tangent plane distBntlee solution returned by CHASEOS
has been validated as the correct solution. This isist@ent with the solution reported in
[31]. Although this result can be found using Castier lés algorithm [21] as
implemented in CHASEOS, as well as by various othehous for computing chemical
and phase equilibrium, such as the continuation-based appojalalali-Frahani and
Seader [31,32], by using the validated computing approach impiledhdrere in
V-CHASEOS we obtain the added value of a mathemadiwdlcomputationajuarantee
that the correct results have in fact been obtair@ficourse, this guarantee comes at an
additional computational expense. For this six-compopeotilem, the additional CPU
time required by INTSTAB to do the validation was ab8Rtseconds, on a Sun Blade
1000 Model 1600 (600 MHz) workstation (all other timing resulp®reed below are for

the same machine).

3.2 Problem 2: Cyclohexane Synthesis

The calculation of chemical and phase equilibrium hie thydrogenation of
benzene to produce cyclohexane was originally studied byg@est al. [34] and later, by
Castillo and Grossman [35]. This system has thrediveacomponents, s, H,, and
CsHs, One independent reaction

CHs +3H, « CH,,,
and is at 500 K and 30 atm. George et al. [34] and CastiladGaossman [35] used the
Lewis fugacity model for this system. V-CHASEOS isdzhsn cubic EOS models, so

we used the PR EOS model. Formation data and critiopeptiies were taken from the
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ASPEN PLUS! database, heat capacity data from Reid et al. [33]abikgl values were
set to zero. The feed [34,35] consists of 1 mole of benaad 3.05 moles of hydrogen.

The results of applying V-CHASEOS to this problem are shanv Table 2.
Again the first part of the table shows the equilibriygghase results returned by
CHASEOQOS, and the second part shows the stationary petesmined by INTSTAB in
the validation step. Since none of these stationaryjtbas a negative value Df the
result returned originally by CHASEOQOS is again validated¢ correct. The CPU time
required by INTSTAB for the validation was about 0.120sels.

The chemical and phase equilibrium results determined dinldhtesl here do not
match those reported by George et al. [34] and CastiloGossman [35]. This could
be because they used a different model, or becausefateg a local, but not global,
minimum ofG in their calculations. Because their reported resualtlude a phase with
composition very similar to that of the third stationpoint given in Table 2, we initially
suspected the latter explanation. To determine the tplration, we applied the
IN/GB method to solve the nonlinear equation system spomding to the equifugacity
conditions for the Lewis model, with model parametaisen from George et al. [34].
This allowed us to find with certaingtl solutions to the equifugacity condition, and to
then validate that in fact the solution reported by rGecet al. [34] and Castillo and
Grossman [35] was the global minimum@when the Lewis fugacity model is used.
Thus the difference in the reported solutions is due lgitgpthe difference in choice of
models. Since the IN/GB approach was used to valith@teasults obtained from both
models, it is possible to draw this conclusion with ctetep certainty. In comparing
different models for representing equilibrium behavior] @eciding how well they fit

experimental data, it is important that computed modeltebe validated. Otherwise it
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is possible that a model could be considered inadequate,invfaast the difficulty is that

an incorrect equilibrium solution was computed from thel@ho

3.3. Problem 3: Esterification in Supercritical CQ

The esterification of acetic acid with ethanol tonfi ethyl acetate and water in
supercritical CQ was studied experimentally by Blanchard and Brennecke [36)°%
and 57.8 atm. This indicated that the use of supercritiCale@hanced the conversion to
ethyl acetate to 72%, as compared to the neat liquidisaaethich only proceeds to
63% conversion. Two equilibrium phases were observeddltiis experimental study.
We attempt to model this system here using the PR EOS.

The system has four reactive components, acetic ettidnol, ethyl acetate, and
water, and it is assumed that £@ inert, since there was no evident change in the
amount of CQ during the course of the experiments. There is one @mtlgmt reaction

C,H,0,+C,H.OH - C,H,0,+H,O,
and the feed consists of 3.64 moles of ethanol, 3.64snadlacetic acid, and 2.72 moles
of CO,. Computational results for three different models presented here. For all
models, formation data, heat capacity data, and cripoaperties were obtained from
Reid et al. [33]. For Model Ik; values were regressed from binary VLE data using
Aspen PLU&I. These values, as well as references for the VIt& alsed, are given in
Table 3.

Table 4 shows the results of applying V-CHASEOS to comih@ehemical and
phase equilibrium for Model I. Shown first in the taidethe result returned initially
from CHASEOS, which indicates a single phase at dgjuilin. Shown next are the
stationary points returned by INTSTAB to validate thegk-phase equilibrium solution.

It is observed that the single-phase solution isiaddid to be stable.
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Since Blanchard and Brennecke [36] observed two equilibriumases
experimentally, not just one, a brief, nonsystemati@ ultimately not very successful
effort was made to adjust some of t)evalues to better model the experimental results.
In doing so, Models Il and Il were encountered. Botle arteresting from a
computational standpoint, though neither accurately models ekperimental
observations. Thik values for these two models are also listed in Table 3.

The results of applying V-CHASEOS to compute the cheima&al phase
equilibrium for Model Il are shown in Table 5. Showrsffiare the results returned from
CHASEOQOS, which indicates a single equilibrium phase. wBhoext are the stationary
points returned by INTSTAB. Since there are statippaints corresponding to negative
values of the tangent plane distarde this indicates that the single-phase solution
returned by CHASEOS is incorrect, and that correctiezllfack is necessary. The
stationary point with the lowest (most negative) vaddé is chosen (stationary point
IV), and these composition values are returned to CH2SEs described above for
addition of a new phase and reinitialization of Gibbs gneninimization. The result
now returned by CHASEOS is shown next in the table, awdditates a two-phase
equilibrium. Finally, the stationary points found by ISITAB in testing this two-phase
solution are shown, indicating, since none has negatee of D, that this is the
validated equilibrium solution for this problem. The computtime required for the
validation on this problem was unusually large, about 2950 &#idnds for the initial
use of INTSTAB to identify the incorrect solution, arfabat 3120 CPU seconds for the
final validation of the correct answer. Of courses thilditional computation time was

well spent, since, without the validation, the pradictof Model Il would have been
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reported erroneously as single phase, when in fact duelnpredicts that there are two
phases.

Table 6 shows the results of applying V-CHASEOS to MdtlelHere the initial
result from CHASEOS shows a two-phase equilibriumextNit is seen that INTSTAB
identifies stationary points with negative valuesDpfindicating that this result from
CHASEOS was incorrect. Corrective feedback is noawided to CHASEOS, and it
next returns a different two-phase result, as shovthe table. Application of INTSTAB
to this result again leads to a stationary point weégativeD and so CHASEOS has still
not found the correct equilibrium result. Correctivedisack to CHASEOS is once again
provided, and this time it returns a three-phase resulichwiNTSTAB validates as
correct, since all the stationary points in this sdcmpeat application of INTSTAB are
nonnegative, as shown in the table. Again, this is @ icehich, for a particular model,
the correct equilibrium result is not found by CHASEO®, is found by V-CHASEOS
by the use of validation and corrective feedback.

For none of the models used above do the computed &ddted predictions of
the PR EOS model closely match the equilibrium measemésnof Blanchard and
Brennecke [36]. This is most likely due to the inadequaciégseoPR EOS in modeling
systems, such as this one, for which there is a high eéegmessociation due to hydrogen
bonding. Some improvements in the prediction could ikelyl achieved by a less
cursory and more systematic effort in adjusting the wabfahek;;, but use of a different

model may be more appropriate.

3.4 Problem 4: Methane — Carbon dioxide A-Hexane — Hydrogen
This system involves four components, methane;, @exane, and hydrogen,

and is taken from work by Zhu et al. [37]. They implerednti stochastic global
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optimization approach for phase stability analysis, ¢hase a simulated annealing
algorithm. While this approach offers no guarantee tteaptiase stability analysis will
be done correctly, and thus is not appropriate for ugtencontext of validation, it
should nevertheless be very reliable. Their sinedlannealing approach was developed
for the case of nonreactive systems, but can belyeapplied to reactive systems as
well. Zhu et al. [37] claim that the interval approasied by Hua et al. [14] in INTSTAB
leads to uncertainties because “it cannot be cetftainwithin an interval there exist one
or multiple solutions.” This statement is incorreamd in fact just the opposite is true.
The interval-Newton method [16,27,28] used by Hua et al. [14Yigees a powerful
existence and uniqueness test for solutions in an intamdleven in pathological cases
(solution at a singular point) for which interval-Newtan inconclusive (though still
guaranteed to enclose all solutions), there are technifggsnow available for
determining the existence of a solution in an interval.

As reported by Zhu et al. [37], this system was modeled ubm@GRK EOS at
200 K and 42.5 bar, and with a feed consisting of 0.5 molestifane, 0.0574 moles of
CO,, 0.0263 moles oh-hexane, and 0.4163 moles of hydrogen. We used physical
property data and binary interaction parameters takenterASPEN PLUS database.
Two variations of this problem are considered here, the awhich the components are
nonreactive, and the hypothetical case in which theyeactive.

For the hypothetical reactive case, the independent ioraddentified by
CHASEOS is

6CH, « C,H,, +5H,.
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The results of applying V-CHASEOS for this case are shomiable 7, which indicates
a validated, single-phase equilibrium solution. The GiRig required for the validation
step was about 5.8 seconds.

For the nonreactive case, hydrogen is specified tanéw, ileading to a phase
equilibrium calculation only, the case considered in £hal. [37]. Table 8 shows the
results of applying V-CHASEOS for this case. Hererd¢hs a validated, two-phase
equilibrium solution (validation time was about 41 CPWosels). However, these
results disagree substantially with those given by éhal. [37]. The phase equilibrium
results from Zhu et al. [37] were then tested using INAB &nd found to not represent a
stable system. After some additional study, we evéinttsached the conclusion, that,
despite repeatedly identifying the fourth component in tyggesn as hydrogen, Zhu et al.
[37] were apparently using hydrogeulfide as the fourth component. Thus, as a final

example, we consider the system of methane, G@exane, and hydrogen sulfide.

3.5 Problem 5: Methane — Carbon Dioxide A-Hexane — Hydrogen Sulfide

This problem is the same as considered in the previous éxaexgept that the
fourth component is hydrogen sulfide, not hydrogen. Thstegy is treated as
nonreactive, and the feed composition, temperature arsbysee are as given above.
This problem has been studied by Kohse and Heidemann [39],n8uBedder [40] and
(apparently) Zhu et al. [37]. It is a challenging problsince at this temperature and
pressure the feed composition puts this mixture near ritat point [39]. Zhu et al.
[37] claim that the two-phase equilibrium result compuigdbun and Seider [40] is just
a local minimum in the Gibbs energy. However, as dsed below, it is not clear that

this claim is actually true.
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The binary interaction parameter values used by Sun andr $4@jeare known
[41], and are listed in Table 9 as Model A (this accountsdorection of a typographical
error in [41] in which two component indices are inatletly switched). However, the
exact physical property data used by Sun and Seider [40paitenown, and so we have
used the average of the values found in Reid et al. [33] rartdei ASPEN PLUS
database. These physical property values are listethie T@ as Model A.

Using this data for Model A, V-CHASEOS was applied to commrid validate
the phase equilibrium for this system. The resultsshoavn in Table 11. The first part
of the table shows that CHASEOS returns a two-phas#itegqun solution, which is
similar to (though not exactly the same as) the rasplorted by Sun and Seider [40].
The second part of the table shows that, when INTSTABpplied to validate this
equilibrium solution, there are three stationary poifaend, and that all have a
nonnegative value dd. Thus, this two-phase result is validated, and represegtobal
minimum in the Gibbs energy. This leads us to beliesaé ttie result given by Sun and
Seider [40] is a most likely a correct two-phase equuii, contrary to the claim by Zhu
et al. [37]. However, it should be emphasized thatcaenot say this with certainty,
since we do not know the exact physical property data us&dibyand Seider [40], and
for this problem the predicted phase equilibrium is vensgive to the model parameter
values, as seen below. The CPU time required by INTBST@x validation in this
problem was about 120 seconds.

Zhu et al. [37] compute a 3-phase equilibrium for this prableHowever, they
took binary interaction parameter values from the prodvishPRG, which is attributed
without citation to Michelsen. To try to replicateetmodel used by Zhu et al. [37], we

thus tookk;; values, as well as physical property data, from Miaress LNGFLASH
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code, part of the IVC-SEP package [20]. These valuesieea g Tables 9 and 10 as
Model B. With these new values of the binary intecactparameters and physical
property data, V-CHASEOS was run again to compute and talitee phase
equilibrium, with the results given in Table 12. Thiowk a validated three-phase
solution, with compositions that are very close testhgiven by Zhu et al. [37], though
not quite identical. We assume that this differencdus to slight differences in the
model parameters used, since the computed equilibriumt r@ésdiuding number of
phases) is clearly very sensitive to small changes in tredeh parameters( and pure
component physical property data) in this region of cormplease behavior. The CPU
time required by INTSTAB for validation in this case ve®ut 109 seconds.

In summary, we believe it likely that both Sun and Selde and Zhu et al. [37]
computed correct equilibrium solutions that globally minenike Gibbs energy. Their
solutions differ in the number of phases because tilsey slightly different model
parameters. The conclusion that the two-phase resulModel A and the three-phase
result for Model B are both correct can be made wattiainty because of the validation
procedure used in V-CHASEOS. Without such validationwauld be tempting to
conclude, since the model parameters are nearly the shaegne of the solutions is

incorrect.

4. Concluding Remarks

The computation of chemical and phase equilibrium is gy \@hallenging
problem. There have been proposed a wide variety of ggrofbrmulations and
numerical solution procedures, involving both direct optaian and the solution of
equivalent nonlinear equation systems. Still, with Very exceptions, as noted above,

these methodologies may fail to solve the chemical phase equilibrium problem
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correctly. Nevertheless, there are many existingtsosl methods that are extremely
reliable in general and fail only occasionally. To takedyadvantage of this wealth of
available techniques, we have demonstrated here an appnoabtiich such techniques
can be combined with procedures, based on interval amatysit have the power to
validate results that are correct, and to identify result$ éina incorrect. Furthermore, in
the latter case, corrective feedback can be providedaurggult that can be validated as
correct is found. The validation procedur@éserministic, and provides a mathematical
and computationagjuarantee that theglobal minimum in the Gibbs energy has been
found.

We have demonstrated the validation procedure here using EBI8Sa standalone
code for chemical and phase equilibrium, that implemtmsalgorithm of Castier et al.
[21], an extension of the techniques of Michelsen [22,23] Mgdrs and Myers [24].
However, this validated computing approach could also ket inssonnection with many
other standalone codes for chemical and phase equitibrifivalidation alone is desired,
then the chemical and phase equilibrium code camdated simply as a black box. If
corrective feedback is also desired, then accesset@dbrce code is required, so that
feedback can be inserted at the proper point in the cddes approach to validated
computing could also be used for chemical and phase eguitiicomputations in the
context of a process simulator. In this case, sineestfuilibrium computation may be
nested inside some other iterative calculation, itikisly not desirable to invoke the
validation procedure every time an equilibrium computat®ndone. Instead, the
validation step should be applied only after the entimulstion is complete. The
validation comes at the cost of additional computing tifhaus a modeler may need to

consider the trade off between the additional computmg fand the risk of getting the
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wrong answer to a chemical and phase equilibrium probl€artainly, for “mission

critical” situations, the additional computing expenseead spent.
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List of Symbols
A matrix with elementg\
A number of atoms of elemekin a molecule of component
b vector with elementby
by total abundance of elemekt
D tangent plane distance, Eq. (7)

molar Gibbs energy
G total Gibbs energy
kij binary interaction parameter
N vector with elementh|;
Ni total number of moles of component
Nio initial number of moles of componeint
N number of moles of componeinin phasg
NC  number of components
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NP  number of phases

NR  number of independent chemical reactions

P pressure

T temperature

X a composition (mole fraction) vector

z composition (mole fraction) vector of phase being testathbility analysis
Greek |etters

8" vyield factor for componeritin phasg, Eq. (4)

u"  chemical potential for componeinin phasg

v,  stoichiometric coefficient of componeinin reactiork
&y extent of reactiok

Subscript

0 indicates evaluation at= z in stability analysis
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Table 1. Results for Problem 1, using the SRK EOS at 473dK300 atm.

Composition [mole fractiof] Total [moles] V [cm*/mol]
CHASEOS coO CQ H, H.O CHOH CH,
Phase | (L) 0.105x 10 0.231x 1¢ 0.976 x 10 0.243 0.634 0.248x10 27.759 60.09
Phase Il (V) 0.624 x IH 0.515x 10° 0.660 0.471x1H 0.204 0.879x1d  26.285 133.45
INSTAB
Stationary Point | 0.105 x 10 0.231 x 10 0.976 x 10 0.243 0.634 0.248x 10 60.09
Stationary Point Il  0.624 x 10 0.515x 10* 0.660 0.471x1H 0.204 0.879x 1b 133.45
Stationary Point Ill 0.368 x 10" 0.470 x 10° 0.340 0.114 0.477 0.685x10 87.67

D

0.000
0.000
0.041

2In this and other tables of results, mole fractionswat sum precisely to one due to rounding of computgruliituring transcription to the tables.
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Table 2. Results for Problem 2, using the PR EOS at 500R@atm.

Composition [mole fraction] Total [moles)V [cm*/mol]
CHASEOS GHs H, CeH12
Phase | (L) 0.492x 10 0.147x10 0.985 0.902 159.82
Phase Il (V) 0.400 x ID  0.249 0.751 0.148 1064.03
INTSTAB
Stationary Point | 0.492 x T0 0.147 x 10  0.985 159.82
Stationary Point Il 0.400 x T0  0.249 0.751 1064.03
Stationary Point Il 0.460 x 10  0.764 x 10  0.924 375.95

0.000
0.000
0.078
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Table 3. Binary interaction parameters used in Problem 3.

Binary Pair

CO, — Ethanol

CO, — Acetic Acid

CO; - HO

CO, — Ethyl Acetate
H,0 — Acetic Acid

H,0O — Ethanol

H,O — Ethyl Acetate
Ethanol — Acetic Acid
Ethanol — Ethyl Acetate

Acetic Acid — Ethyl Acetate

Model | Model II
Kij Refs. K

0.0917 [42] 0.0917

0.0363 [43] 0.0363
-0.0923  [44, 45] -0.0923
-0.1339 [46] -0.1339

-0.144 [47] -0.144
-0.0935 [47] -0.935
-0.280 [47] -0.280
-0.0436 [47] -0.0436
0.022 [47] 0.022
-0.0226 [47] -0.226

Model 11l

ki

0.0917
0.0363
-0.0923
0.000
-0.144
-0.935
-0.280
-0.0436
0.022
-0.226
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Table 4. Results for Problem 3, using the PR EOS with Mddevalues, at 333.15K and 57.8 atm.

CHASEOS
Phase I (L)

INTSTAB
Stationary Point |
Stationary Point 1l
Stationary Point 11l

GHsOH
0.223

0.223

Composition [mole fraction]

GH40 C4HgO, H-O CO
0.223 0.141 0.141 0.272
0.223 0.141 0.141 0.272

0.940 x 70 0.240 x 1¢ 0.109 x 10 0.345x 1G 0.974
0.278 x 10 0.124x 10 0.676 x 10 0.889 x 1G¢ 0.883

Total [moles]V [cm*/mol]

10

61.28

61.28
340.04
133.40

0.000
0.324
0.401
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Table 5. Results for Problem 3, using the PR EOS with Modg values, at 333.15K and 57.8 atm.

Composition [mole fraction] Total [moles]V [cm*/mol] D

CHASEOS GHsOH GH40; C4HgO; H,O CO
Phase | (L) 0.196 0.196 0.168 0.168 0.272 10 59.72

INTSTAB
Stationary Point | 0.196 0.196 0.168 0.168 0.272 59.72 0.000
Stationary Point I 0.229x 10 0.126 x 1¢ 0.815x1¢ 0.596 x 1¢ 0.988 347.51 0.063
Stationary Point [l 0.860 x 10 0.119x 10 0.786x 10 0.213x1G¢ 0.899 112.90 0.181
Stationary Point [V 0.390 0.634x 10 0.658x1F 0.608 0.105 x 1O 36.41 -1.273
Stationary Point V. 0.480 x T0 0.220 0.271 0.326 x10 0.427 68.14 -0.628
CHASEOS (repeat)
Phase | (L) 0.401 0.244 x$0 0.377 x10 0.595 0.352 x 1¢ 3.527 36.88
Phase Il (L) 0.130 x Ib 0.232 0.331 0.642 x 0 0.418 6.473 72.05
INTSTAB (repeat)
Stationary Point | 0.130 x 0 0.23167 0.133 0.642 x T0 0.418 72.05 0.000
Stationary Point Il 0.401 0.244 x'10 0.379x1F 0.595 0.352 x 1¢ 36.88 0.000
Stationary Point Il 0.910 x 10 0.137x 10 0.122x 10 0.171x1G 0.985 344.81 0.213
Stationary Point IV 0.285x 10 0.997 x 1¢ 0.876 x 10 0.497 x1G¢  0.899 125.97 0.307
Stationary Point V. 0.303 0.132 0.811 X110 0.285 0.199 51.02 0.625
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Table 6. Results for Problem 3, using the PR EOS with Mdldk; values, at 333.15K and 57.8 atm.

Composition [mole fraction] Total [moles)V [cm*/mol] D

CHASEOS GHsOH GH40; C4HsO2 H.O CO
Phase | (L) 0.213 0.213 0.169 0.170 0.235 9.510 60.76
Phase II(V) 0.223x 10 0.123x1F 0.746 x 1 0.471 x 1G 0.989 0.490 349.45

INTSTAB
Stationary Point | 0.213 0.213 0.169 0.170 0.235 60.76 0.000
Stationary Point Il 0.223x 10 0.123x1F 0.746 x 1 0.471 x 1 0.989 349.45 0.000
Stationary Point Il 0.129 x 10 0.224 x 10 0.845 x 10¢ 0.269 x 1¢ 0.877 94.43 0.161
Stationary Point IV 0.398 0.784 x100.103 x 1¢ 0.601 0.127 36.70 -1.185
Stationary Point V. 0.601 x 0 0.274 0.290 0.349 x 10 0.341 71.06 -0.061
CHASEQOS (repeat 1)
Phase I (L) 0.409 0.250 x 0 0.506 x 1¢ 0.586 0.473 x 18 3.506 37.22
Phase I1(L) 0.171x I 0.238 0.322 0.624 x 1G¢ 0.416 6.494 72.34
INTSTAB (repeat 1)
Stationary Point | 0.409 0.250 x'100.506 x 16 0.586 0.473 x 16 37.22 0.000
Stationary Point Il 0.171 x 10 0.238 0.322 0.624 x 10 0.416 72.34 0.000
Stationary Point Il 0.819 x 10 0.972x1¢° 0.834 x 1 0.122 x 1G 0.990 349.78 -0.017
Stationary Point IV 0.487 x 10 0.199 x 10 0.979 x 100 0.713 x 1G 0.877 92.42 0.147
Stationary Point V. 0.309 0.120 0.724 x100.272 0.227 50.45 0.581

(continued on next page)
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Table 6 (continued)

CHASEQOS (repeat 2)
Phase I (L)
Phase II(L)
Phase Il (V)

INTSTAB (repeat 2)
Stationary Point |
Stationary Point 1l
Stationary Point 11l
Stationary Point 1V
Stationary Point V

0.410

0.842 x I 0.996 x 1G 0.868 x 1GF

0.410

0.842 x 10 0.996 x 1¢ 0.868 x 1C
0.484 x 10 0.193 x 10 0.978 x 10

0.310

0.253 x$00.520 x 1@ 0.585
0.173 x Ib 0.243

0.466 x 10

0.329 0.632 x Y0 0.405

0.253 x100.520 x 1@ 0.585
0.173 x 10 0.243

0.121

0.123x 1G 0.989

0.466 x 10

0.329 0.632 x 10 0.405

0.739 x100.272

0.123x 1G 0.989
0.694 x 1G 0.877

0.223

3.507
6.362
0.131

37.24
72.80
349.53

37.24
72.80
349.53
94.05

50.62

0.000
0.000
0.000
0.161

0.582
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Table 7. Results for the hypothetical reactive systeRroblem 4, using the SRK EOS at 200K and 42.5 bar.

Composition [mole fraction] Total [moles] V [cm*mol] D
CHASEQOS CH CO: CeH14 H>
Phase | (V) 0.658  0.574x100.398 x 10° 0.285 1.0 314.88
INTSTAB
Stationary Point | 0.658 0.574x100.398 x 1G° 0.285 314.88 0.000
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Table 8. Results for the nonreactive system in Pnodleusing the SRK EOS at 200K and 42.5 bar.

CHASEOS
Phase I (L)
Phase Il (V)

INTSTAB
Stationary Point |
Stationary Point 1l
Stationary Point 11l

CH
0.249
0.513

0.249
0.513
0.654

Composition [mole fraction]

CO,
0.194

CeH1a H>

0.542 0.153 X10

0.505 x 10 0.295 x 10 0.437

0.194

0.542 0.153 X 10

0.505 x100.295 x 10 0.437

0.204

0.254 x100.116

Total [moles]

0.484 x 10
0.952

V [cm?/mol]

82.14
341.10

82.14
341.10
67.36

0.000
0.000
0.348

35



Table 9. Binary interaction parameters used in Problem 5.

Model A
Binary Pair kij
Methane — C® 0.093
Methane -h-Hexane 0.036
Methane — HS 0.08
CO, —n-Hexane 0.118
CO,—HS 0.099
n-Hexane — HS 0.05

Model B

ki

0.12
0.0
0.08
0.15
0.12
0.06
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Table 10. Pure component physical property data used in préblem

Model A
Component T [K] Pc [atm] 1)
CH, 190.515 45.482 0.0105
CO, 304.125 72.815 0.235

N-CsH14 507.400 29.706 0.300

H.S 373.375 88.562 0.0905

Te [K]

190.6
304.2
507.4

373.2

Model B

Pc [atm]

45.4
72.8
29.3

88.2

0.008

0.225

0.296

0.1
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Table 11. Results for Problem 5, using the SRK EOS at 200K 215 bar, with Model A parameter values.

Composition [mole fraction]

CHASEOS CH CO, CeH14 H.S

Phase | (L) 0.328 0.720 x10 0.363x 10¢0  0.564

Phase Il (V) 0.952 0.189 x 10 0.256 x 10 0.289 x 10
INTSTAB

Stationary Point | 0.328 0.720 x10 0.363x 100  0.564

Stationary Point II 0.952 0.189 x10 0.256 x 10 0.289 x 10

Stationary Point IlI 0.893 0.335x10 0.144 x1¢ 0.717 x 10

Total [moles]V [cm*/mole] D

0.724
0.276

38.94
228.83

38.94
228.83
79.57

0.000
0.000
0.038
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Table 12. Results for Problem 5, using the SRK EOS at 200K 25 bar, witiModel B parameter values

CHASEOS
Phase I (L)
Phase Il (L)
Phase Il (V)

INTSTAB
Stationary Point |
Stationary Point 1l
Stationary Point 11l
Stationary Point 1V
Stationary Point V

CH

0.524
0.184
0.949

0.524
0.184
0.949
0.892
0.333

Composition [mole fraction]

CO
0.696 x 10
0.611 x 0
0.228 x 10

0.696 x10
0.611 x 10
0.228 x 10
0.372 x10
0.716 x10

CeH14

0.499 x 10
0.813 x 1¢
0.267 x 1d

0.499 x 1¢
0.813 x 1¢
0.267 x 1d
0.166 x 1¢
0.290 x 1¢

H.S
0.356
0.747
0.283 x 1¢

0.474
0.324
0.202

0.356
0.747
0.283 x 1¢
0.688 x 1¢
0.567

Total [moles] V [cm*/mol]

43.51
34.69
227.76

43.51
34.69
227.76
81.35
38.46

0.000

0.000
0.000
0.037

0.003
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