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Abstract

Food chains and websin the environment are highly nonlinear and interdependert
systems.When these systemsare modeled using simple setsof ordinary di eren tial
equations, thesemodels can exhibit very rich and complex mathematical behaviors.
We present here a new equation-solving technique for computing all equilibrium
states and bifurcations of equilibria in food chain models. The method used is
basedon interval analysis, in particular an interval-Newton/generalized-bisection
algorithm. Unlik e the cortinuation methods often usedin this context, the interval
method provides a mathematical and computational guarantee that all roots of a
nonlinear equation system are located. The technique is demonstrated using three
di erent food chain models, and results of the computations are usedto compare
the models.
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1 Intro duction

Food chain modeling provides challengesin the elds of both theoretical ecol-
ogy and applied mathematics. Simple food chain models often display rich
nonlinear mathematical behavior, including varying numbers and stability of
equilibrium states and limit cycles,which change as the model parameters
change. Many di erent model formulations are possible, depending on the
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number of speciesbeinganalyzed,the predation responseseingused,whether

ageor fertilit y structure is of interest for a given species,and how resources
are being modeledfor the basalspecies.Analysis of food chain modelsis often

performed by examining the parameter spaceof the model in one or more

variables. This approad is referredto as bifurcation analysis,and it provides
a powerful tool for conciselyrepreseting a large amourt of information re-

garding both the number and stability of equilibrium states (steady states)

and limit cyclesin amodel. In atwo-parameterbifurcation diagram, the shape

of bifurcation curves can elucidate the dependence,or lack there of, between
model parameters,which in turn can provide information on their ecological
relevance. Furthermore, both the shape and the order of bifurcation curves
in a diagram can be usedto make comparisonsbetweendi erent food chain

models.

Determining the equilibrium statesand bifurcations of equilibria in a nonlin-

ear dynamical systemis often a challenging problem, and great e ort can be
expendedin analyzing even a relatively simple food chain model with nonlin-

ear functional responses.For somesimple systems,or speci ¢ parts of more
complexones,analytic techniquesand isocline analysismay be useful. How-

ewer, for more complex problems, numerical cortinuation methods are the

predominart computational tools, with padkagessud as AUTO (Doedel et
al., 2002), MATCONT (Dhooge et al., 2003) and others being particularly

popular in this cortext. Continuation methods can be quite reliable, espe-
cially in the hands of an experienceduser. Howeer, cortinuation methods
are initialization dependernt and thus provide no guarartee that all equilib-
rium states and all bifurcations of equilibria will be found. E ectiv e use of
cortinuation methods may require somea priori understandingof systembe-
havior in order to provide the initializations neededto determinea complete
bifurcation diagram. In this paper, we descrite an alternative approad for

computing equilibrium states and bifurcations of equilibria, and apply this

approad to an analysisand comparisonof food chain models. This approadh

is basedon interval mathematics, in particular an interval-Newton approadt

combined with generalizedbisection, and provides a mathemati@al and com-
putational guarantee that all equilibrium statesand bifurcations of equilibria
will be located, without needfor initializations or a priori insights into system
behavior. There are other dynamical featuresof interestin food chain models,
sud aslimit cycles(and their bifurcations); howewer, our attention here will

be limited to equilibrium statesand their bifurcations. Interval methodologies
have beensuccessfullyapplied to the problem of locating equilibrium states
and singularities in traditional chemical engineeringproblems, sud as reac-
tion and reactive distillation systems.Examplesof theseapplicationsare given
in Schnepper and Stadtherr (1996), Gehrke and Marquardt (1997), Bischof et
al. (2000), and Mennigmannand Marquardt (2002).

Many simple two speciesfood chain models have beenthoroughly explored,



while recen attention hasbeenfocusedon modelswith three or more trophic
levels. Two tritrophic food chain models have received considerableattention
in the eld of theoretical ecology (Kooi, 2003). These models both feature
Holling Type Il predation responses,but one is embeddedin a chemostat
while the other features a prey that grows logistically in the absenceof a
predator. Thesemodelsare often referredto as Canale'schemostatmodel and
the (tritrophic) Rosenzwig-MacArthur model, respectively. In this paper, we
will considerasexampleghesetwo models,alongwith athird, experimertally-
veri ed model (Fussmannet al., 2000)that hasrecenly beenintroducedinto
the literature. This third model involvesa planktonic rotifer feedingon a uni-
cellular green algae. Nitrogen is the limiting resourcefor the algae, and is
modeled using a chemostat. The planktonic rotifer is modeled as a fertilit y-
structured population, and consumesalgaeaccordingto the Holling Type II
functional response. These three food chain models share some fundamen-
tal similarities (all usethe Holling Type Il response,two are enbeddedin a
chemostat), but they feature major di erences, too. We will demonstratethe
interval method by using it to compute bifurcation diagramsfor thesethree
examplesystems Bifurcation analysisis then usedto determinewhat qualita-
tive e ects the similarities and di erences betweenthesemodels have on the
number and stability of equilibrium states.

Though it is not the primary focus here, our overall interest in ecological
modeling is motivated by its useas onetool in studying the impact on the

environmert of the industrial use of newly discovered materials. Clearly it is
preferableto take a proactive, rather than reactive, approac when consider-
ing the safey and environmertal consequencesf using new compounds. Of
particular interest is the potertial useof room temperature ionic liquid (IL)

solens in place of traditional solverts (Brennedke and Maginn, 2001). IL

solverts have no measurablevapor pressure(i.e., they do not evaporate) and
thus, from a safey and environmertal viewpoint, have se\eral potertial ad-
vantagesrelative to the traditional volatile organic compounds (VOCSs) used
as solerts, including elimination of hazardsdue to inhalation, explosionand
air pollution. Howewer, ILs are, to varying degrees,soluble in water; thus if

they are usedindustrially on a large scale,their ertry into the environmen

via agueouswaste streamsis of concern.The e ects of trace levels of ILs in

the ervironment are today not well known and thus must be further studied.
Ecological modeling provides a meansfor studying the impact of sud per-
turbations on a localized environmert by focusing not just on single-sgecies
toxicity information, but rather on the larger impacts on the food chain and
ecosystem(Bartell et al., 1992). Of course,ecologicalmodeling is just one
part of a much larger suite of tools, including toxicological (e.g.: Bernot et
al., 2005a,b;Ranke et al., 2004;Stepnavski et al., 2004), microbiological(e.g.:
Docherty and Kulpa, 2005;Pernak et al., 2003) and other (e.g.: Ropel et al.,
2005;Gorman-Lewisand Fine, 2004)studies,that must be usedin addressing
this issue.



In the next section, we will briey introduce the food chain models usedas
examplesand we will formulate the nonlinear equation systemsthat must be
solved in order to locate the equilibrium statesand bifurcations of equilibria.
In Section3, a brief introduction to interval mathematicsis givenand the com-
putational method is summarized.In Section4, we apply the computational
technique to compute bifurcation diagramsfor the three example models of
interest, and usetheseresults to comparethe models. In Section5, we con-
clude and provide remarkson the advantages,applicability and limitations of
the computational method presened.

2 Problem Form ulation

2.1 Rosenzweig-MacAhur Model

The tritrophic Rosenzwig-MacArthur food chain model has beenfrequertly
studied in the eld of theoretical ecology(Hastings and Powell, 1991;Abrams
and Roth, 1994;Klebano and Hastings,1994;Kuznetsos and Rinaldi, 1996;
De Feo and Rinaldi, 1997;Gragnani et al., 1998;Kooi, 2003; Moghadasand
Gumel, 2003). This food chain consistsof a prey, predator, and superpreda-
tor. The prey is modeledusing a logistic growth function, while the predators
and superpredatorsconsumebiomassaccordingto the Holling Type 11, or hy-
perbolic, responsefunction. This functional responseis mathematically more
complexthan a simple linear response,but it provides a leveling-o (satura-
tion) e ect asprey abundanceincreases.Thus, it is a more realistic model of
behavior obsened in the environment. The model is given by the following
balanceequations:

dX]_ _ X1 X2
dX2 _ Xy aszX3
a2 e2b2+X1 b + X @ ?
dx agX
= 22y ®

E_X3 esbg,+X2

Here x4, X,, and X3 are the biomassesf the prey, predator, and superpreda-
tor populations, respectively. The (nonnegatiwe) parametersa;, by, d;, and g
are the maximum predation rate, half-saturation constart, density-dependen
death rate, and predation e ciency of the prey (i = 1), predator (i = 2), and
superpredator (i = 3) species.The parameterr is the prey growth rate con-
stant and K is the prey carrying capacity. The carrying capacity represets



the maximum amourt of prey biomassthat the systemcansupport in absence
of a predator. As the prey population increasesthe rate of growth declines
until readiing the carrying capacity, at which point the rate of growth becomes
zero. Positive terms on the right-hand sidesof Egs. (1{3) represeh organism
growth, while negative terms represeh lossof organismsdue to predation and

death.

2.2 Canale'sChemostatModel

Canale'schemostatmodel is a tritrophic (prey, predator, superpredator) food
chain model that is very similar to the Rosenzwig-MacArthur model pre-
serted in Section 2.1. The di erence is that Canale'smodel is embeddedin

a chemostat, which is a constart volume systemwith constart ow in and
out. The predator and superpredator grow by consumingthe prey and preda-
tor species,respectively, while the prey grows by consumingnutrients in the
chemostat. The rate at which the prey, predator, and superpredator consume
food is modeled by the Holling Type I, or hyperbolic, functional response.
There is a constart ow through the chemostat, which carries nutrients into

the system, and which carries nutrients and organismsout of the system.
Chemostat models are generally believed to be superior to logistic modelsin

terms of resource/consumeinteractions. Studieshave comparedlogistic prey
growth with chemostat-basedfood chains using both model formalisms and
bifurcation diagrams. Seweral examplesin literature utilize bifurcation dia-

gramsto comparethe behavior predicted by thesedi erent food chain models
(Kooi et al., 1997b,1998;Gragnani et al., 1998).

Canale'schemostatmodel is given by the following balanceequations:

% = D(Xn Xo) ;1:(_0):(2 (4)
% =X1 € b_La-ll-X?(O bzaixj(l d "D ()
% = X2 ezbza_zl_x)l(l baaixj(z d "2D (6)
D3 v e 2 g, "D (7)
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Here X, is the nutrient concerration in the systemand X4, X, and x3 are the
biomassesf the prey, predator, and superpredator populations, respectively.
The (nonnegatiwe) parametersa;, b, di, and e are the maximum predation
rate, half-saturation constart, density-dependen death rate, and predation



e ciency of the prey (i = 1), predator (i = 2), and superpredator (i =

3) species.The parameter X, is the nutrient conceiration o wing into the
system,and the parameterD is the in o w rate (equalto the out o w rate). The
term "D is the density-dependern washoutrate of speciesi. The constart "; 2

[0; 1] quarti es how well a speciesis ableto resistwashout.For instance,if "; =

1, the organismwill be unableto resistwashout. An exampleof sud a species
would be a unicellular algae.Conversely if *; = 0, that organismis completely
resistart to washout. Positive terms on the right-hand sides of Egs. (4{7)

represen in o w of nutrient and organism growth. Negative terms represen
out o w and consumptionof nutrient, and lossof organismsdue to predation,
wash out and death. This model has received considerableattention in the
eld of theoretical ecology(Kooi et al., 1997a;Boer et al., 1998;Gragnani et
al., 1998;Kooi, 2003;El-Sheikh and Mahrouf, 2005).

2.3 Experimentally-Veri e d Algae-Rotifer Model

Fussmannet al. (2000) have preserted a food chain model consistingof an age-
structured population of planktonic rotifers, Brachionuscalyci orus, feeding
on unicellular green algae, Chlorella vulgaris. Nitrogen is the resourcethat
limits algal growth in this chemostat system.By varying both the in o w nu-
trient conceftration as well as the dilution rate in the experimertal system,
Fussmannet al. (2000) were able to obsene both steady-state and oscilla-
tory behavior in the speciespopulations. By using data from both literature
and from experimerts, Fussmannet al. (2000) constructeda simple nonlinear
model that was able to qualitativ ely predict both the steady-stateand oscil-
latory behavior obsened in the experimertal setup. Furthermore, this model
was ableto predict the points at which the populations transition from a sta-
ble state to an oscillatory state. This model is given by the following balance
equations:

dN heNC

dC _ kNC 1 bsCB ©)
dt Kc+N "Kg+C

dR _ bCR

Gt Ke+C (+m+ )R (20)
dB _ BCR _

G T K.+ C ( + m)B: (12)

Here N is the concerttration of nitrogen in the system,C is the concerration
of the algae (Chlorella vulgaris), R is the concelitration of the reproducing



rotifers, and B is the total rotifer (Brachionuscalyci orus ) conceftration. N;
is the concertration of nitrogen in the in o w medium while is the constart
in o w rate in the system(equalto the out o w rate). b and by are the maxi-
mum birth rates of Chlorella and Brachionus respectively, while K¢ and Kg
are the half-saturation constaris of Chlorella and Brachionus respectively.
" is the assimilation e ciency of Brachionus and m is the mortality rate of
Brachionus As mertioned previously, the rotifer population is age-structured.
The reproducing rotifers, R, comprisea subsetof the total rotifer population,
B. Growth in the rotifer population occurs only in the reproducing rotifer
population. Howe\er, the ertire rotifer population cortinuesto consumealgal
biomass.Non-repraducing rotifers must cortinue to consumealgaein order
to replacebiomasslost to respiration and excretion. After a period of time
the reproducing rotifers stop producing o spring, and this is represeted by

, Which is the fecundity decg rate. Sincethis model was experimertally ver-
ied, at leastqualitatively, it provides an interesting basis of comparisonto
both Canale'smodel and the Rosenzweig-MacArthur model.

2.4 Equilibrium States

The equilibrium states (steady states) in a food chain are de ned by the
condition
dx

az f(x)=0; (12)

which in this caseis alsosubject to the feasibility condition

x O (13)

Once all of the model parametershave beenspeci ed, Eq. 12 represeis an
n n systemof nonlinear equationswhich can be solved for the equilibrium
states.In general,equation systemsof this type, asthey arisein the modeling
of food chains, may have multiple solutions, and the number of equilibrium
states may be unknown a priori. For simple models, it may be possibleto
solve for many of the equilibrium statesanalytically, and somestateswill not
satisfy Eq. 13 and thus will be infeasible.For more complexmodels, however,
a computational method is neededthat is capableof nding, with certainty,
all the feasible solutions of the nonlinear equation system, or any algebraic
reduction thereof.

Determining the stability of an equilibrium state is accomplishedby lineariz-
ing the model about the steady state and examining the eigervalues that
characterize the form of the solution to the linearized model. Theseare the



eigervaluesof the Jacobianmatrix of the model equationsf (x) with respect
to the state variablesx, or J = f = x, ewaluated at the steady-statevalues
of the state variables.In order for the equilibrium state to be stable, eat of
theseeigervaluesmust have a negative real part. If any of the real parts are
nonnegatiwe, then the equilibrium state cannot be classi ed as an attractor.

2.5 Bifurcations

A bifurcation is a changein the topological type of the phase portrait as
one or more model parametersare varied. Bifurcations of interest here oc-
cur at parameter valueswhere the number or stability of equilibrium states
change (Kuznetsov, 1998). We are primarily interested in three types of
codimension-onebifurcations, namely fold, transcritical and Hopf, and two
types of codimension-wvo bifurcations, namely double-fold (or double-zero)
and fold-Hopf. The \codimension" of a bifurcation indicates the number of
additional conditions required to specify the particular type of bifurcation,
and thus the number of parametersthat must be allowed to vary. Thus, to
nd a codimension-onebifurcation, one additional condition must be given,
and one parameter (which we denote as ) is allowed to vary, and to nd

a codimension-wo bifurcation, two additional conditions must be given, and
two parameters( ; ) are allowed to vary. Se\eral detailed treatments of bi-
furcation analysisare available (e.g.: Seydel,1988;Kuznetsor, 1998;Govaerts,
2000).

When a fold or transcritical bifurcation of equilibria occurs, two equilibria
\collide" asthe bifurcation parameteris varied. This collision resultsin either
an exdangeof stability (transcritical) or mutual annihilation of two equilibria
(fold). Mathematically, when an equilibrium state undergaeseither a fold or
transcritical bifurcation, an eigervalue of its Jacobianis zero(Govaerts, 2000).
Sincethe determinart of a matrix is equalto the product of its eigervalues,
the determinart of the Jacobianwill be zeroat a fold or transcritical bifur-
cation, thereby providing a conveniert test function (Kuznetsov, 1998).Thus,
to locate fold or transcritical bifurcations of equilibria, the equilibrium con-
dition can be augmerted with the additional condition det[J(x; )] = 0 and
additional variable , the bifurcation parameter. This givesthe augmerted
eguation system
dx

G- T )=0 (14)

detlJ(x; )] = O (15)

The augmerned systemis then solvedto nd any fold and transcritical bifur-
cations of equilibria, alongwith the correspnding value or valuesof



When a single equilibrium state changesstability as a model parameter is
varied, this correspndsto a Hopf bifurcation. Mathematically, whenan equi-
librium state undergcesa Hopf bifurcation, its Jacobianhasa pair of complex
conjugateeigervalueswhosereal parts are zero. Thus, there must be a pair of
eigervaluesthat sumsto zero.Accordingto Stephanos'sheorem (Kuznetsov,

product J J haseigervalues ; ; and the bialternate product 2J | has
eigervalues ;+ . Thus,to locate a Hopf bifurcation, the equilibrium condi-
tion canbe augmered (Kuznetsov, 1998;Govaerts, 2000)with the additional
condition det[2J(x; ) 1]= 0. This givesthe augmerned equation system

dx _ oy
a—f(x,)—o (16)
detf2J(x; ) 1]=0: a7)

The augmerned systemis then solvedto nd any Hopf bifurcations, alongwith

the correspnding value or valuesof . The bialternate product oftwo N N

matricesA and B isan M M matrix denotedby A B whoserows are

labeled by the multindex (p;q) wherep= 2;3;:::;N andqg= 1;2;:::;p 1,

whosecolumnsare labeled by the multiindex (r;s) wherer = 2;3;:::;N and

s=1;2:::;r 1, whereM = N(N 1)=2, and whoseelemerts are given by
0 1

1 r S r S
(A B)pars = 5%)?): : + :: :: K

: (18)

Note that while solutionsto the augmered systemwill include all Hopf bifur-

cation points, there may be other solutions correspnding to neutral saddles
(which occur when there are two eigervaluesthat are real additive inverses).
To idertify and screenout neutral saddleswe computethe eigervaluesof the

Jacobianat eadt solution of the augmerted equation system. If the Hopf bi-

furcation occursin an independen two-variable subsetof state space,this is
referredto asa planar Hopf bifurcation. In general,a Hopf bifurcation corre-
spondsto the appearanceor disappearanceof a limit cycle(stable or unstable)
around the equilibrium state (Seydel, 1988). Frequerily this correspnds to

a changein the stability of the equilibrium state. Howewer, for systemswith

more than two state variables, this is not always the case,depending on the

sign of the real part of other eigervalues.

The two types of codimension-wo bifurcations of interest (double-fold and
fold-Hopf) can both be located by using the sameaugmeriing functions as
introduced above. When an equilibrium undergcesa double-fold bifurcation,
its Jacobianhastwo zeroeigervalues.When an equilibrium undergaesa fold-
Hopf bifurcation, its Jacobian has one eigervalue that is zero and a pair of



purely imaginary complex conjugate eigervalues. Thus, the determinart of
the Jacobianwill be zeroin both a double-fold and a fold-Hopf bifurcation,
becausen both casedhereis at leastoneeigervaluethat is zero.Furthermore,
in both casesthere is a pair of eigervaluesthat will sumto zero,and sothe
determinart of the bialternate product 2J | will be zero. Thus, to locate
a double-fold or a fold-Hopf codimension-wvo bifurcation of equilibrium, the
equilibrium condition can be augmerted with the two additional equations
det[J(x; ; )]= Oanddet[2J(x; ; ) 1]= 0andtwo additional variables
(free parameters) and . This givesthe augmerted equation system

ax _ oo _

G ofxi)=0 (19)
detlJ(x; ; )] =0 (20)
det[2J(x; ; ) I]=20: (21)

The augmerned systemis then solvedto nd the codimension-ivo bifurcations
of interest, along with the correspnding valuesof and . Once found, we
determine the eigervalues of the Jacobianat ead solution. This allows the
solutionsto be screenedor neutral saddles,and to be sorted and classi ed by
type. Codimension-tvo bifurcations are often of interest sincethey may sene
as\organizing certers" for a two-parameterbifurcation diagram.

Whether oneis looking for equilibrium statesasdiscussedn Section2.4,or the
bifurcations of equilibria discussedabove, there is a systemof nonlinear equa-
tions to be solved that may have multiple solutions, or no solutions, and the
number of solutions may be unknown a priori. Typically theseequation sys-
tems are solved using a cortinuation-basedstrategy (Kuznetsov and Rinaldi,
1996;Kuznetsar, 1998;Kooi and Kooijman, 2000).In general,howewer, con-
tinuation methods are initialization dependen, and so provide no guarartee
that all equilibrium statesor bifurcations of equilibria will be found. Bifurca-
tion diagramscan also be generatedby using a grid-basedapproad in which
a grid is establishedin the two-variable parameterspaceand the number and
stability of equilibrium statesis computedat ead grid point (Fussmannet al.,
2000). The resulting information can provide the approximate location of the
bifurcation curveson the diagram, but doesnot give their exact location. A
computational method is neededthat is capableof nding, with certainty, all
the solutions of the nonlinear equation systemsthat characterizeequilibrium
statesand their bifurcations. We descrile herean interval-Newton method for
this purpose.

10



3 Computational Metho d

In this section,a brief introduction to interval mathematicsis given, followed
by a summary of the interval-basedcomputational method usedto solve the
equation systemsformulated above.

A realinterval X is de ned asthe setof real numbersbetween(and including)
given upper and lower bounds. That is, X = [X;X]=fx 2 <jX X

X'g. Here an underline is used to indicate the lower bound of an interval
while an overline is usedto indicate the upper bound. An interval vector

geometrically as an n-dimensional rectangular polytope or \b ox". Similarly,
ann m interval matrix A hasinterval elemets A, i = 1,2;::;;nandj =
1;2;:::;m. Note that in this section, uppercasequartities are intervals and
lower casequartities, or uppercasequartities with an underline or overline,
are real numbers.

Interval arithmetic is an extensionof real arithmetic. For an elemetary real
arithmetic operationop 2 f+; ; ; g the correspnding interval operations
onintervals X = [X;X]andY = [Y;Y] arede ned as

XopY="Ffxopyjx2X;y2Yq: (22)

That is, the result of aninterval arithmetic operationon X andY isaninterval
cortaining all possibleresults of performing the operation using any number
contained in X and any number cortained in Y. In terms of the endpoints of
X andy,

h i

X+Y= X+Y;X+Y ; (23)
h

X Y= X Y X Y; (24)
h o o

X Y= mn XY;XY;XY; XY ;max XY;XY;XY; XY ; (25)
h i h i h i

X Y= X;X 1=Y;1=Y ; where062Y;Y : (26)

h i
If 02 Y;Y , the division of the two intervals X and Y can be de ned using
an extendedinterval arithmetic in which the result may not be an interval but
a union of two disjoint intervals (Kearfott, 1996). Interval extensionsof the
elemenary functions (sin; cos tan; exp; log, etc.) can also be dewloped, since
they can be represeted as seriesexpansionsusing the elemetary arithmetic
operations given above.

11



When interval arithmetic computations are performed using a computer,
rounding errors must be dealt with in order to insure that the result is a
rigorousenclosure Sincecomputerscanonly represeh a nite setof real num-
bers(macdhine numbers), the results of oating-p oint arithmetic operationsto
compute the endpoints of an interval must be determined using a directed
(outward) rounding. That is, the lower endpoint is rounded down, ideally to
the largest machine number lessthan or equal to the lower bound, and the
upper endpoint is roundedup, ideally to the smallestmacdine number greater
than or equal to the upper bound. In this way, through the use of interval
arithmetic, as opposedto oating-p oint arithmetic, any potertial rounding
error problems are avoided. Seweral good introductions to interval analysis,
as well asinterval arithmetic and other aspects of computing with intervals,
are available (Neumaier, 1990;Kearfott, 1996;Jaulin et al., 2001;Hansenand
Walster, 2004). Implemertations of interval arithmetic and elemenary func-
tions are alsoreadily available, and recen compilersfrom Sun Microsystems
directly support interval arithmetic and an interval data type.

In general,for an arbitrary function f (x), the interval extensionF (X ) en-
closesall valuesof f (x) for x 2 X . That is, the interval extensionencloses
the rangeof f (x) over X . Interval extensionsare most often computed by
substituting the given interval X into the function f (x) and then ewaluat-
ing the function using interval arithmetic. This is called the \natural" in-
terval extension, and it may be wider than the actual range of function
values, though it always includes the actual range. For example, the natu-
ral interval extensionof f (x) = x=(x 1) over the interval X = [2;3]is
F(2;3]) = [23H[2;3] 1) = [2;3H1;2] = [1;3], while the true function
range over this interval is [1:5; 2]. This overestimation of the function range
is due to the \dependency" problem, which may arise when a variable occurs
more than oncein a function expression.While a variable may take on any
value within its interval, it must take on the samevalue eat time it occursin
an expression.Howe\er, this type of dependencyis not recognizedwhen the
natural interval extensionis computed. In e ect, when the natural interval
extensionis used,the rangecomputedfor the function is the rangethat would
occurif eat instanceof a particular variable wereallowedto takeonadi erent
valuein its interval range.For the casein which f (x) is a single-useexpression,
that is, an expressionin which ead variable occursonly once,interval arith-
metic will always yield the true function range. For example, rearrangemen
of the function expressionusedabove givesf (x) = x=(x 1)= 1+ 1=(x 1),
andnow F([2;3]) = 1+ 1=[2;3] 1) = 1+ 1491;2]= 1+ [0:5;1] = [1:5; 2],
the true range.For casesn which sud rearrangemets are not possible,there
are a variety of other approadesthat can be usedto try to tighten interval
extensions(Neumaier, 1990;Kearfott, 1996;Hansenand Walster, 2004).

Of particular interest hereis the interval-Newton technique for solving nonlin-
ear equation systems.Consideran n  n nonlinear equationsystemf (x) = 0

12



with a nite number of real roots in someinitial interval X ©. This initial

interval can be chosento be su ciently largeto encloseall physically feasible
behavior. The interval-Newton method is appliedto a sequencef subirtervals
of the initial interval X ©; aswill be seenbelaw, these subirtervals arise in
a bisection process.For a subirterval X ) in the sequencethe rst stepis
the function rangetest An interval extensionF (X () of the function f (x)
is calculated, which provides upper and lower bounds on the range of values
of f (x) in X . If there is any componert of the interval extensionF (X )
that doesnot include zero, then this subinterval can be discarded,sincethe
range of f (x) does not include zero over this subinterval, meaning that it

cannot cortain a solution to f (x) = 0. Additional tools, sud as constraint

propagation(e.g.,Jaulin et al., 2001)or Taylor models(e.g.,Makino and Berz,
2003),may alsobe applied at this point in order to reducethe sizeof X ) or
eliminate it.

If it hasnot beeneliminated, the testing of X ) cortinueswith the interval-
Newton test, which involves solving the linear interval equation system

h i
FIX ®)y N® x®O = § (x®): (27)

Eq. (27) is solved for a newinterval N ®, whereF {X ®) is an interval exten-
sion of the Jacobianof f (x) over the interval X ®, and x®) is an arbitrary
point in X ®_ It canbe shavn (Moore, 1966)that any root cortained in X )
is alsocortained in the \image" N . This implies that whenthe intersection
X ®\ N ® js empty, then no root existsin X ), and also suggeststhe iter-
ation schemeX **9 = x 0\ N ® |n addition, if N ® X ® it canbeen
shavn (Kearfott, 1996)that there is a uniqueroot cortained in X ® and thus
in N ®). Thus, after computation of N ), there are three possibleoutcomes:
1. X W\ N® = meaningthe currert interval X ) is shavn to cortain
no root, soit canbe discarded;2. N © X & meaningthe currert interval
X ® is shown to cortain a unique root, soit neednot be further tested; 3.
Neither of the above, but a newinterval X &9 = X ®\ N & canbe gener-
ated. In the last case,if there has beena signi cant reduction in the size of
the interval, then the interval-Newton test can be reapplied. Otherwise, the
interval X "1 is bisected,and the resulting two subirtervals are added to
the sequenceof subintervals to be tested. If an interval cortaining a unique
root hasbeenidenti ed, then this root can be tightly enclosedby cortinuing
the interval-Newton iteration, which will converge quadratically to a desired
tolerance.

This approad is referred to as an interval-Newton/generalized-bisection
(IN/GB) method. At termination, whenthe subintervals in the sequencéave
all beentested, either all the real roots of f (x) = 0 have beentightly enclosed
or it is determinedrigorously that no roots exist. An important feature of this
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approad is that, unlike standard methods for nonlinear equation solving that
require a point initialization, the IN/GB method requiresonly an initial inter-
val, and this interval cancover the ertire state and parameterspaceof interest.
Thus, interval-Newton methods essetially needno initialization. It shouldbe
emphasizedhat the interval-Newton approad is not equivalert to simply im-
plemerting the routine \p oint" Newton method in interval arithmetic. For a
more thorough treatment of interval-Newton methods, there are seeral good
sourcesavailable (Neumaier,1990;Kearfott, 1996;Hansenand Walster, 2004).
For additional details on the basic IN/GB algorithm used here, seeSdnep-
per and Stadtherr (1996). Seweral enhancemets of this basic algorithm are
also employed, namely the hybrid preconditioning approad and real-point
selectionstrategy descrited by Gau and Stadtherr (2002).

Using the interval method descriked in this section,it is possibleto determine
all solutionsto a nonlinear equation systemwithin a desiredseard interval,
or to shav that no sud solutionsexist. This canbe donenot only with mathe-
matical certainty, but alsowith computational certainty, sincethe useof inter-
val arithmetic with outward rounding eliminates any possiblerounding error
issues.This guarartee, togetherwith the lack of needfor initialization, aresig-
ni cant advantagesover traditional techniquesfor the location of equilibrium
states and bifurcations. In the next section, we apply the IN/GB approat
to the analysisand comparisonof the examplefood chain models descriked
above.

4 Results and Discussion

In this section, we apply the computational method descrilked above to com-
pute bifurcation diagramsfor the three example models of interest, and use
theseresults to comparethe models. It should be noted that, sincetheseare
relatively simple models, it is possibleto perform someof thesecomputations
analytically. Howeer, sincethis may not be possiblefor more complexmodels,
all the results presenied belov were computed numerically using the IN/GB
technique, without any analytical short cuts.

4.1 Rosenzweig-Mac/Ahur Model

Sincethis model, descriked above in Section2.1, is relatively simple and has
been widely studied both analytically and numerically, it provides a good
\pro of of concept" problem for testing the feasibility of the interval-based
method descriked in Section3 for determining equilibrium statesand bifurca-
tions of equilibria in food chain models. Following Gragnani et al. (1998), the
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Fig. 1. Bifurcation of equilibrium diagram of prey carrying capacity (K) versus
prey growth rate (r) for the Rosenzveig-MacArthur model. TE: Transcritical of
equilibrium; FE: Fold of equilibrium; H: Hopf, H,: Planar Hopf; FH: Fold-Hopf
codimension-two. Region of stable coexistenceshadedin grey.

parametersusedare setto a, = 5=3, b, = 1=3, e, = 1, d, = 0:4, a3 = 0:05,
b; = 05,63 = 1, d; = 0:01. Using the IN/GB equation-solvingmethod de-
scribed in Section 3, together with the plotting procedure descriked below,
a bifurcation diagram with the prey growth rate, r, and the prey carrying
capacity, K, asthe free parameterswas determined. This diagram is given in
Fig. 1.

Codimension-onebifurcation curveswerecomputedby solvingthe appropriate
augmerned systems,namely Eqgs. (14-15)for fold and transcritical bifurcations
and Egs. (16-17) for Hopf bifurcations. The diagram shavn in Fig 1 was gen-
erated by rst xing r at many (400) closelyspacedvaluesover the interval
[0,2] and determining the value(s) of K and x at which bifurcations occur.
There may be somevaluesof r for which one of the augmened systemshas
an in nite  number of solutions for K. For example,in Fig. 1, the left-most
transcritical bifurcation is a vertical line. This casecannot be handleddirectly
by the IN/GB technique, or could be missedby the steppingin r. Thus, to
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ensurethat all bifurcations are found, it is necessaryto alsoscanin the K di-
rection. That is, IN/\GB wasusedto solwe the appropriate augmerted systems
for r and x for many (400) closelyspacedvaluesof K over the interval [0,2].
Codimension-two bifurcations were located by using IN/GB to solwe the aug-
merted systemgivenby Eqgs. (19-21)for K, r, and x. The bifurcation diagram
(Fig. 1) computedusing the interval method is consistem with the known K
versusr bifurcation diagram given by Gragnaniet al. (1998),thus con rming
the utilit y and accuracyof this method for determining bifurcation of equilib-
ria diagrams. Sudh diagramscan be very easily and automatically generated
using the IN/GB approad, with certainty that all bifurcation curves have
beenfound.

Another usefultype of diagram in nonlinear dynamicsis the solution branch
diagram (or one-parameterbifurcation diagram). This type of diagram showvs
how the steady-statevalues and stability of the state variables changeas a
singlemodel parameteris varied. Thesediagramsare alsovery easilygenerated
using the interval method. For example, Fig. 2 shovs how the equilibrium
states change as the prey carrying capaciy, K, is varied from 0 to 2, while
the prey growth rate, r, is held constart at a value of 0.5. This diagram was
computed by using IN/GB to solwe the nonlinear equation system given by
Eq. (12). This systemwas solved for many (2000) closelyspacedvaluesof K .
In Fig. 2, and in subsequen solution branch diagrams, thin lines represen
unstable equilibria while thick lines represen stable equilibria.

In the solution branch diagram, onecan obsene se\eral bifurcations of equilib-
ria asK isincreased.This canalsobe seenby following a horizortal line across
Fig. 1 at a value of r = 0:5. Moving to the right along this line, v e bifurca-
tions are encourtered, namely (and in order) TE, Hy, FE, H, H (the rightmost
TE is not crossedat r = 0:5). The rst bifurcation to occur is a transcriti-
cal bifurcation (K 0:105), in which a stable prey-only state collides with
a prey-predator state which becomedeasibleat the bifurcation. Thesestates
excthange stability. The predator biomassthen beginsto increasewhile the
prey biomassremainsconstart. The next bifurcation that is obsenedis a pla-
nar Hopf bifurcation (K  0:544). Sincethis bifurcation occursat anr value
kelowthe fold-Hopf codimension-tvo bifurcation, this planar Hopf bifurcation
doesresult in a changein stability in the model. Above the fold-Hopf point,
the prey-predator state is feasiblebut is unstable due to the sign of the third
eigervalue, and thus the planar Hopf bifurcation doesnot result in a changeof
stability. The next bifurcation to occuris a fold bifurcation (K 0:872)where
two unstable coexisting (prey-predator-superpredator) statesbecomefeasible.
The next two bifurcations to occur are both Hopf bifurcations (K 1:186and
K 1:329).In the rst Hopf bifurcation, oneof the coexisting statesbecomes
stable, and the samestate becomeunstable in the subsequen bifurcation. In
the narrow interval of K that producesa stable, coexisting steady state, in-
creasingthe prey carrying capacity increaseshe biomassof the superpredator.
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Fig. 2. Solution branch diagrams illustrating the change in equilibrium states
(speciesbiomass) with change in the prey carrying capacity (K) for the Rosen-
zweig-MacArthur model. From left to right: prey, predator, and superpredator
biomassesr = 0:5 for all three plots.

Thus, by feedingthe bottom level of the food chain, the abundanceof the top
level can be increased Howe\er, this strategy only works to a point, and then
the systembecomesunstable. This phenomenais well known in the eld of
theoretical ecologyasthe \paradox of enrichment" (Abrams and Roth, 1994).

Regionsin a bifurcation diagram sud asFig. 1 canbe characterizedby using
solution branch diagramssud asFig. 2, or by directly computing the number
and stability of equilibrium statesfor a point in a givenregion. Often the region
of particular interest may be that correspnding to the valuesofr and K that
produce a stable, coexisting steady-state(all speciespresein). This regionis
shovn by the shadedareain Fig. 1. Within this region, as the prey growth
rate r increasesthe resourcesrequired by the prey (represeted by the prey
carrying capacity K ) to support a stable, coexisting state decreasesHowe\er,
at the sametime, the systembecomesamore sensitive to enrichmert, and the
amourt of enrichmernt necessaryo destabilizethe systemalsodecreasesThis
phenomenamakes sensemathematically when one considersthat both the
prey growth rate, r, and the prey carrying capacity, K, cortrol increasesn
the prey population. Therefore,increasingeither r or K can have the e ect of
destabilizingthe system.Howewer, only the parameterK descrikesenrichmert
of resourcesn the system.

Using the techniquesdescriked in this paper, bifurcation diagramsfor other
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model parameterscan be generatedwith ease.Similarly, it is also easyto
determine bifurcation diagramsfor variations of the Rosenzweig-MacArthur
model in which other predator responsefunctions (e.g., sigmoidal or Holling
type I11) are used. Seeral sud bifurcation diagrams have been computed
using the interval method by Gwaltney et al. (2004). One of these will be
discussedhere sothat comparisonscan be made with the other models used
as examples.This is the bifurcation diagram for the Rosenzweig-MacArthur
model with the prey growth rate r and predator death rate d, as bifurca-
tion parameters,and K = 1. This diagram was determined using the IN/GB

approad and is shown in Fig. 3.

Using solution branch diagramsto characterize the regionsin Fig. 3 shows
that the rightmost transcritical bifurcation, which is a vertical line, forms the
boundary between a stable prey-predator system (on the left) and a stable
prey-only system (on the right). Moving to the left, the next transcritical
bifurcation curve intersectsa codimension-wo fold-Hopf point. At d, values
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to the right of the fold-Hopf point, this transcritical bifurcation is the boundary
betweenthe stable coexisting steady state and the stable prey-predator state.
After the transcritical line intersectsthe fold-Hopf point, three bifurcation

curves are formed. These are a fold bifurcation, a transcritical bifurcation,

and a Hopf bifurcation. The fold bifurcation is a horizortal line (r  0:46875)
that originates at the fold-Hopf bifurcation. When increasingr and crossing
this fold bifurcation, two coexisting states form. Whether the transcritical

bifurcation or the Hopf bifurcation is crossedhext dependson the value of d,.

Crossingthe transcritical bifurcation resultsin oneof the two coexisting states
becominginfeasible. The state that becomesinfeasibleis also unstable. The
other state formed in the fold bifurcation becomesstable in the region above
and to the right of the Hopf bifurcation emanating from the fold-Hopf point.

With this knowledge, we have an understanding of the region of coexisting
stability in the d, versusr parameter space.This region is shavn by the
shadedareain Fig. 3. The shape of the region of coexisting stability indicates
that asthe predator death rate, d,, increasesthe minimum prey growth rate
necessaryo support a stable systemwill rst decreaseup to the codimension-
two fold-Hopf point, then increase.Furthermore, at larger prey growth rates,
the systemwill tolerate higher predator death rates beforethe coexisting state
becomesnfeasible.Finally, it is clearthat thereis an optimal prey growth rate
that will support the widest range of predator death rates.

4.2 Canale'sChemostatModel

The secondfood chain model usedas an examplehereis Canale'schemostat
model, as descrilked in Section2.2. Following Gragnani et al. (1998), the pa-
rametersused are setto a; = 1:25,bp = 8,¢ = 04,d;, = 001,"; = 1,
a, =033, =9, = 06,d, = 0:001,", = 0:8, a3 = 0:021,b; = 1519,
e; = 0:9,d; = 0:0001,"3 = 0:1. A bifurcation diagramwith the in o w rate, D,
and the concetration of the nutrient in the in o w, Xx,,, asthe free parameters
was then computed using the IN/GB method. This diagram is shavn in Fig.
4.

The codimension-onebifurcation curveswere computedby solving the appro-
priate equation systems(seeSection2.5), rst xing X, at many (400) closely
spacedvaluesover the interval [0,400]and determining the value(s) of D and
x at which bifurcations occur, and then xing D at many (700) closelyspaced
valuesover the interval [0,0.14]and determining the value(s) of x,, and x at
which bifurcations occur. A single codimension-ivo (fold-Hopf) bifurcation
was located by solving the appropriate augmened systemfor x,,, D, and x.

Fig. 4 capturesall bifurcations of equilibria shavn in the D vs. x, bifurcation
diagram preserted by Gragnaniet al. (1998). Howe\er, Fig. 4 alsoshows other
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bifurcation curvesthat do not appearin Gragnaniet al.'s diagram. First, there
is atranscritical bifurcation curvevery nearthe D axis (the leftmost TE in Fig.
4) that is not given by Gragnani et al. At this bifurcation, a stable nutrient-
only equilibrium state collides with an infeasible nutrient-prey equilibrium
state; the nutrient-prey state becomesfeasibleand exdiangesstability with
the nutrient-only state. Second,there is a planar Hopf bifurcation curve near
the x,, axis (lowestH, in Fig. 4) that is not shovn by Gragnaniet al. (we have
also computed other planar Hopf bifurcations curves very near the x, axis,
but theseare not visible in Fig. 4 due to the scaleused). For all of theseH,
bifurcations, the stability changeoccursonly in a two-variable subspacewith
the stability of the overall systemremainingunchanged(unstable); this is also
the casefor the lower portion (beneaththe fold-Hopf point) of the planar Hopf
curve that intersectsthe fold-Hopf point, which appearsboth in Fig. 4 and
in Gragnani et al.'s diagram. Whether the planar Hopf curves omitted from
Gragnani et al.'s diagram were actually not found, or were omitted simply
becausethey were not consideredinteresting, is not clear. What is important
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hereis that, by usingthe IN/GB method, we cansay with completecon dence
that we have in fact found all of the bifurcations curvesof interest.

Fig. 5 tracks the behavior of the equilibrium states as x,, is increasedfrom
0 to 400 along the horizontal line D = 0:09 in Fig. 4. Moving to the right
along this line, sewen bifurcations are encounered, namely (and in order)
TE, TE, Hy, FE, TE, H, H. The rst TE is not clearly visible in Fig. 5
due to the scaleused. The sixth and sewernth bifurcations, both Hopf, are of
particular interest here. The sixth bifurcation (x, 1125) resultsin the rst

stable, coexisting steady-state(all three speciespreser). But at the sewerth

bifurcation (x,  1845), this state becomesunstable. Howewer, within this
region of stability increasingthe in o w nutrient concetration, x,, enriches
the food chain and increasesthe stable population of the top predator, but
only to a point. This again illustrates the \paradox of enrichmert" in that
beyond the secondHopf bifurcation the system becomesunstable and the
populations may experience\b oom and bust" cycles. This behavior is very
similar to the behavior obsened in Fig. 2, which indicates that, while the
Rosenzwig-MacArthur model doesnot explicitly accoun for resourcesijt can
produce similar behavior when comparedto a resource-basednodel, sud as
Canale'smodel.

Using solution brandh diagramslike Fig. 5 we can characterizethe regionsin
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Fig. 4 and identify the boundson the regionof x, and D that correspndsto

a stable, coexisting steady-state.This regionis shovn by the shadedareain

Fig. 4. As indicated in Fig. 4, asthe in o w rate, D, increasesthe minimum

in 0 W nutrient conceltration, X,, requiredto support a coexisting steady-state
alsoincreasesThis behavior is intuitiv e becauseasthe in o w rate increases,
more nutrient and organismsare washedout of the system, resulting in the

needfor a higher nutrient in o w conceitration, X,, to support the minimum

biomassesf prey and predators necessaryfor survival of the predators and

superpredators,respectively.

The maximum X, boundary for the region supporting a stable, coexisting
steady state of all three speciesis the rightmost Hopf bifurcation curve. At
Xn valuesto the of right this curve, the systemis over-enriched and loses
stability. One can thus seefrom Fig. 4 that at relatively low in ow rates
(D / 0:0414),increasingD causesthe maximum x, allowable for a stable
coexisting state to decreaseThis canbe explainedby recognizingthat at very
low valuesof the in o w rate, D, increasingthe in o w rate hasthe predominan
e ect of increasingthe addition of nutrients to the system,thereby leadingto
over-enrilhmert and decreasingthe in o w nutrient conceiration at which
the rightmost Hopf bifurcation occursin Fig. 4. Howewer, at valuesof D '
0:0414,increasingthe in o w rate causegdhe e ects of washoutto becomemore
pronounced,and larger valuesof x,, are allowable becauseof the high removal
rate of both biomassand systemnutrient.

Various authors have utilized bifurcation diagramsto make comparisonsbe-
tweendi erent food chain model formulations. Kooi et al. (1997b,1998)com-
pared sewral di erent formulations of chemostat-basedfood chain models.
These authors used model formalismsto compare simple formulations with
two state variables,while modelswith three or four state variableswere com-
pared using bifurcation diagrams. These latter models are similar in formu-
lation to the Rosenzwig-MacArthur model and Canale's chemostat model,
as studied here and by Gragnani et al. (1998), howewer a di erent set of pa-
rameterswas used.Kooi et al. (1997b,1998) concludedthat chemostat-based
modelsexhibited fundamenally di erent behavior than modelswith prey that
grow accordingto the logistic growth function. On the other hand, Gragnani
et al. (1998) comparedthe Rosenzweig-MacArthur model (logistic prey) with
Canale'schemostatmodel under conditions of enrichmert, and concludedthat
the two models produce the same dynamics when a key parameter is var-
ied. That is, the dynamics obsened when K was varied in the Rosenzweig-
MacArthur model were equivalert to those in Canale's model when x,, was
varied. SinceKooi et al. (1997b,1998)and Gragnani et al. (1998) studied sys-
tems under much di erent conditions (model parameters), these conclusions
are not necessarilyin con ict.

In this work, we can comparethe shadedregionin Fig. 4 with the region pro-
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ducing a stable, coexisting steady state for the Rosenzweig-MacArthur model

(Fig. 1). This comparisonindicatesthat theseregionsare dissimilar. That is,

the behavior obsened when changing both r and K is not equivalert to the

behavior obsened when changing both D and x,,. This is due to inconsis-
tenciesbetweenthe parameterscomparedin thesemodels. The prey growth

rate r in the Rosenzwig-MacArthur model is not equivalert to the system
inow rate D in Canale'smodel. Thus, the use of a di erent parameter set
in the analysis of Canale'schemostat model may be appropriate for making
comparisonsof behavior with the Rosenzweig-MacArthur model. Since the

Rosenzwig-MacArthur model doesnot explicitly accoun for resourcesor for

washout, there is no parameterin that model that is equivalent to D. How-

ewer, in Canalesmodel, the prey speciesgrows at a maximum rate of e;ay;

thus changingthe maximum nutrient consumptionrate by the prey, a;, should
have a similar e ect to changingthe prey growth rate r in the Rosenzweig-
MacArthur model. Using IN/GB and the techniquesdescribed above, it is a
relatively easymatter to generatea bifurcation diagram in the x,, vs. a; pa-
rameter space.This diagram appearsas Fig. 6. SinceFig. 4 and Fig. 6 share
a commonparameter(X,), the gures shouldintersectin a three-dimensional
parameterspace.ln fact, the bifurcations that occur alongthe linesD = 0.07
in Fig. 4 and & = 1:25in Fig. 6 occur in the sameorder and at the same
values. This fact makes classi cation of someof the bifurcation lines much

easier.

Comparison of Fig. 6 for Canale's model and Fig. 1 for the Rosenzweig-
MacArthur model shows clear similarities. There are di erences, including an
additional transcritical bifurcation (which must exist due to the extra state
variable Xo) and the general shape of the bifurcation curves. Howewer, the
order in which one crosseshesecurves,whether moving from left to right, or
top to bottom, is the samein both diagrams. The regionin Fig. 6 in which
there is a stable, coexisting steady state is shovn by the shadedarea. This
regionis very similar in shape to the region of steady stable coexistencein
Fig. 1. The behavior obsened is very similar to the behavior discussedn Sec-
tion 4.1in that, asa; increasesthe amourt of food required by the prey, x,,
to support a stable, coexisting state decreasesHowewer, at the sametime,
increasinga; alsocauseghe systemto becomemore sensitive to enrichmert,
and thus the amourt of enrichmernt necessaryto destabilizethe systemalso
decreasesThe most noticeabledi erences betweenFig. 6 and Fig. 1 pertain
mainly to lines cortrolling the feasibility and stability of trophic subsystems
in the models, sud as the nutrient-prey-predator systemin Canale's model
and the prey-predator systemin the Rosenzweig-MacArthur model. The qual-
itativ e behavior in the region of stable coexistenceis very similar in both
models.

We can make a similar comparisonby using the IN/GB method to gener-
ate an a; versusd, bifurcation diagram for Canale's model. This diagram,
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Fig. 6. Bifurcation of equilibrium diagram of nutrient in o w concenration (xn) ver-
sus maximum nutrient consumption rate by the prey (a;) for Canale's chemostat
model with D = 0:07. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H:
Hopf; Hy: Planar Hopf, FH: Fold-Hopf codimension-two. Region of stable coexis-
tence shadedin grey.

given in Fig. 7, can be comparedto the to the r versusd, diagram for the
Rosenzwig-MacArthur model (Fig. 3). In Fig. 7, seeral of the bifurcation
curves lie very closetogether. Following a vertical line in Fig. 7 (increasing
a;) at the value of the predator death rate usedby Gragnani et al. (1998)
(d; = 0:001), we encourer se\en bifurcations, namely (and in order): TE,
TE, Hp, FE, H, H, TE. Initially the systemhas only one steady-state,which
is a stable nutrient-only state. At a; valuesbelow the horizontal transcritical
bifurcation (a; = 0:208), the prey doesnot consumenutrient quickly enough
for a nutrient-prey state to be feasible.In the rst transcritical bifurcation, a
nutrient-prey state forms, collides,and exdiangesstability with the nutrient-
only state. In the secondtranscritical bifurcation, a nutrient-prey-predator
systembecomedeasibleand exdiangesstability with the nutrient-prey state.
Then, as the planar-Hopf bifurcation is crossed,the nutrient-prey-predator
state losesstability. Due to the proximity of thesethree bifurcation lines at
low valuesof the predator death rate, the transition from a condition where
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Fig. 7. Bifurcation of equilibrium diagram of predator death rate (d,) versusmaxi-
mum nutrient consumption rate by the prey (ai) for Canale'schemostat model with
D = 0:07and x, = 2000. TE: Transcritical of equilibrium; FE: Fold of equilibrium;
H: Hopf; Hy: Planar Hopf; FH: Fold-Hopf codimension-two. Region of stable coex-
istence shadedin grey.

the only feasiblestate is the (stable) nutrient-only state to a condition where
there are three feasible states, none of which are stable, occurs over a very
small range of a;. As the maximum nutrient consumptionrate (a;) is further
increaseda fold bifurcation is crossed,which causestwo coexisting statesto
becomefeasible,but neither are stable. This fold bifurcation is, in fact, a hor-
izontal line with avalueofa; 0:487.The behavior of this fold bifurcation is
qualitativ ely identical to that obsenedin Fig. 3. The presenceof a horizontal
fold bifurcation marking the boundary for coexisting feasibility indicatesthat
the prey growth rater in the Rosenzweig-MacArthur model, and the maximum
nutrient consumptionrate a; in Canale'smodel are comparableparameters,
and they have very similar e ects on systembehavior. Furthermore, it indi-
catesthat there is a minimum r or a; below which the prey simply cannot
grow fast enoughto replacelossesand maintain a feasible,coexisting steady
state, and that this minimum value is independen of the predator death rate
d. The Hopf bifurcation, which originatesin the fold-Hopf codimension-wo
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bifurcation, is crossednext. When this bifurcation is crossedone of the coex-
isting statesbecomesstable. The fold bifurcation and Hopf bifurcation occur
at extremely closevaluesof a;, which results in the two lines being almost
indistinguishable on Fig. 7. Crossingthe secondHopf bifurcation (which en-
ters the diagram on the a; axis) causeshe stable coexisting state to become
unstable. Crossingthe subsequen transcritical bifurcation causesthe unsta-
ble coexisting state that did not changestability due to the Hopf bifurcation
to becomeinfeasible.This transcritical bifurcation, which emanatesfrom the
fold-Hopf codimension-wo point, causeshe samechangein systembehavior
asthe transcritical line emanatingfrom the fold-Hopf point in Fig. 3.

With this knowledge,we can visualize the region of coexisting feasibility and
stability. This regionis shavn by the shadedareain Fig. 7. The transcritical
bifurcation that intersectsthe fold-Hopf bifurcation forms the right boundary
of steady stable coexistenceat predator death rate valuesgreater than the
codimension-wvo fold-Hopf bifurcation (d,  0:0955).To the right of this tran-
scritical bifurcation the predator deathrate is too large and the superpredator
population is decimated. This behavior is also idertical to that obsened in
Fig. 3. Thus, at somepoint no matter how quickly the prey are able to grow
and replacetheir lossesjncreasingthe predator death rate will causea stable
coexisting steady-stateto becomeinfeasible.This macroscopicchangeoccurs
when the superpredator population disappears, not the predator population,
ewventhough it is the predator death rate that is increasing.While this behav-
ior is courterintuitiv e, asexplainedin Gwaltney et al. (2004), similar behavior
can alsobe seenin the Rosenzwig-MacArthur model.

As indicated by the shadedareas,the regionsin Fig. 3 and Fig. 7 supporting
a stable, coexisting steady-stateare very similar in shape. The primary di er-
enceis that in Fig.7, the Hopf bifurcation line emanating from the fold-Hopf
bifurcation doesnot reversedirection. Instead, moving to the left, it crosses
the a; axis. Another Hopf bifurcation then enters the diagram on the a; axis,
and this Hopf bifurcation causesthe samechangein stability that is caused
by the Hopf bifurcation in Fig. 3 after it changesdirection. Actually, if Fig.
7 were extendedinto the negative d, parameter space,we could seethat the
two Hopf bifurcations are actually a cortinuous curve that reversesdirection,
just like in Fig. 3. The key bifurcation linesthat cortrol the feasibility of the
coexisting state are identical in behavior to those obsened in Fig. 3. In gen-
eral, asthe maximum nutrient consumptionrate by the prey, a;, increasesthe
systemgiven by Canale'sChemostatmodel is ableto tolerate higher predator
death rates beforethe coexisting state becomesnfeasible.In Canale'smodel
we also obsene that asthe maximum nutrient consumptionrate by the prey
increasesthe minimum predator death rate necessaryto support a stable co-
existing state increases.This behavior matchesthe behavior obsened in Fig.
3 for the Rosenzweig-MacArthur model.
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The primary di erences between Fig. 7 for Canale's model and Fig. 3 for
the Rosenzwig-MacArthur model are seenin the bifurcation lines which deal
with the boundaries at which the predator population becomesinfeasible,
and wherethe prey-predator subsystemchangesstability. Theselines are the
planar Hopf bifurcation and the rightmost transcritical bifurcation in Figs.
3 and 7. An additional horizortal transcritical bifurcation is presen in Fig.
7. The presenceof this bifurcation is expected as it provides the boundary
between the nutrient-only state and the nutrient-prey state. The fact that
the line is horizontal indicates that the minimum value of a; necessaryto
support a feasible (and stable) nutrient-prey state does not depend on the
predator deathrate, d,. This behavior is expectedbecausehe behavior of the
nutrient-prey subsystemshould not depend on any parametersnot appearing
in the subsystem,including the predator death rate. We will obsene idertical
behavior in examiningthe algae-rotifermodel, which is alsoexplicitly accourts
for resourcesdby modeling the limiting nutrient in a chemostat.

4.3 Algae-Rotifer Model

The nal food chain model usedasan examplehereis the algae-rotifermodel,
as descriked in Section 2.3. Following Fussmannet al. (2000), the parame-
ters usedare setto e = 3:3day !, Kc = 4:3 mollliter, by = 2:25day 1!,
Kg = 15 moll/liter, m = 0:055day !, = 0:4day !, and" = 0:25. The four
state variables (N, C, R and B) are modeled in terms of nitrogen concen-
tration ( mol/liter), with the last three then cornverted to numbers of organ-
isms accordingto 1 mol/liter = 5 10* cells per milliliter for Chlorella and
1 mol/lliter = 5 femalesper milliliter for Brachionus A bifurcation diagram
with the inow rate, , and the concetration of the nitrogen in the inow,
N;, asthe free parameterswasthen computed using the IN/GB method, and
is given in Fig. 8.

Fussmannet al. (2000) determineda vs. N; bifurcation diagram by using
a grid-basedapproad in which a grid is establishedin the two-variable pa-
rameter spaceand the number and stability of equilibrium statesis computed
directly at ead grid point. In comparing Fig. 8 to the diagram preseted by
Fussmannet al. (2000),oneshouldnote that the axeshave beenreversedin or-
derto facilitate comparisonswith the modelspreviously discussedn this work.
Furthermore, the diagram preserted by Fussmannet al. (2000) cortained a
regionfor the coexistenceof stablelimit cycles,which are not examinedin this
work. Finally, Fig. 8 shavs a transcritical bifurcation alongthe in o w rate ( )
axis, which doesnot appear in Fussmannet al. (2000). This occurs because
the diagram in Fussmannet al. (2000)is limited to de ning regionsin which
a stable, coexisting state exists (whether it is an equilibrium state or a limit
cycle).
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Fig. 8. Bifurcation of equilibrium diagram of in o w nitrogen concerration (N;)
versusin o w rate ( ) for the algae-rotifer model. TE: Transcritical of equilibrium;
H: Hopf. Region of stable coexistenceshadedin grey.

In Fig. 8, asN; increasesjn most caseghree bifurcations will be crossedand

theseare (from left to right) two transcritical bifurcations and a Hopf bifurca-

tion. At valuesof / 0:037,another Hopf bifurcation will alsobe crossedAs

the leftmost transcritical bifurcation is crosseda stable nitrogen-algaesystem
becomesfeasible. As the secondtranscritical bifurcation is crossed,a stable
coexisting (nitrogen-algae-rotifer) state becomesfeasible (and the nitrogen-
algae system becomesunstable). Finally, as the Hopf bifurcation is crossed,
the stable coexisting state becomesunstable. Crossingthe Hopf bifurcation

nearthe N; axis alsocauseghe stable coexisting state to becomeunstable. At

a givenvalue of N;, at valuesof below this Hopf bifurcation, the coexisting

state is feasible,but unstable.

The regionwherea coexisting steady-stateis both feasibleand stableis shavn
by the shadedareain Fig. 8. When comparing Fig. 8 with Fig. 4, one may
initially notice a similarity betweenthe regionsof steady stable coexistence.
Howe\er, recall that the algae-rotifer model only featurestwo trophic levels,
while Canale's model features three. Thus, the rightmost transcritical and
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Hopf bifurcationsin Fig. 8 areequivalert to the middle transcritical bifurcation
and the planar Hopf bifurcation passingthrough the fold-Hopf point in Fig.
4. Even taking this into accoun, the behavior of the stable, coexisting state
(nitrogen-algae-rotifer) in the algae-rotifer model matches the same trends
obsenedin the nutrient-prey-predator subspaceof Canale'schemostatmodel.
There is oneprimary di erence, that beingthat the lower boundary in Fig. 4
is formed by the transcritical bifurcation (which alsoformsthe left boundary)
while in Fig. 8, the lower boundary consistsof a Hopf bifurcation. Despite
this di erence, it should be recognizedthat increasingthe dilution rate ( )
or the nitrogen concetration in the in o w medium (N;) has a similar e ect
to increasingeither D or x,, on the nutrient-prey-predator state in Canale's
chemostat model. Thus thesemodels exhibit similar behavior in terms of the
e ects of enrichmert, and the paradax of enrichmernt alsoappliesto the algae-
rotifer model.

In orderto further comparethe algae-rotifermodel with both the Rosenzweig-
MacArthur model and Canale'schemostatmodel, a bifurcation diagram com-
paring the maximum algal growth rate, b-, and the in o w medium nitrogen
concerration, Nj, is needed.t is easyto reliably generatethis diagram using
the IN/GB method andthe techniquesdescritedin this paper. The bifurcation
diagram s givenin Fig. 9.

This diagram can be comparedto Fig. 1 for the Rosenzweig-MacArthur model

and Fig. 6 for Canale's chemostat model. The bifurcation curves are easily
identi able becausealongthe lines = 0:08day ! andb: = 3:3day ?, Fig. 8
and Fig. 9 intersect. Thus, the order of the bifurcation curvesis, from left to

right, and bottom to top, TE, TE, H. The regionof steady stable coexistence
is showvn by the shadedareain Fig. 9. Initially this region seemsdissimilar
to the regionsobsened in Fig. 1 and Fig. 4. Recall that in the Rosenzweig-
MacArthur model and in Canale'schemostat model, asthe prey growth rate

increasedthe amourt of enrichment neededo destabilizethe coexisting state

decreased.The opposite e ect is predicted by the algae-rotifer model. This

phenomenais, again, explained by the fact that the algae-rotifer model con-
sistsof only two trophic levels, while the other two modelsboth feature three

trophic levels. The rightmost transcritical and Hopf bifurcation curvesin Fig.

9 can be thought of as being equivalert to the middle transcritical bifur-

cation and the planar Hopf bifurcation in Fig. 6. Thus the behavior of the

coexisting state (nitrogen-algae-rotifer) of the algae-rotifermodel matchesthe

behavior obsened in the nutrient-prey-predator subspaceof Canale'smodel.

The behavior of these spacesdi ers from the Rosenzweig-MacArthur model

in that the limits of steady stable coexistencefor the prey-predator subspace
in the Rosenzwig-MacArthur model do not depend on the prey growth rate,

r, which can obsened by the vertical planar Hopf bifurcation line and the

vertical (leftmost) transcritical bifurcation in Fig. 1.
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Fig. 9. Bifurcation of equilibrium diagram of in o w nitrogen concerration (N;)
versusmaximum algal growth rate (bc) for the algae-rotifer modelwith = 0:8=day.
TE: Transcritical of equilibrium; H: Hopf. Region of stable coexistenceshadedin

grey.

In order to comparethe behavior predicted by the experimertally-veri ed

algae-rotifermodelwith the behaviors predicted by the Rosenzweig-MacArthur
model in Fig. 3 and by Canale'smodel in Fig. 7, a diagram comparing the
maximum algal growth rate, I, with the rotifer mortality rate, m, is neces-
sary. This diagram was generatedusing the IN/GB method, as before,and is
givenin Fig. 10.

In Fig. 10 there are three bifurcation curves presen. There is a horizontal
transcritical line at by 0:8344,which matchesthe value of b at which the
transcritical bifurcation occursin Fig. 9 at N; = 100Q0. At valuesof bz belov
this line, the only feasiblestate is a nutrient-only state. Crossingthis tran-
scritical bifurcation results in a nitrogen-algaestate becomingboth feasible
and stable. This horizortal line in Fig. 10 indicates that there is a minimum
value of the maximum algal growth rate I that is necessaryto support a
feasiblealgal population, and this value is not dependert on the rotifer mor-
tality rate, which matchesthe behavior obsened in Canale'smodel in Fig. 7.

30



Fig. 10. Bifurcation of equilibrium diagram of rotifer mortality rate (m) versus
maximum algal growth rate (bc) for the algae-rotifer model with = 0:8=day and
N; = 1000 mol/liter . TE: Transcritical of equilibrium; H: Hopf. Region of stable
coexistenceshadedin grey.

This behavior makesintuitiv e sensein that the behavior of the nutrient-prey
(nitrogen-algae)subsystemshould not depend on any model parametersthat
do not appear in that subsystem,which includesthe predator (rotifer) mor-
tality rate. The secondtranscritical bifurcation in Fig. 10 always occurs at
valuesof i greaterthan the horizontal transcritical bifurcation. Crossingthis
bifurcation by either increasingl: or by decreasinghe rotifer mortality rate,
m, results in a feasibleand stable coexisting (nitrogen-algae-rotifer) steady
state for this system. The last bifurcation in this diagram is a Hopf bifurca-
tion. Crossingthis bifurcation left to right by increasingthe rotifer mortality
rate, m, resultsin an unstable coexisting state becomingstable.

The regionof coexisting stability is shavn by the shadedareain Fig. 10.Recall
that the algae-rotifer model only has two trophic levels while both Canale's
model and the Rosenzwig-MacArthur model feature three levels. Therefore
Hopf bifurcations in the algae-rotifermodel shouldmatch planar Hopf bifurca-
tions in the previoustwo models examined.Furthermore, the behavior of the
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coexisting state in the algae-rotifer model should match the behavior of the
prey-predator subspacein the other two models. When Fig. 10 is compared
to Fig. 7 we can immediately seethat the behavior of the Hopf bifurcation
in Fig. 10 matches the behavior of the planar Hopf bifurcation in Fig. 7.
Crossingthe planar Hopf bifurcation in Fig. 7 resultsin a changein stabil-
ity of the nutrient-prey-predator subsystem;however, this stability changeis
not always obsened due to the sign of the fourth eigervalue. Furthermore,
the second(non-horizortal) transcritical bifurcation in Fig. 10 matchesthe
behavior of the rightmost transcritical bifurcation in Fig. 7. Therefore, the
trends obsened for the nutrient-prey-predator system are equivalert in the
two models. In the Rosenzweig-MacArthur model, onceagain we seethat the
prey-predator subspaces boundedby a vertical planar Hopf bifurcation line
and a vertical (rightmost) transcritical bifurcation in Fig. 3, and thereforethis
region, as obsened previously doesnot depend on the prey growth rate, r.
This, of course,di ers from the behavior obsened for both Canale's model
and the algae-rotifermodel. Howewer, it is easyto seethat the two chemostat-
basedmodels behare quite similarly when the comparisonis made between
identical state spaces.

5 Concluding Remarks

Using se\eral examplesdrawn from three di erent food chain models,we have
demonstratedhere the use of an interval-Newton method for the analysis of
the nonlineardynamical systemsthat arisein food chain modeling, speci cally
for computing all equilibrium statesand bifurcations of equilibria (fold, tran-
scritical, Hopf, double-fold and fold-Hopf). Using this method it was possible
to easily without any needfor initialization or a priori insight into expected
systembehavior, generatecompletesolution branch diagramsand bifurcation
of equilibria diagrams. This was done automatically, without requiring user
interaction, a common need (Kuznetsov, 1998) in using cortinuation tools.
Furthermore, this could be done with certainty, sincethe technique provides
a mathematical and computational guarartee that all solutionsto a system
of nonlinear equationsare enclosed.Sincethis technique is essetally initial-
ization independen, beyond the setting of an initial interval for study, it can
provide a powerful alternative to traditional cortinuation methods, which in
generalare initialization dependart and thus may not be completelyreliable.

In principle, the interval method can be applied to compute the equilibrium
states and bifurcations of equilibria in any cortinuous-time model of popula-
tion dynamicsin a food chain or food web, though in practice it is subject to
somelimitations, asdiscussedelon. The advantagesprovided by the interval
approad shouldmake it particularly usefulwhenewer analysisof a new model
is undertaken, sincethis is the casein which initialization issuesare mostlikely
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to arisein using traditional methods. For similar reasonswe have found the
method to be very useful, as shovn in the examplesabove, in working with
existing modelsin parametersubspacesot analyzedpreviously.

We are particularly interestedin the application of this method in the dewel-
opmert and improvemer of relatively small-scalefood webs. There hasbeen
signi cant recen interest in modeling sud systemsand in studying their dy-
namics using bifurcation analysis. For example, Kooi and Kooijman (2000)
deweloped a simplefood network model that illustrates the e ects of introduc-
ing a competitiv e speciesin the lowest trophic level. One- and two-parameter
bifurcation diagramsin a parameterspacedescribingthe addition of nutrients
to the systemwere usedto showv that introducing a competitive speciesto
the prey trophic level can stabilize an oscillatory nutrient-prey-predator sys-
tem. Kuijp er et al. (2003) useda small-scalefood web model to to investigate
the e ects of omnivory, or intraguild predation, in a chemostat. Bifurcation
diagrams were computed to analyze the relationship betweenthe extert of
intraguild predation and the concetration of nutrient in the in o w, showving
that omnivory can stabilize food chains, eliminate chaos,and give rise to mul-
tiple steady states. Kavadia et al. (2007) studied the dynamics of free-living,
nitrogen- xing bacterial populations under varying ervironmertal and com-
petitive conditions using a simple food network model. Bifurcation diagrams
were usedto illustrate the e ects of altering system dilution rates and en-
ergy sourceswith the conclusionthat nitrogen- xing populations can coexist
with competitors under certain conditions of enrichmert, but can be inhib-
ited or destroyed when speci ¢ nutrient resourcesare low. In theseexamples,
and in similar small-scalefood network models, the interval approad can be
applied to validate existing bifurcation diagramsand to compute new bifur-
cation diagramsfor other parametervaluesor in other parameter subspaces.
By providing a reliable and very easily usedapproad for determining one-or
two-parameter bifurcation diagrams, the interval method also makesit easy
to look at the e ects of changingtrophic interactions and responsefunctions,
as well as parametervalues,and to thus study possibleimprovemerts in the
models.

Despite the advantages of the interval technique described here, there are
somepractical limitations. An important limitation is that our currert imple-
mertation of the interval-Newton method is not suitable for directly locating
limit cyclesand their bifurcations, which arevery important dynamic features.
By providing a reliable method for computing Hopf bifurcations, the interval
method does provide a reliable meansto initialize cortinuation methods for
locating cycles(sincea Hopf bifurcation correspndsto the appearanceor dis-
appearanceof a limit cycle), and this is useful. This combination of interval
and cortinuation methods shouldprovide areliable, though not guararteedap-
proach for locating limit cyclesand their bifurcations. A fully interval method
for limit cyclesis beinginvestigated,basedin part onideasprovided by Galias
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(2001, 2002).

Another limitation of the interval approad is in the problem size (number of
state variables) that it can be applied to. This limitation is directly related
to computation time requiremerns, and thus somediscussionof the computa-
tional e ort requiredto solve the exampleproblemsis needed.AverageCPU
timesfor the computation of fold and transcritical bifurcations rangedfrom 0.6
to 16 secondger parameteriteration, while for computing Hopf bifurcations
this gure was 1.4to 100secondsComputing codimension-2double fold and
fold-Hopf bifurcation points required between39 and 4800secondsThe wide
range of computation times is dueto a variety of factors, including di erences
in the level of complexity betweenthe models, aswell as di erences between
computersused(all computationsweredoneon eithera 1.7 GHz or 3.4GHz In-
tel CPU, underthe Linux operating systemusing Intel Fortran Compiler 7.1).
For the examplesstudied herewe considerthis level of computational e ort to
be quite reasonablegspecially sincethe method usedprovides a guarartee of
reliability, which other methods do not. Furthermore, sincethe diagramscan
be generatedautomatically, without userintervertion to deal with initializa-
tion issuesthe elapsediime to generatea bifurcation diagramfor a newmodel
may actually be signi cantly lessthan wheninitialization-dependert methods
are used.Howeer, as problem sizegrows much beyond that consideredhere,
the determination of two-parameter bifurcation diagrams using the interval
method will becomesigni cantly more expensive computationally. This is due
primarily due to the complexity involved in computing the determinart and
bialternate product functions, and their derivatives, in Eqgs. (15), (17), (20)
and (21). On the other hand, the computation of equilibrium states was ex-
tremely fast for the models consideredin this work, requiring lessthan 0.1
secondsf CPU time per parameteriteration. This suggestghat it shouldbe
possibleto compute solution branch diagrams for much larger systems.We
have recenlly demonstratedthis by using the interval method to compute all
the equilibrium statesin a nonlinear 17-variable food web model Gwaltney et
al. (2006).
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