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Abstract

Food chains and webs in the environment are highly nonlinear and interdependent
systems. When these systems are modeled using simple sets of ordinary differential
equations, these models can exhibit very rich and complex mathematical behaviors.
We present here a new equation-solving technique for computing all equilibrium
states and bifurcations of equilibria in food chain models. The method used is
based on interval analysis, in particular an interval-Newton/generalized-bisection
algorithm. Unlike the continuation methods often used in this context, the interval
method provides a mathematical and computational guarantee that all roots of a
nonlinear equation system are located. The technique is demonstrated using three
different food chain models, and results of the computations are used to compare
the models.
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1 Introduction

Food chain modeling provides challenges in the fields of both theoretical ecol-
ogy and applied mathematics. Simple food chain models often display rich
nonlinear mathematical behavior, including varying numbers and stability of
equilibrium states and limit cycles, which change as the model parameters
change. Many different model formulations are possible, depending on the
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number of species being analyzed, the predation responses being used, whether
age or fertility structure is of interest for a given species, and how resources
are being modeled for the basal species. Analysis of food chain models is often
performed by examining the parameter space of the model in one or more
variables. This approach is referred to as bifurcation analysis, and it provides
a powerful tool for concisely representing a large amount of information re-
garding both the number and stability of equilibrium states (steady states)
and limit cycles in a model. In a two-parameter bifurcation diagram, the shape
of bifurcation curves can elucidate the dependence, or lack there of, between
model parameters, which in turn can provide information on their ecological
relevance. Furthermore, both the shape and the order of bifurcation curves
in a diagram can be used to make comparisons between different food chain
models.

Determining the equilibrium states and bifurcations of equilibria in a nonlin-
ear dynamical system is often a challenging problem, and great effort can be
expended in analyzing even a relatively simple food chain model with nonlin-
ear functional responses. For some simple systems, or specific parts of more
complex ones, analytic techniques and isocline analysis may be useful. How-
ever, for more complex problems, numerical continuation methods are the
predominant computational tools, with packages such as AUTO (Doedel et
al., 2002), MATCONT (Dhooge et al., 2003) and others being particularly
popular in this context. Continuation methods can be quite reliable, espe-
cially in the hands of an experienced user. However, continuation methods
are initialization dependent and thus provide no guarantee that all equilib-
rium states and all bifurcations of equilibria will be found. Effective use of
continuation methods may require some a priori understanding of system be-
havior in order to provide the initializations needed to determine a complete
bifurcation diagram. In this paper, we describe an alternative approach for
computing equilibrium states and bifurcations of equilibria, and apply this
approach to an analysis and comparison of food chain models. This approach
is based on interval mathematics, in particular an interval-Newton approach
combined with generalized bisection, and provides a mathematical and com-

putational guarantee that all equilibrium states and bifurcations of equilibria
will be located, without need for initializations or a priori insights into system
behavior. There are other dynamical features of interest in food chain models,
such as limit cycles (and their bifurcations); however, our attention here will
be limited to equilibrium states and their bifurcations. Interval methodologies
have been successfully applied to the problem of locating equilibrium states
and singularities in traditional chemical engineering problems, such as reac-
tion and reactive distillation systems. Examples of these applications are given
in Schnepper and Stadtherr (1996), Gehrke and Marquardt (1997), Bischof et
al. (2000), and Mönnigmann and Marquardt (2002).

Many simple two species food chain models have been thoroughly explored,
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while recent attention has been focused on models with three or more trophic
levels. Two tritrophic food chain models have received considerable attention
in the field of theoretical ecology (Kooi, 2003). These models both feature
Holling Type II predation responses, but one is embedded in a chemostat
while the other features a prey that grows logistically in the absence of a
predator. These models are often referred to as Canale’s chemostat model and
the (tritrophic) Rosenzweig-MacArthur model, respectively. In this paper, we
will consider as examples these two models, along with a third, experimentally-
verified model (Fussmann et al., 2000) that has recently been introduced into
the literature. This third model involves a planktonic rotifer feeding on a uni-
cellular green algae. Nitrogen is the limiting resource for the algae, and is
modeled using a chemostat. The planktonic rotifer is modeled as a fertility-
structured population, and consumes algae according to the Holling Type II
functional response. These three food chain models share some fundamen-
tal similarities (all use the Holling Type II response, two are embedded in a
chemostat), but they feature major differences, too. We will demonstrate the
interval method by using it to compute bifurcation diagrams for these three
example systems. Bifurcation analysis is then used to determine what qualita-
tive effects the similarities and differences between these models have on the
number and stability of equilibrium states.

Though it is not the primary focus here, our overall interest in ecological
modeling is motivated by its use as one tool in studying the impact on the
environment of the industrial use of newly discovered materials. Clearly it is
preferable to take a proactive, rather than reactive, approach when consider-
ing the safety and environmental consequences of using new compounds. Of
particular interest is the potential use of room temperature ionic liquid (IL)
solvents in place of traditional solvents (Brennecke and Maginn, 2001). IL
solvents have no measurable vapor pressure (i.e., they do not evaporate) and
thus, from a safety and environmental viewpoint, have several potential ad-
vantages relative to the traditional volatile organic compounds (VOCs) used
as solvents, including elimination of hazards due to inhalation, explosion and
air pollution. However, ILs are, to varying degrees, soluble in water; thus if
they are used industrially on a large scale, their entry into the environment
via aqueous waste streams is of concern. The effects of trace levels of ILs in
the environment are today not well known and thus must be further studied.
Ecological modeling provides a means for studying the impact of such per-
turbations on a localized environment by focusing not just on single-species
toxicity information, but rather on the larger impacts on the food chain and
ecosystem (Bartell et al., 1992). Of course, ecological modeling is just one
part of a much larger suite of tools, including toxicological (e.g.: Bernot et
al., 2005a,b; Ranke et al., 2004; Stepnowski et al., 2004), microbiological (e.g.:
Docherty and Kulpa, 2005; Pernak et al., 2003) and other (e.g.: Ropel et al.,
2005; Gorman-Lewis and Fine, 2004) studies, that must be used in addressing
this issue.
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In the next section, we will briefly introduce the food chain models used as
examples and we will formulate the nonlinear equation systems that must be
solved in order to locate the equilibrium states and bifurcations of equilibria.
In Section 3, a brief introduction to interval mathematics is given and the com-
putational method is summarized. In Section 4, we apply the computational
technique to compute bifurcation diagrams for the three example models of
interest, and use these results to compare the models. In Section 5, we con-
clude and provide remarks on the advantages, applicability and limitations of
the computational method presented.

2 Problem Formulation

2.1 Rosenzweig-MacArthur Model

The tritrophic Rosenzweig-MacArthur food chain model has been frequently
studied in the field of theoretical ecology (Hastings and Powell, 1991; Abrams
and Roth, 1994; Klebanoff and Hastings, 1994; Kuznetsov and Rinaldi, 1996;
De Feo and Rinaldi, 1997; Gragnani et al., 1998; Kooi, 2003; Moghadas and
Gumel, 2003). This food chain consists of a prey, predator, and superpreda-
tor. The prey is modeled using a logistic growth function, while the predators
and superpredators consume biomass according to the Holling Type II, or hy-
perbolic, response function. This functional response is mathematically more
complex than a simple linear response, but it provides a leveling-off (satura-
tion) effect as prey abundance increases. Thus, it is a more realistic model of
behavior observed in the environment. The model is given by the following
balance equations:

dx1

dt
= x1

[

r
(

1 −
x1

K

)

−
a2x2

b2 + x1

]

(1)

dx2

dt
= x2

[

e2
a2x1

b2 + x1
−

a3x3

b3 + x2
− d2

]

(2)

dx3

dt
= x3

[

e3
a3x2

b3 + x2
− d3

]

. (3)

Here x1, x2, and x3 are the biomasses of the prey, predator, and superpreda-
tor populations, respectively. The (nonnegative) parameters ai, bi, di, and ei

are the maximum predation rate, half-saturation constant, density-dependent
death rate, and predation efficiency of the prey (i = 1), predator (i = 2), and
superpredator (i = 3) species. The parameter r is the prey growth rate con-
stant and K is the prey carrying capacity. The carrying capacity represents
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the maximum amount of prey biomass that the system can support in absence
of a predator. As the prey population increases, the rate of growth declines
until reaching the carrying capacity, at which point the rate of growth becomes
zero. Positive terms on the right-hand sides of Eqs. (1–3) represent organism
growth, while negative terms represent loss of organisms due to predation and
death.

2.2 Canale’s Chemostat Model

Canale’s chemostat model is a tritrophic (prey, predator, superpredator) food
chain model that is very similar to the Rosenzweig-MacArthur model pre-
sented in Section 2.1. The difference is that Canale’s model is embedded in
a chemostat, which is a constant volume system with constant flow in and
out. The predator and superpredator grow by consuming the prey and preda-
tor species, respectively, while the prey grows by consuming nutrients in the
chemostat. The rate at which the prey, predator, and superpredator consume
food is modeled by the Holling Type II, or hyperbolic, functional response.
There is a constant flow through the chemostat, which carries nutrients into
the system, and which carries nutrients and organisms out of the system.
Chemostat models are generally believed to be superior to logistic models in
terms of resource/consumer interactions. Studies have compared logistic prey
growth with chemostat-based food chains using both model formalisms and
bifurcation diagrams. Several examples in literature utilize bifurcation dia-
grams to compare the behavior predicted by these different food chain models
(Kooi et al., 1997b, 1998; Gragnani et al., 1998).

Canale’s chemostat model is given by the following balance equations:

dx0

dt
= D(xn − x0) −

a1x0x1

b1 + x0

(4)

dx1

dt
= x1

[

e1
a1x0

b1 + x0

−
a2x2

b2 + x1

− d1 − ε1D
]

(5)

dx2

dt
= x2

[

e2
a2x1

b2 + x1

−
a3x3

b3 + x2

− d2 − ε2D
]

(6)

dx3

dt
= x3

[

e3
a3x2

b3 + x2

− d3 − ε3D
]

. (7)

Here x0 is the nutrient concentration in the system and x1, x2, and x3 are the
biomasses of the prey, predator, and superpredator populations, respectively.
The (nonnegative) parameters ai, bi, di, and ei are the maximum predation
rate, half-saturation constant, density-dependent death rate, and predation
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efficiency of the prey (i = 1), predator (i = 2), and superpredator (i =
3) species. The parameter xn is the nutrient concentration flowing into the
system, and the parameter D is the inflow rate (equal to the outflow rate). The
term εiD is the density-dependent washout rate of species i. The constant εi ∈
[0, 1] quantifies how well a species is able to resist washout. For instance, if εi =
1, the organism will be unable to resist washout. An example of such a species
would be a unicellular algae. Conversely, if εi = 0, that organism is completely
resistant to washout. Positive terms on the right-hand sides of Eqs. (4–7)
represent inflow of nutrient and organism growth. Negative terms represent
outflow and consumption of nutrient, and loss of organisms due to predation,
wash out and death. This model has received considerable attention in the
field of theoretical ecology (Kooi et al., 1997a; Boer et al., 1998; Gragnani et
al., 1998; Kooi, 2003; El-Sheikh and Mahrouf, 2005).

2.3 Experimentally-Verified Algae-Rotifer Model

Fussmann et al. (2000) have presented a food chain model consisting of an age-
structured population of planktonic rotifers, Brachionus calyciflorus, feeding
on unicellular green algae, Chlorella vulgaris. Nitrogen is the resource that
limits algal growth in this chemostat system. By varying both the inflow nu-
trient concentration as well as the dilution rate in the experimental system,
Fussmann et al. (2000) were able to observe both steady-state and oscilla-
tory behavior in the species populations. By using data from both literature
and from experiments, Fussmann et al. (2000) constructed a simple nonlinear
model that was able to qualitatively predict both the steady-state and oscil-
latory behavior observed in the experimental setup. Furthermore, this model
was able to predict the points at which the populations transition from a sta-
ble state to an oscillatory state. This model is given by the following balance
equations:

dN

dt
= δ(Ni − N) −

bCNC

KC + N
(8)

dC

dt
=

bCNC

KC + N
−

1

ε

bBCB

KB + C
(9)

dR

dt
=

bBCR

KB + C
− (δ + m + λ)R (10)

dB

dt
=

bBCR

KB + C
− (δ + m)B. (11)

Here N is the concentration of nitrogen in the system, C is the concentration
of the algae (Chlorella vulgaris), R is the concentration of the reproducing
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rotifers, and B is the total rotifer (Brachionus calyciflorus) concentration. Ni

is the concentration of nitrogen in the inflow medium while δ is the constant
inflow rate in the system (equal to the outflow rate). bC and bB are the maxi-
mum birth rates of Chlorella and Brachionus, respectively, while KC and KB

are the half-saturation constants of Chlorella and Brachionus, respectively.
ε is the assimilation efficiency of Brachionus, and m is the mortality rate of
Brachionus. As mentioned previously, the rotifer population is age-structured.
The reproducing rotifers, R, comprise a subset of the total rotifer population,
B. Growth in the rotifer population occurs only in the reproducing rotifer
population. However, the entire rotifer population continues to consume algal
biomass. Non-reproducing rotifers must continue to consume algae in order
to replace biomass lost to respiration and excretion. After a period of time
the reproducing rotifers stop producing offspring, and this is represented by
λ, which is the fecundity decay rate. Since this model was experimentally ver-
ified, at least qualitatively, it provides an interesting basis of comparison to
both Canale’s model and the Rosenzweig-MacArthur model.

2.4 Equilibrium States

The equilibrium states (steady states) in a food chain are defined by the
condition

dx

dt
= f(x) = 0, (12)

which in this case is also subject to the feasibility condition

x ≥ 0. (13)

Once all of the model parameters have been specified, Eq. 12 represents an
n × n system of nonlinear equations which can be solved for the equilibrium
states. In general, equation systems of this type, as they arise in the modeling
of food chains, may have multiple solutions, and the number of equilibrium
states may be unknown a priori. For simple models, it may be possible to
solve for many of the equilibrium states analytically, and some states will not
satisfy Eq. 13 and thus will be infeasible. For more complex models, however,
a computational method is needed that is capable of finding, with certainty,
all the feasible solutions of the nonlinear equation system, or any algebraic
reduction thereof.

Determining the stability of an equilibrium state is accomplished by lineariz-
ing the model about the steady state and examining the eigenvalues that
characterize the form of the solution to the linearized model. These are the
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eigenvalues of the Jacobian matrix of the model equations f(x) with respect
to the state variables x, or J = δf/δx, evaluated at the steady-state values
of the state variables. In order for the equilibrium state to be stable, each of
these eigenvalues must have a negative real part. If any of the real parts are
nonnegative, then the equilibrium state cannot be classified as an attractor.

2.5 Bifurcations

A bifurcation is a change in the topological type of the phase portrait as
one or more model parameters are varied. Bifurcations of interest here oc-
cur at parameter values where the number or stability of equilibrium states
change (Kuznetsov, 1998). We are primarily interested in three types of
codimension-one bifurcations, namely fold, transcritical and Hopf, and two
types of codimension-two bifurcations, namely double-fold (or double-zero)
and fold-Hopf. The “codimension” of a bifurcation indicates the number of
additional conditions required to specify the particular type of bifurcation,
and thus the number of parameters that must be allowed to vary. Thus, to
find a codimension-one bifurcation, one additional condition must be given,
and one parameter (which we denote as α) is allowed to vary, and to find
a codimension-two bifurcation, two additional conditions must be given, and
two parameters (α, β) are allowed to vary. Several detailed treatments of bi-
furcation analysis are available (e.g.: Seydel, 1988; Kuznetsov, 1998; Govaerts,
2000).

When a fold or transcritical bifurcation of equilibria occurs, two equilibria
“collide” as the bifurcation parameter is varied. This collision results in either
an exchange of stability (transcritical) or mutual annihilation of two equilibria
(fold). Mathematically, when an equilibrium state undergoes either a fold or
transcritical bifurcation, an eigenvalue of its Jacobian is zero (Govaerts, 2000).
Since the determinant of a matrix is equal to the product of its eigenvalues,
the determinant of the Jacobian will be zero at a fold or transcritical bifur-
cation, thereby providing a convenient test function (Kuznetsov, 1998). Thus,
to locate fold or transcritical bifurcations of equilibria, the equilibrium con-
dition can be augmented with the additional condition det[J(x, α)] = 0 and
additional variable α, the bifurcation parameter. This gives the augmented
equation system

dx

dt
= f(x, α) = 0 (14)

det[J(x, α)] = 0. (15)

The augmented system is then solved to find any fold and transcritical bifur-
cations of equilibria, along with the corresponding value or values of α.
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When a single equilibrium state changes stability as a model parameter is
varied, this corresponds to a Hopf bifurcation. Mathematically, when an equi-
librium state undergoes a Hopf bifurcation, its Jacobian has a pair of complex
conjugate eigenvalues whose real parts are zero. Thus, there must be a pair of
eigenvalues that sums to zero. According to Stephanos’s theorem (Kuznetsov,
1998), for an N ×N matrix J with eigenvalues λ1, λ2, . . . , λN , the bialternate
product J � J has eigenvalues λiλj and the bialternate product 2J � I has
eigenvalues λi +λj. Thus, to locate a Hopf bifurcation, the equilibrium condi-
tion can be augmented (Kuznetsov, 1998; Govaerts, 2000) with the additional
condition det[2J(x, α) � I] = 0. This gives the augmented equation system

dx

dt
= f(x, α) = 0 (16)

det[2J(x, α) � I] = 0. (17)

The augmented system is then solved to find any Hopf bifurcations, along with
the corresponding value or values of α. The bialternate product of two N ×N
matrices A and B is an M × M matrix denoted by A � B whose rows are
labeled by the multiindex (p, q) where p = 2, 3, . . . , N and q = 1, 2, . . . , p − 1,
whose columns are labeled by the multiindex (r, s) where r = 2, 3, . . . , N and
s = 1, 2, . . . , r − 1, where M = N(N − 1)/2, and whose elements are given by

(A � B)(p,q)(r,s) =
1

2
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 . (18)

Note that while solutions to the augmented system will include all Hopf bifur-
cation points, there may be other solutions corresponding to neutral saddles
(which occur when there are two eigenvalues that are real additive inverses).
To identify and screen out neutral saddles, we compute the eigenvalues of the
Jacobian at each solution of the augmented equation system. If the Hopf bi-
furcation occurs in an independent two-variable subset of state space, this is
referred to as a planar Hopf bifurcation. In general, a Hopf bifurcation corre-
sponds to the appearance or disappearance of a limit cycle (stable or unstable)
around the equilibrium state (Seydel, 1988). Frequently this corresponds to
a change in the stability of the equilibrium state. However, for systems with
more than two state variables, this is not always the case, depending on the
sign of the real part of other eigenvalues.

The two types of codimension-two bifurcations of interest (double-fold and
fold-Hopf) can both be located by using the same augmenting functions as
introduced above. When an equilibrium undergoes a double-fold bifurcation,
its Jacobian has two zero eigenvalues. When an equilibrium undergoes a fold-
Hopf bifurcation, its Jacobian has one eigenvalue that is zero and a pair of
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purely imaginary complex conjugate eigenvalues. Thus, the determinant of
the Jacobian will be zero in both a double-fold and a fold-Hopf bifurcation,
because in both cases there is at least one eigenvalue that is zero. Furthermore,
in both cases, there is a pair of eigenvalues that will sum to zero, and so the
determinant of the bialternate product 2J � I will be zero. Thus, to locate
a double-fold or a fold-Hopf codimension-two bifurcation of equilibrium, the
equilibrium condition can be augmented with the two additional equations
det[J(x, α, β)] = 0 and det[2J(x, α, β) � I] = 0 and two additional variables
(free parameters) α and β. This gives the augmented equation system

dx

dt
= f(x, α, β) = 0 (19)

det[J(x, α, β)] = 0. (20)

det[2J(x, α, β) � I] = 0. (21)

The augmented system is then solved to find the codimension-two bifurcations
of interest, along with the corresponding values of α and β. Once found, we
determine the eigenvalues of the Jacobian at each solution. This allows the
solutions to be screened for neutral saddles, and to be sorted and classified by
type. Codimension-two bifurcations are often of interest since they may serve
as “organizing centers” for a two-parameter bifurcation diagram.

Whether one is looking for equilibrium states as discussed in Section 2.4, or the
bifurcations of equilibria discussed above, there is a system of nonlinear equa-
tions to be solved that may have multiple solutions, or no solutions, and the
number of solutions may be unknown a priori. Typically these equation sys-
tems are solved using a continuation-based strategy (Kuznetsov and Rinaldi,
1996; Kuznetsov, 1998; Kooi and Kooijman, 2000). In general, however, con-
tinuation methods are initialization dependent, and so provide no guarantee
that all equilibrium states or bifurcations of equilibria will be found. Bifurca-
tion diagrams can also be generated by using a grid-based approach in which
a grid is established in the two-variable parameter space and the number and
stability of equilibrium states is computed at each grid point (Fussmann et al.,
2000). The resulting information can provide the approximate location of the
bifurcation curves on the diagram, but does not give their exact location. A
computational method is needed that is capable of finding, with certainty, all

the solutions of the nonlinear equation systems that characterize equilibrium
states and their bifurcations. We describe here an interval-Newton method for
this purpose.
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3 Computational Method

In this section, a brief introduction to interval mathematics is given, followed
by a summary of the interval-based computational method used to solve the
equation systems formulated above.

A real interval X is defined as the set of real numbers between (and including)
given upper and lower bounds. That is, X = [X, X] = {x ∈ < | X ≤ x ≤
X}. Here an underline is used to indicate the lower bound of an interval
while an overline is used to indicate the upper bound. An interval vector
X = (X1, X2, . . . , Xn)T has n interval components, and can be interpreted
geometrically as an n-dimensional rectangular polytope or “box”. Similarly,
an n × m interval matrix A has interval elements Aij, i = 1, 2, . . . , n and j =
1, 2, . . . , m. Note that in this section, uppercase quantities are intervals and
lower case quantities, or uppercase quantities with an underline or overline,
are real numbers.

Interval arithmetic is an extension of real arithmetic. For an elementary real
arithmetic operation op ∈ {+,−,×,÷} the corresponding interval operations
on intervals X = [X, X] and Y = [Y , Y ] are defined as

X op Y = {x op y | x ∈ X, y ∈ Y }. (22)

That is, the result of an interval arithmetic operation on X and Y is an interval
containing all possible results of performing the operation using any number
contained in X and any number contained in Y . In terms of the endpoints of
X and Y ,

X + Y =
[

X + Y , X + Y
]

, (23)

X − Y =
[

X − Y , X − Y
]

, (24)

X × Y =
[

min
(

XY , XY , XY , XY
)

, max
(

XY , XY , XY , XY
)]

, (25)

X ÷ Y =
[

X, X
]

×
[

1/Y , 1/Y
]

, where 0 6∈
[

Y , Y
]

. (26)

If 0 ∈
[

Y , Y
]

, the division of the two intervals X and Y can be defined using
an extended interval arithmetic in which the result may not be an interval but
a union of two disjoint intervals (Kearfott, 1996). Interval extensions of the
elementary functions (sin, cos, tan, exp, log, etc.) can also be developed, since
they can be represented as series expansions using the elementary arithmetic
operations given above.
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When interval arithmetic computations are performed using a computer,
rounding errors must be dealt with in order to insure that the result is a
rigorous enclosure. Since computers can only represent a finite set of real num-
bers (machine numbers), the results of floating-point arithmetic operations to
compute the endpoints of an interval must be determined using a directed
(outward) rounding. That is, the lower endpoint is rounded down, ideally to
the largest machine number less than or equal to the lower bound, and the
upper endpoint is rounded up, ideally to the smallest machine number greater
than or equal to the upper bound. In this way, through the use of interval
arithmetic, as opposed to floating-point arithmetic, any potential rounding
error problems are avoided. Several good introductions to interval analysis,
as well as interval arithmetic and other aspects of computing with intervals,
are available (Neumaier, 1990; Kearfott, 1996; Jaulin et al., 2001; Hansen and
Walster, 2004). Implementations of interval arithmetic and elementary func-
tions are also readily available, and recent compilers from Sun Microsystems
directly support interval arithmetic and an interval data type.

In general, for an arbitrary function f(x), the interval extension F (X) en-
closes all values of f(x) for x ∈ X. That is, the interval extension encloses
the range of f(x) over X. Interval extensions are most often computed by
substituting the given interval X into the function f(x) and then evaluat-
ing the function using interval arithmetic. This is called the “natural” in-
terval extension, and it may be wider than the actual range of function
values, though it always includes the actual range. For example, the natu-
ral interval extension of f(x) = x/(x − 1) over the interval X = [2, 3] is
F ([2, 3]) = [2, 3]/([2, 3] − 1) = [2, 3]/[1, 2] = [1, 3], while the true function
range over this interval is [1.5, 2]. This overestimation of the function range
is due to the “dependency” problem, which may arise when a variable occurs
more than once in a function expression. While a variable may take on any
value within its interval, it must take on the same value each time it occurs in
an expression. However, this type of dependency is not recognized when the
natural interval extension is computed. In effect, when the natural interval
extension is used, the range computed for the function is the range that would
occur if each instance of a particular variable were allowed to take on a different
value in its interval range. For the case in which f(x) is a single-use expression,
that is, an expression in which each variable occurs only once, interval arith-
metic will always yield the true function range. For example, rearrangement
of the function expression used above gives f(x) = x/(x− 1) = 1 + 1/(x− 1),
and now F ([2, 3]) = 1 + 1/([2, 3] − 1) = 1 + 1/[1, 2] = 1 + [0.5, 1] = [1.5, 2],
the true range. For cases in which such rearrangements are not possible, there
are a variety of other approaches that can be used to try to tighten interval
extensions (Neumaier, 1990; Kearfott, 1996; Hansen and Walster, 2004).

Of particular interest here is the interval-Newton technique for solving nonlin-
ear equation systems. Consider an n× n nonlinear equation system f(x) = 0

12



with a finite number of real roots in some initial interval X (0). This initial
interval can be chosen to be sufficiently large to enclose all physically feasible
behavior. The interval-Newton method is applied to a sequence of subintervals
of the initial interval X (0); as will be seen below, these subintervals arise in
a bisection process. For a subinterval X (k) in the sequence, the first step is
the function range test. An interval extension F (X (k)) of the function f(x)
is calculated, which provides upper and lower bounds on the range of values
of f(x) in X (k). If there is any component of the interval extension F (X (k))
that does not include zero, then this subinterval can be discarded, since the
range of f(x) does not include zero over this subinterval, meaning that it
cannot contain a solution to f(x) = 0. Additional tools, such as constraint
propagation (e.g., Jaulin et al., 2001) or Taylor models (e.g., Makino and Berz,
2003), may also be applied at this point in order to reduce the size of X (k) or
eliminate it.

If it has not been eliminated, the testing of X (k) continues with the interval-

Newton test, which involves solving the linear interval equation system

F ′(X (k))
[

N (k) − x(k)
]

= −f (x(k)). (27)

Eq. (27) is solved for a new interval N (k), where F ′(X (k)) is an interval exten-
sion of the Jacobian of f(x) over the interval X (k), and x(k) is an arbitrary
point in X (k). It can be shown (Moore, 1966) that any root contained in X (k)

is also contained in the “image” N (k). This implies that when the intersection
X(k) ∩ N (k) is empty, then no root exists in X (k), and also suggests the iter-
ation scheme X (k+1) = X (k) ∩ N (k). In addition, if N (k) ⊂ X (k), it can been
shown (Kearfott, 1996) that there is a unique root contained in X (k) and thus
in N (k). Thus, after computation of N (k), there are three possible outcomes:
1. X (k) ∩ N (k) = ∅, meaning the current interval X (k) is shown to contain
no root, so it can be discarded; 2. N (k) ⊂ X (k), meaning the current interval
X(k) is shown to contain a unique root, so it need not be further tested; 3.
Neither of the above, but a new interval X (k+1) = X (k) ∩ N (k) can be gener-
ated. In the last case, if there has been a significant reduction in the size of
the interval, then the interval-Newton test can be reapplied. Otherwise, the
interval X (k+1) is bisected, and the resulting two subintervals are added to
the sequence of subintervals to be tested. If an interval containing a unique
root has been identified, then this root can be tightly enclosed by continuing
the interval-Newton iteration, which will converge quadratically to a desired
tolerance.

This approach is referred to as an interval-Newton/generalized-bisection
(IN/GB) method. At termination, when the subintervals in the sequence have
all been tested, either all the real roots of f(x) = 0 have been tightly enclosed
or it is determined rigorously that no roots exist. An important feature of this
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approach is that, unlike standard methods for nonlinear equation solving that
require a point initialization, the IN/GB method requires only an initial inter-

val, and this interval can cover the entire state and parameter space of interest.
Thus, interval-Newton methods essentially need no initialization. It should be
emphasized that the interval-Newton approach is not equivalent to simply im-
plementing the routine “point” Newton method in interval arithmetic. For a
more thorough treatment of interval-Newton methods, there are several good
sources available (Neumaier, 1990; Kearfott, 1996; Hansen and Walster, 2004).
For additional details on the basic IN/GB algorithm used here, see Schnep-
per and Stadtherr (1996). Several enhancements of this basic algorithm are
also employed, namely the hybrid preconditioning approach and real-point
selection strategy described by Gau and Stadtherr (2002).

Using the interval method described in this section, it is possible to determine
all solutions to a nonlinear equation system within a desired search interval,
or to show that no such solutions exist. This can be done not only with mathe-

matical certainty, but also with computational certainty, since the use of inter-
val arithmetic with outward rounding eliminates any possible rounding error
issues. This guarantee, together with the lack of need for initialization, are sig-
nificant advantages over traditional techniques for the location of equilibrium
states and bifurcations. In the next section, we apply the IN/GB approach
to the analysis and comparison of the example food chain models described
above.

4 Results and Discussion

In this section, we apply the computational method described above to com-
pute bifurcation diagrams for the three example models of interest, and use
these results to compare the models. It should be noted that, since these are
relatively simple models, it is possible to perform some of these computations
analytically. However, since this may not be possible for more complex models,
all the results presented below were computed numerically using the IN/GB
technique, without any analytical short cuts.

4.1 Rosenzweig-MacArthur Model

Since this model, described above in Section 2.1, is relatively simple and has
been widely studied both analytically and numerically, it provides a good
“proof of concept” problem for testing the feasibility of the interval-based
method described in Section 3 for determining equilibrium states and bifurca-
tions of equilibria in food chain models. Following Gragnani et al. (1998), the
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Fig. 1. Bifurcation of equilibrium diagram of prey carrying capacity (K) versus
prey growth rate (r) for the Rosenzweig-MacArthur model. TE: Transcritical of
equilibrium; FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf
codimension-two. Region of stable coexistence shaded in grey.

parameters used are set to a2 = 5/3, b2 = 1/3, e2 = 1, d2 = 0.4, a3 = 0.05,
b3 = 0.5, e3 = 1, d3 = 0.01. Using the IN/GB equation-solving method de-
scribed in Section 3, together with the plotting procedure described below,
a bifurcation diagram with the prey growth rate, r, and the prey carrying
capacity, K, as the free parameters was determined. This diagram is given in
Fig. 1.

Codimension-one bifurcation curves were computed by solving the appropriate
augmented systems, namely Eqs. (14-15) for fold and transcritical bifurcations
and Eqs. (16-17) for Hopf bifurcations. The diagram shown in Fig 1 was gen-
erated by first fixing r at many (400) closely spaced values over the interval
[0,2] and determining the value(s) of K and x at which bifurcations occur.
There may be some values of r for which one of the augmented systems has
an infinite number of solutions for K. For example, in Fig. 1, the left-most
transcritical bifurcation is a vertical line. This case cannot be handled directly
by the IN/GB technique, or could be missed by the stepping in r. Thus, to

15



ensure that all bifurcations are found, it is necessary to also scan in the K di-
rection. That is, IN/GB was used to solve the appropriate augmented systems
for r and x for many (400) closely spaced values of K over the interval [0,2].
Codimension-two bifurcations were located by using IN/GB to solve the aug-
mented system given by Eqs. (19-21) for K, r, and x. The bifurcation diagram
(Fig. 1) computed using the interval method is consistent with the known K
versus r bifurcation diagram given by Gragnani et al. (1998), thus confirming
the utility and accuracy of this method for determining bifurcation of equilib-
ria diagrams. Such diagrams can be very easily and automatically generated
using the IN/GB approach, with certainty that all bifurcation curves have
been found.

Another useful type of diagram in nonlinear dynamics is the solution branch
diagram (or one-parameter bifurcation diagram). This type of diagram shows
how the steady-state values and stability of the state variables change as a
single model parameter is varied. These diagrams are also very easily generated
using the interval method. For example, Fig. 2 shows how the equilibrium
states change as the prey carrying capacity, K, is varied from 0 to 2, while
the prey growth rate, r, is held constant at a value of 0.5. This diagram was
computed by using IN/GB to solve the nonlinear equation system given by
Eq. (12). This system was solved for many (2000) closely spaced values of K.
In Fig. 2, and in subsequent solution branch diagrams, thin lines represent
unstable equilibria while thick lines represent stable equilibria.

In the solution branch diagram, one can observe several bifurcations of equilib-
ria as K is increased. This can also be seen by following a horizontal line across
Fig. 1 at a value of r = 0.5. Moving to the right along this line, five bifurca-
tions are encountered, namely (and in order) TE, Hp, FE, H, H (the rightmost
TE is not crossed at r = 0.5). The first bifurcation to occur is a transcriti-
cal bifurcation (K ≈ 0.105), in which a stable prey-only state collides with
a prey-predator state which becomes feasible at the bifurcation. These states
exchange stability. The predator biomass then begins to increase while the
prey biomass remains constant. The next bifurcation that is observed is a pla-
nar Hopf bifurcation (K ≈ 0.544). Since this bifurcation occurs at an r value
below the fold-Hopf codimension-two bifurcation, this planar Hopf bifurcation
does result in a change in stability in the model. Above the fold-Hopf point,
the prey-predator state is feasible but is unstable due to the sign of the third
eigenvalue, and thus the planar Hopf bifurcation does not result in a change of
stability. The next bifurcation to occur is a fold bifurcation (K ≈ 0.872) where
two unstable coexisting (prey-predator-superpredator) states become feasible.
The next two bifurcations to occur are both Hopf bifurcations (K ≈ 1.186 and
K ≈ 1.329). In the first Hopf bifurcation, one of the coexisting states becomes
stable, and the same state become unstable in the subsequent bifurcation. In
the narrow interval of K that produces a stable, coexisting steady state, in-
creasing the prey carrying capacity increases the biomass of the superpredator.
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Fig. 2. Solution branch diagrams illustrating the change in equilibrium states
(species biomass) with change in the prey carrying capacity (K) for the Rosen-
zweig-MacArthur model. From left to right: prey, predator, and superpredator
biomasses. r = 0.5 for all three plots.

Thus, by feeding the bottom level of the food chain, the abundance of the top
level can be increased. However, this strategy only works to a point, and then
the system becomes unstable. This phenomena is well known in the field of
theoretical ecology as the “paradox of enrichment” (Abrams and Roth, 1994).

Regions in a bifurcation diagram such as Fig. 1 can be characterized by using
solution branch diagrams such as Fig. 2, or by directly computing the number
and stability of equilibrium states for a point in a given region. Often the region
of particular interest may be that corresponding to the values of r and K that
produce a stable, coexisting steady-state (all species present). This region is
shown by the shaded area in Fig. 1. Within this region, as the prey growth
rate r increases, the resources required by the prey (represented by the prey
carrying capacity K) to support a stable, coexisting state decreases. However,
at the same time, the system becomes more sensitive to enrichment, and the
amount of enrichment necessary to destabilize the system also decreases. This
phenomena makes sense mathematically when one considers that both the
prey growth rate, r, and the prey carrying capacity, K, control increases in
the prey population. Therefore, increasing either r or K can have the effect of
destabilizing the system. However, only the parameter K describes enrichment
of resources in the system.

Using the techniques described in this paper, bifurcation diagrams for other
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Fig. 3. Bifurcation of equilibrium diagram of predator death rate (d2) versus prey
growth rate (r) for the Rosenzweig-MacArthur model with K = 1.0 TE: Tran-
scritical of equilibrium; FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf; FH:
Fold-Hopf codimension-two. Region of stable coexistence shaded in grey.

model parameters can be generated with ease. Similarly, it is also easy to
determine bifurcation diagrams for variations of the Rosenzweig-MacArthur
model in which other predator response functions (e.g., sigmoidal or Holling
type III) are used. Several such bifurcation diagrams have been computed
using the interval method by Gwaltney et al. (2004). One of these will be
discussed here so that comparisons can be made with the other models used
as examples. This is the bifurcation diagram for the Rosenzweig-MacArthur
model with the prey growth rate r and predator death rate d2 as bifurca-
tion parameters, and K = 1. This diagram was determined using the IN/GB
approach and is shown in Fig. 3.

Using solution branch diagrams to characterize the regions in Fig. 3 shows
that the rightmost transcritical bifurcation, which is a vertical line, forms the
boundary between a stable prey-predator system (on the left) and a stable
prey-only system (on the right). Moving to the left, the next transcritical
bifurcation curve intersects a codimension-two fold-Hopf point. At d2 values
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to the right of the fold-Hopf point, this transcritical bifurcation is the boundary
between the stable coexisting steady state and the stable prey-predator state.
After the transcritical line intersects the fold-Hopf point, three bifurcation
curves are formed. These are a fold bifurcation, a transcritical bifurcation,
and a Hopf bifurcation. The fold bifurcation is a horizontal line (r ≈ 0.46875)
that originates at the fold-Hopf bifurcation. When increasing r and crossing
this fold bifurcation, two coexisting states form. Whether the transcritical
bifurcation or the Hopf bifurcation is crossed next depends on the value of d2.
Crossing the transcritical bifurcation results in one of the two coexisting states
becoming infeasible. The state that becomes infeasible is also unstable. The
other state formed in the fold bifurcation becomes stable in the region above
and to the right of the Hopf bifurcation emanating from the fold-Hopf point.
With this knowledge, we have an understanding of the region of coexisting
stability in the d2 versus r parameter space. This region is shown by the
shaded area in Fig. 3. The shape of the region of coexisting stability indicates
that as the predator death rate, d2, increases, the minimum prey growth rate
necessary to support a stable system will first decrease up to the codimension-
two fold-Hopf point, then increase. Furthermore, at larger prey growth rates,
the system will tolerate higher predator death rates before the coexisting state
becomes infeasible. Finally, it is clear that there is an optimal prey growth rate
that will support the widest range of predator death rates.

4.2 Canale’s Chemostat Model

The second food chain model used as an example here is Canale’s chemostat
model, as described in Section 2.2. Following Gragnani et al. (1998), the pa-
rameters used are set to a1 = 1.25, b1 = 8, e1 = 0.4, d1 = 0.01, ε1 = 1,
a2 = 0.33, b2 = 9, e2 = 0.6, d2 = 0.001, ε2 = 0.8, a3 = 0.021, b3 = 15.19,
e3 = 0.9, d3 = 0.0001, ε3 = 0.1. A bifurcation diagram with the inflow rate, D,
and the concentration of the nutrient in the inflow, xn, as the free parameters
was then computed using the IN/GB method. This diagram is shown in Fig.
4.

The codimension-one bifurcation curves were computed by solving the appro-
priate equation systems (see Section 2.5), first fixing xn at many (400) closely
spaced values over the interval [0,400] and determining the value(s) of D and
x at which bifurcations occur, and then fixing D at many (700) closely spaced
values over the interval [0,0.14] and determining the value(s) of xn and x at
which bifurcations occur. A single codimension-two (fold-Hopf) bifurcation
was located by solving the appropriate augmented system for xn, D, and x.

Fig. 4 captures all bifurcations of equilibria shown in the D vs. xn bifurcation
diagram presented by Gragnani et al. (1998). However, Fig. 4 also shows other
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Fig. 4. Bifurcation of equilibrium diagram of nutrient inflow concentration (xn) ver-
sus inflow rate (D) for Canale’s chemostat model. TE: Transcritical of equilibrium;
FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf; FH: Fold- Hopf codimension-two.
Region of stable coexistence shaded in grey.

bifurcation curves that do not appear in Gragnani et al.’s diagram. First, there
is a transcritical bifurcation curve very near the D axis (the leftmost TE in Fig.
4) that is not given by Gragnani et al. At this bifurcation, a stable nutrient-
only equilibrium state collides with an infeasible nutrient-prey equilibrium
state; the nutrient-prey state becomes feasible and exchanges stability with
the nutrient-only state. Second, there is a planar Hopf bifurcation curve near
the xn axis (lowest Hp in Fig. 4) that is not shown by Gragnani et al. (we have
also computed other planar Hopf bifurcations curves very near the xn axis,
but these are not visible in Fig. 4 due to the scale used). For all of these Hp

bifurcations, the stability change occurs only in a two-variable subspace, with
the stability of the overall system remaining unchanged (unstable); this is also
the case for the lower portion (beneath the fold-Hopf point) of the planar Hopf
curve that intersects the fold-Hopf point, which appears both in Fig. 4 and
in Gragnani et al.’s diagram. Whether the planar Hopf curves omitted from
Gragnani et al.’s diagram were actually not found, or were omitted simply
because they were not considered interesting, is not clear. What is important
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Fig. 5. Solution branch diagrams illustrating the change in equilibrium states
(species biomass) with change in the nutrient concentration of the inflow (xn) for
Canale’s chemostat model. From left to right: prey, predator, and superpredator
biomasses. D = 0.09 for all three plots.

here is that, by using the IN/GB method, we can say with complete confidence
that we have in fact found all of the bifurcations curves of interest.

Fig. 5 tracks the behavior of the equilibrium states as xn is increased from
0 to 400 along the horizontal line D = 0.09 in Fig. 4. Moving to the right
along this line, seven bifurcations are encountered, namely (and in order)
TE, TE, Hp, FE, TE, H, H. The first TE is not clearly visible in Fig. 5
due to the scale used. The sixth and seventh bifurcations, both Hopf, are of
particular interest here. The sixth bifurcation (xn ≈ 112.5) results in the first
stable, coexisting steady-state (all three species present). But at the seventh
bifurcation (xn ≈ 184.5), this state becomes unstable. However, within this
region of stability increasing the inflow nutrient concentration, xn, enriches
the food chain and increases the stable population of the top predator, but
only to a point. This again illustrates the “paradox of enrichment” in that
beyond the second Hopf bifurcation the system becomes unstable and the
populations may experience “boom and bust” cycles. This behavior is very
similar to the behavior observed in Fig. 2, which indicates that, while the
Rosenzweig-MacArthur model does not explicitly account for resources, it can
produce similar behavior when compared to a resource-based model, such as
Canale’s model.

Using solution branch diagrams like Fig. 5 we can characterize the regions in
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Fig. 4 and identify the bounds on the region of xn and D that corresponds to
a stable, coexisting steady-state. This region is shown by the shaded area in
Fig. 4. As indicated in Fig. 4, as the inflow rate, D, increases, the minimum
inflow nutrient concentration, xn, required to support a coexisting steady-state
also increases. This behavior is intuitive because, as the inflow rate increases,
more nutrient and organisms are washed out of the system, resulting in the
need for a higher nutrient inflow concentration, xn, to support the minimum
biomasses of prey and predators necessary for survival of the predators and
superpredators, respectively.

The maximum xn boundary for the region supporting a stable, coexisting
steady state of all three species is the rightmost Hopf bifurcation curve. At
xn values to the of right this curve, the system is over-enriched and loses
stability. One can thus see from Fig. 4 that at relatively low inflow rates
(D / 0.0414), increasing D causes the maximum xn allowable for a stable
coexisting state to decrease. This can be explained by recognizing that at very
low values of the inflow rate, D, increasing the inflow rate has the predominant
effect of increasing the addition of nutrients to the system, thereby leading to
over-enrichment and decreasing the inflow nutrient concentration at which
the rightmost Hopf bifurcation occurs in Fig. 4. However, at values of D '
0.0414, increasing the inflow rate causes the effects of washout to become more
pronounced, and larger values of xn are allowable because of the high removal
rate of both biomass and system nutrient.

Various authors have utilized bifurcation diagrams to make comparisons be-
tween different food chain model formulations. Kooi et al. (1997b, 1998) com-
pared several different formulations of chemostat-based food chain models.
These authors used model formalisms to compare simple formulations with
two state variables, while models with three or four state variables were com-
pared using bifurcation diagrams. These latter models are similar in formu-
lation to the Rosenzweig-MacArthur model and Canale’s chemostat model,
as studied here and by Gragnani et al. (1998), however a different set of pa-
rameters was used. Kooi et al. (1997b, 1998) concluded that chemostat-based
models exhibited fundamentally different behavior than models with prey that
grow according to the logistic growth function. On the other hand, Gragnani
et al. (1998) compared the Rosenzweig-MacArthur model (logistic prey) with
Canale’s chemostat model under conditions of enrichment, and concluded that
the two models produce the same dynamics when a key parameter is var-
ied. That is, the dynamics observed when K was varied in the Rosenzweig-
MacArthur model were equivalent to those in Canale’s model when xn was
varied. Since Kooi et al. (1997b, 1998) and Gragnani et al. (1998) studied sys-
tems under much different conditions (model parameters), these conclusions
are not necessarily in conflict.

In this work, we can compare the shaded region in Fig. 4 with the region pro-
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ducing a stable, coexisting steady state for the Rosenzweig-MacArthur model
(Fig. 1). This comparison indicates that these regions are dissimilar. That is,
the behavior observed when changing both r and K is not equivalent to the
behavior observed when changing both D and xn. This is due to inconsis-
tencies between the parameters compared in these models. The prey growth
rate r in the Rosenzweig-MacArthur model is not equivalent to the system
inflow rate D in Canale’s model. Thus, the use of a different parameter set
in the analysis of Canale’s chemostat model may be appropriate for making
comparisons of behavior with the Rosenzweig-MacArthur model. Since the
Rosenzweig-MacArthur model does not explicitly account for resources or for
washout, there is no parameter in that model that is equivalent to D. How-
ever, in Canales model, the prey species grows at a maximum rate of e1a1;
thus changing the maximum nutrient consumption rate by the prey, a1, should
have a similar effect to changing the prey growth rate r in the Rosenzweig-
MacArthur model. Using IN/GB and the techniques described above, it is a
relatively easy matter to generate a bifurcation diagram in the xn vs. a1 pa-
rameter space. This diagram appears as Fig. 6. Since Fig. 4 and Fig. 6 share
a common parameter (xn), the figures should intersect in a three-dimensional
parameter space. In fact, the bifurcations that occur along the lines D = 0.07
in Fig. 4 and a1 = 1.25 in Fig. 6 occur in the same order and at the same
values. This fact makes classification of some of the bifurcation lines much
easier.

Comparison of Fig. 6 for Canale’s model and Fig. 1 for the Rosenzweig-
MacArthur model shows clear similarities. There are differences, including an
additional transcritical bifurcation (which must exist due to the extra state
variable x0) and the general shape of the bifurcation curves. However, the
order in which one crosses these curves, whether moving from left to right, or
top to bottom, is the same in both diagrams. The region in Fig. 6 in which
there is a stable, coexisting steady state is shown by the shaded area. This
region is very similar in shape to the region of steady, stable coexistence in
Fig. 1. The behavior observed is very similar to the behavior discussed in Sec-
tion 4.1 in that, as a1 increases, the amount of food required by the prey, xn,
to support a stable, coexisting state decreases. However, at the same time,
increasing a1 also causes the system to become more sensitive to enrichment,
and thus the amount of enrichment necessary to destabilize the system also
decreases. The most noticeable differences between Fig. 6 and Fig. 1 pertain
mainly to lines controlling the feasibility and stability of trophic subsystems
in the models, such as the nutrient-prey-predator system in Canale’s model
and the prey-predator system in the Rosenzweig-MacArthur model. The qual-
itative behavior in the region of stable coexistence is very similar in both
models.

We can make a similar comparison by using the IN/GB method to gener-
ate an a1 versus d2 bifurcation diagram for Canale’s model. This diagram,
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Fig. 6. Bifurcation of equilibrium diagram of nutrient inflow concentration (xn) ver-
sus maximum nutrient consumption rate by the prey (a1) for Canale’s chemostat
model with D = 0.07. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H:
Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Region of stable coexis-
tence shaded in grey.

given in Fig. 7, can be compared to the to the r versus d2 diagram for the
Rosenzweig-MacArthur model (Fig. 3). In Fig. 7, several of the bifurcation
curves lie very close together. Following a vertical line in Fig. 7 (increasing
a1) at the value of the predator death rate used by Gragnani et al. (1998)
(d2 = 0.001), we encounter seven bifurcations, namely (and in order): TE,
TE, Hp, FE, H, H, TE. Initially the system has only one steady-state, which
is a stable nutrient-only state. At a1 values below the horizontal transcritical
bifurcation (a1 = 0.208), the prey does not consume nutrient quickly enough
for a nutrient-prey state to be feasible. In the first transcritical bifurcation, a
nutrient-prey state forms, collides, and exchanges stability with the nutrient-
only state. In the second transcritical bifurcation, a nutrient-prey-predator
system becomes feasible and exchanges stability with the nutrient-prey state.
Then, as the planar-Hopf bifurcation is crossed, the nutrient-prey-predator
state loses stability. Due to the proximity of these three bifurcation lines at
low values of the predator death rate, the transition from a condition where
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Fig. 7. Bifurcation of equilibrium diagram of predator death rate (d2) versus maxi-
mum nutrient consumption rate by the prey (a1) for Canale’s chemostat model with
D = 0.07 and xn = 200.0. TE: Transcritical of equilibrium; FE: Fold of equilibrium;
H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Region of stable coex-
istence shaded in grey.

the only feasible state is the (stable) nutrient-only state to a condition where
there are three feasible states, none of which are stable, occurs over a very
small range of a1. As the maximum nutrient consumption rate (a1) is further
increased a fold bifurcation is crossed, which causes two coexisting states to
become feasible, but neither are stable. This fold bifurcation is, in fact, a hor-
izontal line with a value of a1 ≈ 0.487. The behavior of this fold bifurcation is
qualitatively identical to that observed in Fig. 3. The presence of a horizontal
fold bifurcation marking the boundary for coexisting feasibility indicates that
the prey growth rate r in the Rosenzweig-MacArthur model, and the maximum
nutrient consumption rate a1 in Canale’s model are comparable parameters,
and they have very similar effects on system behavior. Furthermore, it indi-
cates that there is a minimum r or a1 below which the prey simply cannot
grow fast enough to replace losses and maintain a feasible, coexisting steady
state, and that this minimum value is independent of the predator death rate
d2. The Hopf bifurcation, which originates in the fold-Hopf codimension-two
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bifurcation, is crossed next. When this bifurcation is crossed, one of the coex-
isting states becomes stable. The fold bifurcation and Hopf bifurcation occur
at extremely close values of a1, which results in the two lines being almost
indistinguishable on Fig. 7. Crossing the second Hopf bifurcation (which en-
ters the diagram on the a1 axis) causes the stable coexisting state to become
unstable. Crossing the subsequent transcritical bifurcation causes the unsta-
ble coexisting state that did not change stability due to the Hopf bifurcation
to become infeasible. This transcritical bifurcation, which emanates from the
fold-Hopf codimension-two point, causes the same change in system behavior
as the transcritical line emanating from the fold-Hopf point in Fig. 3.

With this knowledge, we can visualize the region of coexisting feasibility and
stability. This region is shown by the shaded area in Fig. 7. The transcritical
bifurcation that intersects the fold-Hopf bifurcation forms the right boundary
of steady, stable coexistence at predator death rate values greater than the
codimension-two fold-Hopf bifurcation (d2 ≈ 0.0955). To the right of this tran-
scritical bifurcation the predator death rate is too large and the superpredator
population is decimated. This behavior is also identical to that observed in
Fig. 3. Thus, at some point no matter how quickly the prey are able to grow
and replace their losses, increasing the predator death rate will cause a stable
coexisting steady-state to become infeasible. This macroscopic change occurs
when the superpredator population disappears, not the predator population,
even though it is the predator death rate that is increasing. While this behav-
ior is counterintuitive, as explained in Gwaltney et al. (2004), similar behavior
can also be seen in the Rosenzweig-MacArthur model.

As indicated by the shaded areas, the regions in Fig. 3 and Fig. 7 supporting
a stable, coexisting steady-state are very similar in shape. The primary differ-
ence is that in Fig.7, the Hopf bifurcation line emanating from the fold-Hopf
bifurcation does not reverse direction. Instead, moving to the left, it crosses
the a1 axis. Another Hopf bifurcation then enters the diagram on the a1 axis,
and this Hopf bifurcation causes the same change in stability that is caused
by the Hopf bifurcation in Fig. 3 after it changes direction. Actually, if Fig.
7 were extended into the negative d2 parameter space, we could see that the
two Hopf bifurcations are actually a continuous curve that reverses direction,
just like in Fig. 3. The key bifurcation lines that control the feasibility of the
coexisting state are identical in behavior to those observed in Fig. 3. In gen-
eral, as the maximum nutrient consumption rate by the prey, a1, increases, the
system given by Canale’s Chemostat model is able to tolerate higher predator
death rates before the coexisting state becomes infeasible. In Canale’s model
we also observe that as the maximum nutrient consumption rate by the prey
increases, the minimum predator death rate necessary to support a stable co-
existing state increases. This behavior matches the behavior observed in Fig.
3 for the Rosenzweig-MacArthur model.
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The primary differences between Fig. 7 for Canale’s model and Fig. 3 for
the Rosenzweig-MacArthur model are seen in the bifurcation lines which deal
with the boundaries at which the predator population becomes infeasible,
and where the prey-predator subsystem changes stability. These lines are the
planar Hopf bifurcation and the rightmost transcritical bifurcation in Figs.
3 and 7. An additional horizontal transcritical bifurcation is present in Fig.
7. The presence of this bifurcation is expected as it provides the boundary
between the nutrient-only state and the nutrient-prey state. The fact that
the line is horizontal indicates that the minimum value of a1 necessary to
support a feasible (and stable) nutrient-prey state does not depend on the
predator death rate, d2. This behavior is expected because the behavior of the
nutrient-prey subsystem should not depend on any parameters not appearing
in the subsystem, including the predator death rate. We will observe identical
behavior in examining the algae-rotifer model, which is also explicitly accounts
for resources by modeling the limiting nutrient in a chemostat.

4.3 Algae-Rotifer Model

The final food chain model used as an example here is the algae-rotifer model,
as described in Section 2.3. Following Fussmann et al. (2000), the parame-
ters used are set to bC = 3.3 day−1, KC = 4.3 µmol/liter, bB = 2.25 day−1,
KB = 15 µmol/liter, m = 0.055 day−1, λ = 0.4 day−1, and ε = 0.25. The four
state variables (N , C, R and B) are modeled in terms of nitrogen concen-
tration (µmol/liter), with the last three then converted to numbers of organ-
isms according to 1 µmol/liter = 5 × 104 cells per milliliter for Chlorella and
1 µmol/liter = 5 females per milliliter for Brachionus. A bifurcation diagram
with the inflow rate, δ, and the concentration of the nitrogen in the inflow,
Ni, as the free parameters was then computed using the IN/GB method, and
is given in Fig. 8.

Fussmann et al. (2000) determined a δ vs. Ni bifurcation diagram by using
a grid-based approach in which a grid is established in the two-variable pa-
rameter space and the number and stability of equilibrium states is computed
directly at each grid point. In comparing Fig. 8 to the diagram presented by
Fussmann et al. (2000), one should note that the axes have been reversed in or-
der to facilitate comparisons with the models previously discussed in this work.
Furthermore, the diagram presented by Fussmann et al. (2000) contained a
region for the coexistence of stable limit cycles, which are not examined in this
work. Finally, Fig. 8 shows a transcritical bifurcation along the inflow rate (δ)
axis, which does not appear in Fussmann et al. (2000). This occurs because
the diagram in Fussmann et al. (2000) is limited to defining regions in which
a stable, coexisting state exists (whether it is an equilibrium state or a limit
cycle).
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Fig. 8. Bifurcation of equilibrium diagram of inflow nitrogen concentration (Ni)
versus inflow rate (δ) for the algae-rotifer model. TE: Transcritical of equilibrium;
H: Hopf. Region of stable coexistence shaded in grey.

In Fig. 8, as Ni increases, in most cases three bifurcations will be crossed, and
these are (from left to right) two transcritical bifurcations and a Hopf bifurca-
tion. At values of δ / 0.037, another Hopf bifurcation will also be crossed. As
the leftmost transcritical bifurcation is crossed, a stable nitrogen-algae system
becomes feasible. As the second transcritical bifurcation is crossed, a stable
coexisting (nitrogen-algae-rotifer) state becomes feasible (and the nitrogen-
algae system becomes unstable). Finally, as the Hopf bifurcation is crossed,
the stable coexisting state becomes unstable. Crossing the Hopf bifurcation
near the Ni axis also causes the stable coexisting state to become unstable. At
a given value of Ni, at values of δ below this Hopf bifurcation, the coexisting
state is feasible, but unstable.

The region where a coexisting steady-state is both feasible and stable is shown
by the shaded area in Fig. 8. When comparing Fig. 8 with Fig. 4, one may
initially notice a similarity between the regions of steady, stable coexistence.
However, recall that the algae-rotifer model only features two trophic levels,
while Canale’s model features three. Thus, the rightmost transcritical and
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Hopf bifurcations in Fig. 8 are equivalent to the middle transcritical bifurcation
and the planar Hopf bifurcation passing through the fold-Hopf point in Fig.
4. Even taking this into account, the behavior of the stable, coexisting state
(nitrogen-algae-rotifer) in the algae-rotifer model matches the same trends
observed in the nutrient-prey-predator subspace of Canale’s chemostat model.
There is one primary difference, that being that the lower boundary in Fig. 4
is formed by the transcritical bifurcation (which also forms the left boundary)
while in Fig. 8, the lower boundary consists of a Hopf bifurcation. Despite
this difference, it should be recognized that increasing the dilution rate (δ)
or the nitrogen concentration in the inflow medium (Ni) has a similar effect
to increasing either D or xn on the nutrient-prey-predator state in Canale’s
chemostat model. Thus these models exhibit similar behavior in terms of the
effects of enrichment, and the paradox of enrichment also applies to the algae-
rotifer model.

In order to further compare the algae-rotifer model with both the Rosenzweig-
MacArthur model and Canale’s chemostat model, a bifurcation diagram com-
paring the maximum algal growth rate, bC , and the inflow medium nitrogen
concentration, Ni, is needed. It is easy to reliably generate this diagram using
the IN/GB method and the techniques described in this paper. The bifurcation
diagram is given in Fig. 9.

This diagram can be compared to Fig. 1 for the Rosenzweig-MacArthur model
and Fig. 6 for Canale’s chemostat model. The bifurcation curves are easily
identifiable because along the lines δ = 0.08 day−1 and bC = 3.3 day−1, Fig. 8
and Fig. 9 intersect. Thus, the order of the bifurcation curves is, from left to
right, and bottom to top, TE, TE, H. The region of steady, stable coexistence
is shown by the shaded area in Fig. 9. Initially this region seems dissimilar
to the regions observed in Fig. 1 and Fig. 4. Recall that in the Rosenzweig-
MacArthur model and in Canale’s chemostat model, as the prey growth rate
increased, the amount of enrichment needed to destabilize the coexisting state
decreased. The opposite effect is predicted by the algae-rotifer model. This
phenomena is, again, explained by the fact that the algae-rotifer model con-
sists of only two trophic levels, while the other two models both feature three
trophic levels. The rightmost transcritical and Hopf bifurcation curves in Fig.
9 can be thought of as being equivalent to the middle transcritical bifur-
cation and the planar Hopf bifurcation in Fig. 6. Thus the behavior of the
coexisting state (nitrogen-algae-rotifer) of the algae-rotifer model matches the
behavior observed in the nutrient-prey-predator subspace of Canale’s model.
The behavior of these spaces differs from the Rosenzweig-MacArthur model
in that the limits of steady, stable coexistence for the prey-predator subspace
in the Rosenzweig-MacArthur model do not depend on the prey growth rate,
r, which can observed by the vertical planar Hopf bifurcation line and the
vertical (leftmost) transcritical bifurcation in Fig. 1.
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Fig. 9. Bifurcation of equilibrium diagram of inflow nitrogen concentration (Ni)
versus maximum algal growth rate (bC) for the algae-rotifer model with δ = 0.8/day.
TE: Transcritical of equilibrium; H: Hopf. Region of stable coexistence shaded in
grey.

In order to compare the behavior predicted by the experimentally-verified
algae-rotifer model with the behaviors predicted by the Rosenzweig-MacArthur
model in Fig. 3 and by Canale’s model in Fig. 7, a diagram comparing the
maximum algal growth rate, bC , with the rotifer mortality rate, m, is neces-
sary. This diagram was generated using the IN/GB method, as before, and is
given in Fig. 10.

In Fig. 10 there are three bifurcation curves present. There is a horizontal
transcritical line at bC ≈ 0.8344, which matches the value of bC at which the
transcritical bifurcation occurs in Fig. 9 at Ni = 100.0. At values of bC below
this line, the only feasible state is a nutrient-only state. Crossing this tran-
scritical bifurcation results in a nitrogen-algae state becoming both feasible
and stable. This horizontal line in Fig. 10 indicates that there is a minimum
value of the maximum algal growth rate bC that is necessary to support a
feasible algal population, and this value is not dependent on the rotifer mor-
tality rate, which matches the behavior observed in Canale’s model in Fig. 7.
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Fig. 10. Bifurcation of equilibrium diagram of rotifer mortality rate (m) versus
maximum algal growth rate (bC) for the algae-rotifer model with δ = 0.8/day and
Ni = 100.0µmol/liter. TE: Transcritical of equilibrium; H: Hopf. Region of stable
coexistence shaded in grey.

This behavior makes intuitive sense in that the behavior of the nutrient-prey
(nitrogen-algae) subsystem should not depend on any model parameters that
do not appear in that subsystem, which includes the predator (rotifer) mor-
tality rate. The second transcritical bifurcation in Fig. 10 always occurs at
values of bC greater than the horizontal transcritical bifurcation. Crossing this
bifurcation by either increasing bC or by decreasing the rotifer mortality rate,
m, results in a feasible and stable coexisting (nitrogen-algae-rotifer) steady
state for this system. The last bifurcation in this diagram is a Hopf bifurca-
tion. Crossing this bifurcation left to right by increasing the rotifer mortality
rate, m, results in an unstable coexisting state becoming stable.

The region of coexisting stability is shown by the shaded area in Fig. 10. Recall
that the algae-rotifer model only has two trophic levels while both Canale’s
model and the Rosenzweig-MacArthur model feature three levels. Therefore
Hopf bifurcations in the algae-rotifer model should match planar Hopf bifurca-
tions in the previous two models examined. Furthermore, the behavior of the
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coexisting state in the algae-rotifer model should match the behavior of the
prey-predator subspace in the other two models. When Fig. 10 is compared
to Fig. 7 we can immediately see that the behavior of the Hopf bifurcation
in Fig. 10 matches the behavior of the planar Hopf bifurcation in Fig. 7.
Crossing the planar Hopf bifurcation in Fig. 7 results in a change in stabil-
ity of the nutrient-prey-predator subsystem; however, this stability change is
not always observed due to the sign of the fourth eigenvalue. Furthermore,
the second (non-horizontal) transcritical bifurcation in Fig. 10 matches the
behavior of the rightmost transcritical bifurcation in Fig. 7. Therefore, the
trends observed for the nutrient-prey-predator system are equivalent in the
two models. In the Rosenzweig-MacArthur model, once again we see that the
prey-predator subspace is bounded by a vertical planar Hopf bifurcation line
and a vertical (rightmost) transcritical bifurcation in Fig. 3, and therefore this
region, as observed previously, does not depend on the prey growth rate, r.
This, of course, differs from the behavior observed for both Canale’s model
and the algae-rotifer model. However, it is easy to see that the two chemostat-
based models behave quite similarly when the comparison is made between
identical state spaces.

5 Concluding Remarks

Using several examples drawn from three different food chain models, we have
demonstrated here the use of an interval-Newton method for the analysis of
the nonlinear dynamical systems that arise in food chain modeling, specifically
for computing all equilibrium states and bifurcations of equilibria (fold, tran-
scritical, Hopf, double-fold and fold-Hopf). Using this method it was possible
to easily, without any need for initialization or a priori insight into expected
system behavior, generate complete solution branch diagrams and bifurcation
of equilibria diagrams. This was done automatically, without requiring user
interaction, a common need (Kuznetsov, 1998) in using continuation tools.
Furthermore, this could be done with certainty, since the technique provides
a mathematical and computational guarantee that all solutions to a system
of nonlinear equations are enclosed. Since this technique is essentially initial-
ization independent, beyond the setting of an initial interval for study, it can
provide a powerful alternative to traditional continuation methods, which in
general are initialization dependant and thus may not be completely reliable.

In principle, the interval method can be applied to compute the equilibrium
states and bifurcations of equilibria in any continuous-time model of popula-
tion dynamics in a food chain or food web, though in practice it is subject to
some limitations, as discussed below. The advantages provided by the interval
approach should make it particularly useful whenever analysis of a new model
is undertaken, since this is the case in which initialization issues are most likely
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to arise in using traditional methods. For similar reasons, we have found the
method to be very useful, as shown in the examples above, in working with
existing models in parameter subspaces not analyzed previously.

We are particularly interested in the application of this method in the devel-
opment and improvement of relatively small-scale food webs. There has been
significant recent interest in modeling such systems and in studying their dy-
namics using bifurcation analysis. For example, Kooi and Kooijman (2000)
developed a simple food network model that illustrates the effects of introduc-
ing a competitive species in the lowest trophic level. One- and two-parameter
bifurcation diagrams in a parameter space describing the addition of nutrients
to the system were used to show that introducing a competitive species to
the prey trophic level can stabilize an oscillatory nutrient-prey-predator sys-
tem. Kuijper et al. (2003) used a small-scale food web model to to investigate
the effects of omnivory, or intraguild predation, in a chemostat. Bifurcation
diagrams were computed to analyze the relationship between the extent of
intraguild predation and the concentration of nutrient in the inflow, showing
that omnivory can stabilize food chains, eliminate chaos, and give rise to mul-
tiple steady states. Kavadia et al. (2007) studied the dynamics of free-living,
nitrogen-fixing bacterial populations under varying environmental and com-
petitive conditions using a simple food network model. Bifurcation diagrams
were used to illustrate the effects of altering system dilution rates and en-
ergy sources, with the conclusion that nitrogen-fixing populations can coexist
with competitors under certain conditions of enrichment, but can be inhib-
ited or destroyed when specific nutrient resources are low. In these examples,
and in similar small-scale food network models, the interval approach can be
applied to validate existing bifurcation diagrams and to compute new bifur-
cation diagrams for other parameter values or in other parameter subspaces.
By providing a reliable and very easily used approach for determining one- or
two-parameter bifurcation diagrams, the interval method also makes it easy
to look at the effects of changing trophic interactions and response functions,
as well as parameter values, and to thus study possible improvements in the
models.

Despite the advantages of the interval technique described here, there are
some practical limitations. An important limitation is that our current imple-
mentation of the interval-Newton method is not suitable for directly locating
limit cycles and their bifurcations, which are very important dynamic features.
By providing a reliable method for computing Hopf bifurcations, the interval
method does provide a reliable means to initialize continuation methods for
locating cycles (since a Hopf bifurcation corresponds to the appearance or dis-
appearance of a limit cycle), and this is useful. This combination of interval
and continuation methods should provide a reliable, though not guaranteed ap-
proach for locating limit cycles and their bifurcations. A fully interval method
for limit cycles is being investigated, based in part on ideas provided by Galias
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(2001, 2002).

Another limitation of the interval approach is in the problem size (number of
state variables) that it can be applied to. This limitation is directly related
to computation time requirements, and thus some discussion of the computa-
tional effort required to solve the example problems is needed. Average CPU
times for the computation of fold and transcritical bifurcations ranged from 0.6
to 16 seconds per parameter iteration, while for computing Hopf bifurcations
this figure was 1.4 to 100 seconds. Computing codimension-2 double fold and
fold-Hopf bifurcation points required between 39 and 4800 seconds. The wide
range of computation times is due to a variety of factors, including differences
in the level of complexity between the models, as well as differences between
computers used (all computations were done on either a 1.7 GHz or 3.4 GHz In-
tel CPU, under the Linux operating system using Intel Fortran Compiler 7.1).
For the examples studied here we consider this level of computational effort to
be quite reasonable, especially since the method used provides a guarantee of
reliability, which other methods do not. Furthermore, since the diagrams can
be generated automatically, without user intervention to deal with initializa-
tion issues, the elapsed time to generate a bifurcation diagram for a new model
may actually be significantly less than when initialization-dependent methods
are used. However, as problem size grows much beyond that considered here,
the determination of two-parameter bifurcation diagrams using the interval
method will become significantly more expensive computationally. This is due
primarily due to the complexity involved in computing the determinant and
bialternate product functions, and their derivatives, in Eqs. (15), (17), (20)
and (21). On the other hand, the computation of equilibrium states was ex-
tremely fast for the models considered in this work, requiring less than 0.1
seconds of CPU time per parameter iteration. This suggests that it should be
possible to compute solution branch diagrams for much larger systems. We
have recently demonstrated this by using the interval method to compute all
the equilibrium states in a nonlinear 17-variable food web model Gwaltney et
al. (2006).
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