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Abstract

A problem of frequent interest in analyzing nonlinear ODE models of ecological systems is

the location of equilibrium states and bifurcations. Interval-Newton techniques are explored

for identifying, with certainty, all equilibrium states and all codimension-1 and codimension-2

bifurcations of interest within specified model parameter intervals. The methodology is applied

to a tritrophic food chain in a chemostat (Canale’s model), and a modification of thereof. This

modification aids in elucidating the nonlinear effects of introducing a hypothetical contaminant

into a food chain.
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1 Introduction

Ecological systems, including food chains and food webs, are often modeled using systems of

nonlinear ordinary differential equations (ODEs). Of particular interest here is the modeling of food

chains, which provides challenges in the fields of both theoretical ecology and applied mathematics.

Food chain models are descriptive of a wide range of behaviors in the environment, and are useful as

a tool to perform ecological risk assessments (Naito et al., 2002). These models are often simple, but

display rich mathematical behavior, with varying numbers and stability of equilibria and limit cycles

that depend on the model parameters (e.g., Gragnani et al., 1998; Moghadas and Gumel, 2003).

Many different model formulations are possible, depending on the number of species analyzed, the

predation responses used, whether age or fertility structure is of interest for a given species, and

how resources are being modeled for the basal species. Analysis of food chain models is often

performed by examining the parameter space of the model in one or more variables. This approach

is referred to as bifurcation analysis, and it provides a powerful tool for concisely representing a

large amount of information regarding both the number and stability of equilibrium states (steady

states) in a model. In a two-parameter bifurcation diagram, the shape of bifurcation curves can

elucidate the dependence, or lack there of, between model parameters, which in turn can provide

information on their ecological relevance. Furthermore, both the shape and the order of bifurcation

curves in a diagram can be used to make comparisons between different food chain models. We will

focus on one particular food chain model here, namely Canale’s chemostat model, as described in

detail below. We will also develop and study a version of the model that incorporates an ecosystem

contaminant.

Determining the equilibrium states and bifurcations of equilibria in a nonlinear dynamical

system is often a challenging problem, and great effort can be expended in analyzing even a rela-

tively simple food chain model with nonlinear functional responses. For simple systems, or specific
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parts of more complex ones, analytic techniques and isocline analysis may be useful. However, for

more complex problems, numerical continuation methods are the predominant computational tools,

with packages such as AUTO (Doedel et al., 2002), MATCONT (Dhooge et al., 2003) and others

being particularly popular in this context. Continuation methods can be quite reliable, especially

in the hands of an experienced user. However, in general, continuation methods are initialization

dependent and provide no guarantee that all equilibrium states and all bifurcations of equilibria

will be found. Thus, effective use of continuation methods may require some a priori understand-

ing of system behavior in order to reliably create an accurate bifurcation diagram. Gwaltney et

al. (2004) described an alternative approach, based on interval mathematics, and applied it to a

simple tritrophic Rosenzweig-MacArthur model, and variations thereof. We will explore the use of

the same approach here, but apply it to more complex models. This computational method uses an

interval-Newton approach combined with generalized bisection, and provides a mathematical and

computational guarantee that all equilibrium states and bifurcations of equilibria will be located,

without need for initializations or a priori insights into system behavior. There are other dynamical

features of interest in food chain models, such as limit cycles (and their bifurcations); however, our

attention here will be limited to equilibrium states and their bifurcations. Interval methodologies

have been successfully applied to the problem of locating equilibrium states and singularities in

traditional chemical engineering problems, such as reaction and reactive distillation systems. Ex-

amples of these applications are given by Schnepper and Stadtherr (1996), Gehrke and Marquardt

(1997), Bischof et al. (2000), and Mönnigmann and Marquardt (2002).

Our interest in ecological modeling is motivated by its use as one tool in studying the impact

on the environment of the industrial use of newly discovered materials. Clearly it is preferable to

take a proactive, rather than reactive, approach when considering the safety and environmental

consequences of using new compounds. Of particular interest is the potential use of room temper-

ature ionic liquid (IL) solvents in place of traditional solvents (Brennecke and Maginn, 2001). IL
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solvents have no measurable vapor pressure (i.e., they do not evaporate) and thus, from a safety

and environmental viewpoint, have several potential advantages relative to the traditional volatile

organic compounds (VOCs) used as solvents, including elimination of hazards due to inhalation,

explosion and air pollution. However, ILs are, to varying degrees, soluble in water; thus if they are

used industrially on a large scale, their entry into the environment via aqueous waste streams is of

concern. The effects of trace levels of ILs in the environment are today not well known and thus

must be further studied. Ecological modeling provides a means for studying the impact of such

perturbations on a localized environment by focusing not just on single-species toxicity information,

but rather on the larger impacts on the food chain and ecosystem. Of course, ecological modeling

is just one part of a much larger suite of tools, including toxicological (e.g., Bernot et al., 2005a,b;

Ranke et al., 2004; Stepnowski et al., 2004), microbiological (e.g., Docherty and Kulpa, 2005; Per-

nak et al., 2003) and other (e.g., Gorman-Lewis and Fine, 2004; Ropel et al., 2005) studies, that

must be used in addressing this issue.

2 Problem formulation

2.1 Canale’s chemostat model

Canale’s chemostat model is a tritrophic (prey, predator, superpredator) food chain model

embedded in a chemostat (a constant volume system, with constant flow in and out). The predator

and superpredator grow by consuming the prey and predator species, respectively, while the prey

grows by consuming nutrients in the chemostat. The rate at which the prey, predator, and super-

predator consume food is modeled by a hyperbolic functional response. The hyperbolic, or Holling

Type II, functional response has become the favored way to model feeding rates in theoretical

ecology. This type of response is mathematically more complicated than a simple linear response,

but provides a leveling-off (saturation) effect that is a more realistic model of behavior observed in
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the environment. There is a constant flow through the chemostat, which carries nutrients into the

system, and which carries nutrients and organisms out of the system. The model is given by the

following balance equations:

dx0

dt
= D(xn − x0) −

a1x0x1

b1 + x0
(1)

dx1

dt
= x1

[

e1
a1x0

b1 + x0
−

a2x2

b2 + x1
− d1 − ε1D

]

(2)

dx2

dt
= x2

[

e2
a2x1

b2 + x1
−

a3x3

b3 + x2
− d2 − ε2D

]

(3)

dx3

dt
= x3

[

e3
a3x2

b3 + x2
− d3 − ε3D

]

. (4)

Here x0 is the nutrient concentration in the system and x1, x2, and x3 are the biomasses of the

prey, predator, and superpredator populations, respectively. The (nonnegative) parameters ai, bi,

di, and ei are the maximum predation rate, half-saturation constant, density-dependent death rate,

and predation efficiency of the prey (i = 1), predator (i = 2), and superpredator (i = 3) species.

The parameter xn is the nutrient concentration flowing into the system, and the parameter D is the

inflow, or dilution, rate (equal to the outflow rate). The term εiD is the density-dependent washout

rate of species i. The constant εi ∈ [0, 1] quantifies how well a species is able to resist washout. For

instance, if εi = 1, the organism will be unable to resist washout. An example of such a species

would be a unicellular algae. Conversely, if εi = 0, the organism is completely resistant to washout.

Positive terms on the right-hand sides of Eqs. (1–4) represent inflow of nutrient and organism

growth. Negative terms represent outflow and consumption of nutrient, and loss of organisms due

to predation, wash out, and death. This model has received considerable attention in the field of

theoretical ecology (Boer et al., 1998; El-Sheikh and Mahrouf, 2005; Gragnani et al., 1998; Kooi et

al., 1997; Kooi, 2003).

As previously stated, our interest in ecological modeling is motivated by its use as a tool

for assessing the risk of the industrial use of newly discovered materials, which may enter the
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environment as contaminants. Many ecologists recognize that ecosystem modeling is important for

estimating risk to ecological systems. However, most current assessment methods rely on examining

single species endpoint tests, such as survival, growth and reproductive rates (Pastorok, 2003).

Ecological risk estimation using food web models is becoming a more popular method (Bartell et

al., 1992, 1999; Lu et al., 2003; Naito et al., 2002, 2003). These methods have aimed at assessing

varying toxic effects over varying time scales. Good summaries of current methods are given by

Bartell et al. (2003) and Pastorok et al. (2003).

Some popular methods for modeling both lethal and sub-lethal effects utilize a toxic effects

factor, which is calculated for each species in comparison to the appropriate experimentally mea-

sured toxicological parameters, such as LC50 or EC50. The LC50 value is the concentration of

contaminant at which 50 percent of the organisms in a test sample die over a given period of time.

In contrast, the EC50 value is the concentration of the contaminant at which 50 percent of the

organisms in a test sample are affected in a specific way over a given period of time. The toxic

effects factor is interpolated assuming a linear relationship between contaminate concentration and

effect. Considering that most exposure-effect curves are concave down up to the LC50 or EC50, this

method should provide a conservative estimate of risk (Naito et al., 2002).

Here, we will explore a straightforward way of linking the effects of contamination to a food

chain model by directly considering the impact of a contaminant on the appropriate model pa-

rameters. For instance, one way of modeling the effect of a contaminant on a food chain would

be to link the death rate parameters to the LC50 values for each species in the model. Thus, an

expression for the density dependent death rate di could be given by:

di = d0
i +

C

2CLC50

i

(5)

where d0
i is the baseline death rate, CLC50

i is the LC50 value for species i, and C is the concentration

of the contaminant in the system. This sort of model approach would be especially useful when
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examining the acutely lethal effect of a contaminant on an organism. However, the sub-lethal effect

of a contaminant on other model parameters could be described in a similar manner. Again, up

to the LC50 value, this method should give a conservative estimate of the potential impact of a

contaminant on a food chain or web. This sort of approach does not necessarily account for chronic

effects or effects caused by bioaccumulation of compounds. However, measurements to date of

octanol-water partition coefficients, for a small number of ILs, suggest that ILs will not tend to

bioaccumulate in fatty tissues (Ropel et al., 2005).

2.2 Equilibrium states and bifurcations

The equilibrium (steady-state) condition is simply f(x) = dx/dt = 0, which in this case is

also subject to the feasibility condition x ≥ 0. Here x = [x0, x1, x2, x3]
T and dx/dt is given by

Eqs. (1–4). Thus, once all the model parameters have been specified, there is a 4 × 4 system of

nonlinear equations to be solved for the equilibrium states. In general, equation systems of this

type, which arise in the modeling of food chains, may have multiple solutions, and the number of

equilibrium states may be unknown a priori. For simple models it may be possible to solve for

many of the equilibrium states analytically, but for more complex models a computational method

is needed that is capable of finding, with certainty, all the solutions of the nonlinear equation

system. The stability of an equilibrium state can be determined by evaluating the Jacobian matrix

J = df/dx at the state and then examining its eigenvalues. According to linear stability analysis,

for an equilibrium state to be stable all of the eigenvalues of the Jacobian must have negative real

parts.

A bifurcation is a change in the topological type of the phase portrait as one or more model

parameters are varied. Bifurcations of interest here occur at parameter values for which the number

and/or stability of the equilibrium states changes (Kuznetsov, 1998). We are primarily interested in

three types of codimension-one bifurcations, namely fold, transcritical and Hopf, and two types of
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codimension-two bifurcations, namely double-fold (or double-zero) and fold-Hopf. The “codimen-

sion” of a bifurcation indicates the number of additional conditions required to specify the particular

type of bifurcation, and thus the number of parameters that must be allowed to vary. Thus, to

find a codimension-one bifurcation, one additional condition must be given, and one parameter

(which we denote as α) allowed to vary, and to find a codimension-two bifurcation, two additional

conditions must be given, and two parameters (α, β) allowed to vary. Several detailed treatments

of bifurcation analysis are available (e.g., Govaerts, 2000; Kuznetsov, 1998; Seydel, 1988).

When a fold or transcritical bifurcation of equilibrium occurs, two equilibria “collide” as the

bifurcation parameter is varied. This collision results in either an exchange of stability (transcrit-

ical) or mutual annihilation of two equilibria (fold). Mathematically, when an equilibrium state

undergoes either a fold or transcritical bifurcation, an eigenvalue of its Jacobian is zero (Govaerts,

2000). Since the determinant of a matrix is equal to the product of its eigenvalues, the determinant

of the Jacobian will be zero at a fold or transcritical bifurcation, thereby providing a convenient

test function (Kuznetsov, 1998). Thus, to locate fold or transcritical bifurcations of equilibria, the

equilibrium condition can be augmented with the additional equation det[J(x, α)] = 0 and the

additional variable α, the bifurcation parameter. The augmented system is then solved to find any

fold and transcritical bifurcations, along with the corresponding value or values of α.

When a single equilibrium state changes stability as a model parameter is varied, this cor-

responds to a Hopf bifurcation. Mathematically, when an equilibrium state undergoes a Hopf

bifurcation, its Jacobian has a pair of complex conjugate eigenvalues whose real parts are zero.

Thus, there must be a pair of eigenvalues that sums to zero. According to Stephanos’s theorem

(Kuznetsov, 1998), for an n × n matrix J with eigenvalues λ1, λ2, . . . , λn, the bialternate product

J ⊙ J has eigenvalues λiλj and the bialternate product 2J ⊙ I has eigenvalues λi + λj . Thus, to

locate a Hopf bifurcation, the equilibrium condition can be augmented (Govaerts, 2000; Kuznetsov,

1998) with the additional equation det[2J(x, α) ⊙ I] = 0. The bialternate product of two n × n
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matrices A and B is an m×m matrix denoted by A⊙B whose rows are labeled by the multiindex

(p, q) where p = 2, 3, . . . , n and q = 1, 2, . . . , p − 1, whose columns are labeled by the multiindex

(r, s) where r = 2, 3, . . . , n and s = 1, 2, . . . , r − 1, where m = n(n − 1)/2, and whose elements are

given by

(A ⊙ B)(p,q)(r,s) =
1

2







∣

∣

∣

∣

∣

∣

∣

apr aps

bqr bqs

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

bpr bps

aqr aqs

∣

∣

∣

∣

∣

∣

∣






. (6)

Note that while solutions to the augmented system will include all Hopf bifurcation points, there

may be other solutions corresponding to the case of two eigenvalues that are real additive inverses.

To identify such “false positives” it is necessary to compute the eigenvalues of the Jacobian at

each solution. If the Hopf bifurcation occurs in an independent two-variable subset of state space,

this is referred to as a planar Hopf bifurcation. In general, a Hopf bifurcation corresponds to

the appearance or disappearance of a limit cycle (stable or unstable) around the equilibrium state

(Seydel, 1988). Frequently this corresponds to a change in the stability of the equilibrium state.

However, for systems with more than two state variables, this is not always the case, depending on

the sign of the real part of other eigenvalues.

The two types of codimension-two bifurcations of interest (double-fold and fold-Hopf) can

both be located by using the same augmenting functions as introduced above. When an equilibrium

undergoes a double-fold bifurcation, its Jacobian has two zero eigenvalues. When an equilibrium

undergoes a fold-Hopf bifurcation, its Jacobian has one eigenvalue that is zero and a pair of purely

imaginary complex conjugate eigenvalues. Thus, the determinant of the Jacobian will be zero in

both a double-fold and a fold-Hopf bifurcation, because in both cases there is at least one eigenvalue

that is zero. Furthermore, in both cases, there is a pair of eigenvalues that will sum to zero, and so

the determinant of the bialternate product 2J ⊙ I will be zero. Thus, to locate a double-fold or a

fold-Hopf codimension-two bifurcation of equilibrium, the equilibrium condition can be augmented
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with the two additional equations det[J(x, α, β)] = 0 and det[2J(x, α, β) ⊙ I] = 0 and the two

additional variables (bifurcation parameters) α and β. The augmented system is then solved to

find the codimension-two bifurcations of interest, along with the corresponding values of α and β.

Once found, these solutions must be screened for solutions that have a pair of (nonzero) eigenvalues

that are purely real additive inverses, and the solutions must be further sorted and classified by type.

Codimension-two bifurcations are often of interest since they may serve as “organizing centers” for

a two-parameter bifurcation diagram.

Whether one is looking for equilibrium states, or the bifurcations of equilibria discussed above,

there is a system of nonlinear equations to be solved that may have multiple solutions, or no solu-

tions, and the number of solutions may be unknown a priori. Typically these equation systems are

solved using a continuation-based strategy (Kuznetsov, 1998). However, these methods generally

offer no guarantee that all equilibrium states or bifurcations will be found, and are often initial-

ization dependent. Bifurcation diagrams can also be generated by using a grid-based approach in

which a grid is established in the two-variable parameter space and the number and stability of

equilibrium states is computed at each grid point (Fussmann et al., 2000). The resulting infor-

mation can provide the approximate location of the bifurcation curves on the diagram, but does

not give their exact location. A computational method is needed that is capable of finding, with

certainty, all the solutions of the nonlinear equation systems that characterize equilibrium states

and their bifurcations. An interval-Newton methodology is explored here for this purpose.

3 Computational methodology

We provide here a very brief outline of the interval-Newton methodology used. For a more

detailed background on interval mathematics, including interval arithmetic, computations with in-

tervals, and interval-Newton methods, there are several good sources available (Hansen and Walster,
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2004; Jaulin et al., 2001; Kearfott, 1996; Neumaier, 1990). Additional details of the interval-Newton

algorithm used are summarized by Gau and Stadtherr (2002) and Schnepper and Stadtherr (1996).

Consider an n × n nonlinear equation system f(x) = 0 with a finite number of real roots in

some initial interval X(0). The interval-Newton methodology is applied to a sequence of subintervals

of the initial interval X
(0); as will be seen below, these subintervals arise in a bisection process. For

a subinterval X(k) in the sequence, the first step is the function range test. An interval extension

F(X(k)) of the function f(x) is calculated, which provides upper and lower bounds on the range of

values of f(x) in X(k). If there is any component of the interval extension F(X(k)) that does not

include zero, then the interval can be discarded. Additional tools, such as constraint propagation

(e.g., Jaulin et al., 2001) or Taylor models (e.g., Makino and Berz, 2003), may also be applied at

this point in order to reduce the size of X(k) or eliminate it.

If it has not been eliminated, the testing of X(k) continues with the interval-Newton test, in

which the linear interval equation system

F ′(X(k))
[

N(k) − x(k)
]

= −f(x(k)) (7)

is solved for a new interval N(k). Here F ′(X(k)) is an interval extension of the Jacobian of f(x) over

the interval X(k), and x(k) is an arbitrary point in X(k). It can be shown (Moore, 1966) that any

root contained in X(k) is also contained in the image N(k). This implies that when X(k) ∩ N(k) is

empty, then no root exists in X(k), and also suggests the iteration scheme X(k+1) = X(k) ∩N(k). In

addition, if N(k) ⊂ X(k), it can been shown (Kearfott, 1996) that there is a unique root contained

in X(k) and thus in N(k). Thus, after computation of N(k), there are three possible outcomes: 1.

X(k) ∩ N(k) = ∅, meaning the current interval X(k) contains no root, so it can be discarded; 2.

N(k) ⊂ X(k), meaning the current interval X(k) contains a unique root, so it need not be further

tested; 3. Neither of the above, but a new interval X(k+1) = X(k) ∩ N(k) can be generated. In

the last case, if there has been a significant reduction in the size of the interval, then the interval-
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Newton test can be reapplied. Otherwise, the interval X(k+1) is bisected, and the resulting two

subintervals are added to the sequence of subintervals to be tested. If an interval containing a unique

root has been identified, then this root can be tightly enclosed by continuing the interval-Newton

iteration, which will converge quadratically to a desired tolerance. This approach is referred to as

an interval-Newton/generalized-bisection (IN/GB) method. At termination, when the subintervals

in the sequence have all been tested, either all the real roots of f(x) = 0 have been tightly enclosed

or it has been determined rigorously that no roots exist. An important feature of this approach is

that, unlike standard methods for nonlinear equation solving that require a point initialization, the

IN/GB methodology requires only an initial interval.

Using the interval methodology described in this section, it is possible to determine all so-

lutions to a nonlinear equation system within a specified initial search interval, or to show that

no such solutions exist. This can be done not only with mathematical certainty, but also with

computational certainty, since the use of interval arithmetic with outward rounding eliminates any

possible rounding error issues.

4 Results for Canale’s model

Following Gragnani et al. (1998), the parameters used were set to a1 = 1.25, b1 = 8, e1 = 0.4,

d1 = 0.01, ε1 = 1, a2 = 0.33, b2 = 9, e2 = 0.6, d2 = 0.001, ε2 = 0.8, a3 = 0.021, b3 = 15.19, e3 = 0.9,

d3 = 0.0001, ε3 = 0.1. A bifurcation diagram with the inflow rate, D, and the concentration of

the nutrient in the inflow, xn, as the bifurcation parameters was then computed using the IN/GB

methodology and compared to the D vs. xn bifurcation diagram determined by Gragnani et al.

(1998) using continuation techniques. The bifurcation diagram for Canale’s model computed using

IN/GB is given in Fig. 1.

The codimension-one bifurcation curves were computed by solving the appropriate equation
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systems (see Section 2.2), first fixing xn at many (400) closely spaced values over the interval

[0,400] and determining the value(s) of D at which bifurcations occurs, and then fixing D at

many (700) closely spaced values over the interval [0,0.14] and determining the value(s) of xn at

which bifurcations occurs. The average CPU time required to solve a system for transcritical and

fold bifurcations was about 15 seconds (1.7 GHz Xeon processor running Linux) and for Hopf

bifurcations about 100 seconds (the many nonlinear systems that must be solved are independent

and can be solved in parallel). Some planar Hopf (Hp) bifurcation curves are shown (both in Fig.

1 and in Gragnani et al.’s diagram) for which a stability change occurs only in a two-variable

subspace, with the stability of the overall system remaining unchanged (unstable) due to the sign

(positive) of the third and/or fourth eigenvalue.

Fig. 1 captures all bifurcations of equilibria shown in the D vs. xn bifurcation diagram

presented by Gragnani et al. (1998). However, we have also located other bifurcation curves not

shown by Gragnani et al. (1998). First, we compute a transcritical bifurcation curve very near the

D axis (the leftmost TE in Fig. 1) that is not given by Gragnani et al. (1998). At this bifurcation, a

stable nutrient-only equilibrium state collides with an infeasible nutrient-prey equilibrium state; the

nutrient-prey state becomes feasible and exchanges stability with the nutrient-only state. Second,

we compute a planar Hopf bifurcation curve near the xn axis (lowest Hp in Fig. 1) that is not shown

by Gragnani et al. (1998) (we have also computed other planar Hopf bifurcations curves very near

the xn axis, but these are not visible in Fig. 1 due to the scale used). However, for all of these Hp

bifurcations, the stability change occurs only in a two-variable subspace, with the stability of the

overall system remaining unchanged (unstable).

Another useful type of diagram in nonlinear dynamics is the solution branch diagram (or

one-parameter bifurcation diagram). This type of diagram shows how the steady-state values and

stability of the state variables change as a single model parameter is varied. These diagrams are also

very easily generated using the interval methodology by simply solving the equilibrium conditions.
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For example, Fig. 2 shows how the equilibrium states change as the inflow nutrient concentration,

xn, is varied from 0 to 400, while the inflow rate, D, is held constant at a value of 0.09. This

was computed by using IN/GB to solve the equilibrium conditions for many (4000) closely spaced

values of xn. The average CPU time to solve for the equilibrium states for one xn value was about

0.06 seconds. In Fig. 2, and in subsequent solution branch diagrams, thin lines represent unstable

equilibria while thick lines represent stable equilibria.

Fig. 2 tracks the behavior of equilibrium states as xn is increased from 0 to 400 along the

horizontal line D = 0.09 in Fig. 1. Moving to the right along this line, seven bifurcations are

encountered, namely (and in order) TE, TE, Hp, FE, TE, H, H. The first TE is not clearly visible

in Fig. 2 due to the scale used. The sixth and seventh bifurcations, both Hopf, are of particular

interest here. The sixth bifurcation (xn ≈ 112.5) results in the first stable coexisting equilibrium

state (all three species present). But at the seventh bifurcation (xn ≈ 184.5), this state becomes

unstable. This illustrates the “paradox of enrichment”. A minimum inflow nutrient concentration

is necessary to support a stable, coexisting state for all three species. Enriching the food chain by

increasing the inflow nutrient concentration will increase the stable population of the top predator,

but only to a point. Beyond that point (Hopf bifurcation) the system becomes unstable and

populations experience “boom and bust” cycles. To directly study the change in system behavior

that occurs at this bifurcation (or any of the other bifurcations identified in this study), dynamic

simulations can be performed. In this case, dynamic simulations show that, at this Hopf bifurcation,

a stable limit cycles appears around the unstable steady state. On this periodic orbit the state

variables (mass values or populations) experience “boom and bust” cycles (Gragnani et al., 1998).

Using solution branch diagrams like Fig. 2 we can characterize the regions in Fig. 1 and

identify the bounds on the region of xn and D that corresponds to a stable, coexisting steady state.

This region is shown by the shaded area in Fig. 1. As indicated in Fig. 1, as the inflow rate, D,

increases, the minimum inflow nutrient concentration, xn, required to support a stable, coexisting
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steady state also increases. This behavior is intuitive because, as the inflow rate increases, more

nutrient and organisms are washed out of the system, resulting in the need for a higher nutrient

inflow concentration, xn, to support the minimum biomasses of prey and predators necessary for

survival of the predators and superpredators, respectively.

The maximum xn boundary for the region supporting a stable, coexisting steady state is

the rightmost Hopf bifurcation curve. At xn values to the of right this curve, the system is over-

enriched and loses stability. One can see from Fig. 1 that at relatively low inflow rates (D / 0.0414),

increasing D causes the maximum xn allowable for a stable coexisting state to decrease. This can

be explained by recognizing that at very low values of the inflow rate, D, increasing the inflow rate

has the predominant effect of increasing the addition of nutrients to the system, thereby leading

to over-enrichment and decreasing the inflow nutrient concentration at which the rightmost Hopf

bifurcation occurs in Fig. 2. However, at values of D ' 0.0414, increasing the inflow rate causes

the effects of washout to become more pronounced, and larger values of xn are allowable because

of the high removal rate of both biomass and system nutrient.

Using the techniques developed here it is a relatively simple matter to generate bifurcation

diagrams in different parameter spaces within the model. Furthermore, generating these diagrams

can be done reliably, without need for a priori insight and without worry about initialization issues.

Here we will next explore bifurcation diagrams for a different model, namely Canale’s model as

modified to include the effect of contaminant.

5 Results for Canale’s model with contaminant

Canale’s chemostat model was modified to include the linearly increasing death rate function

given by Eq. (5). The baseline death rates d0
1, d0

2, and d0
3 were set to the d1, d2, and d3 values given

above (Gragnani et al., 1998). Various scenarios were studied for the LC50 values used for the prey,
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predator, and superpredator species. The values chosen were selected to reflect orders of magnitude

difference in the sensitivity of each species to the hypothetical contaminant. The values used were

combinations of CLC50

i set to 10, 100, and 1000, used once for each species. There were six possible

combinations of these values, and six figures, each a C vs. xn bifurcation diagram generated using

IN/GB as described above, were generated. These cases are organized for discussion into three

sections, depending on which species is most sensitive to the contaminant.

5.1 Prey most sensitive

Fig. 3 shows the case where the contaminant is most lethal to the prey trophic level (i = 1).

The diagram on the left shows the case where the contaminant is least lethal to the superpredators

(CLC50

1 = 10, CLC50

2 = 100, CLC50

3 = 1000), while the diagram on the right shows the case where

the contaminant is least lethal to the predators (CLC50

1 = 10, CLC50

2 = 1000, CLC50

3 = 100).

Both diagrams in Fig. 3 exhibit transcritical, fold, Hopf, and planar Hopf codimension-one

bifurcations, and each diagram has a single codimension-two fold-Hopf bifurcation. Both diagrams

were generated on a 3.2 GHz Pentium IV processor running the Intel Fortran Compiler 7.1 for

Linux. The average CPU time necessary to solve for fold and transcritical bifurcations was 3.2

seconds for the diagram on the left and 2.2 seconds for the diagram on the right. The average CPU

time necessary to compute Hopf bifurcations was 16.6 seconds for the diagram on the left and 10.9

seconds for the diagram on the right. The time necessary to solve for the fold-Hopf codimension-two

bifurcation point was 454 seconds for the diagram on the left and 266 seconds for the diagram on

the right.

A solution branch diagram was computed for each toxicity case examined in Fig. 3. While

the solution branch diagrams were not quantitatively identical, the general qualitative trends can

be captured by a single diagram. Fig. 4 is a solution branch diagram that illustrates the effect of

increasing the contaminant concentration for the case CLC50

1 = 10, CLC50

2 = 100, and CLC50

3 = 1000
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(Fig. 3, left), with xn = 200 and D = 0.07. This figure aids in the characterization of the

different regions in Fig. 3. Furthermore, Fig. 4 gives insight into the behavior of the system

under increasing contaminant loads. As the contaminant level in the system increases, the system

transitions from an unstable, likely cyclical, state to a stable, coexisting steady state in a Hopf

bifurcation at C ≈ 1.21. Over the range of stability of this coexisting equilibrium state, increasing

the contaminant concentration has the expected effect of reducing the steady-state prey population.

However, simultaneously, the steady-state predator population increases, while the superpredator

population decreases. The behavior is somewhat unexpected. Since the superpredator population

is least sensitive to the hypothetical toxin, one might intuitively expect that contaminating the

system would have the least effect on the superpredator. Furthermore, with declining steady-state

prey populations, one would expect that the predator population would decline as well. However,

from another point of view, the behavior of this system appears reasonable. Since the superpredator

is the top species in the food chain, effects to species below the superpredator will directly affect

the superpredator population. Declining steady-state superpredator populations reduce predation

pressures on the middle trophic level, allowing the predators to flourish. This, in turn, increases

predation pressure on the prey trophic level, compounding the effects of the high sensitivity to the

ecotoxin and causing the prey population to decrease.

In Fig. 3, the scales of the two diagrams are different in terms of the range of contaminant

concentration examined. The contaminant concentration for the diagram on the left ranges from 0

to 10, while on the right the range is from 0 to 2. This disparity in scaling was chosen to highlight

the difference between the diagrams in terms of the behavior of the fold, transcritical, and Hopf

bifurcation curves to the right and/or below the planar Hopf bifurcation. While this set of curves

appears virtually identical between the two diagrams, it is worth noting the difference in the scaling.

Furthermore, if the scale of the diagram on the right was increased to match the diagram on the

left, the leftmost transcritical curve on both diagrams would match identically. This curve forms
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the boundary at which the nutrient-only state collides with the nutrient-prey state, and occurs

when x2 = 0 and x3 = 0. To the right of this curve, the nutrient-prey state is feasible. Since

CLC50

1 = 10 in both diagrams, mathematically this line should be identical. However, moving left

to right in both diagrams, the next transcritical bifurcation observed is not identical. This curve

forms the boundary at which a nutrient-prey-predator system becomes feasible. The shape of this

transcritical bifurcation in both diagrams is very similar, but concavity of the curve is much greater

for the system in which the predator is least sensitive to the contaminant (CLC50

2 = 1000). Thus,

the sensitivity of the predator species, as expected, determines to what extent the predator species

in a nutrient-prey-predator state can tolerate the ecotoxin.

Of particular interest in Fig. 3 is the region in which all three species can coexist. This region

is shaded grey in both diagrams. The regions themselves display virtually identical trends in terms

of the relationship between inflow nutrient concentration, xn, and contaminant concentration, C.

The shape of these regions generally indicates that, by increasing the inflow nutrient concentration,

the system will be able to tolerate higher contaminant concentrations as compared to a system that

is not enriched. The difference between the two diagrams in Fig. 3 gives the reader information

concerning the sensitivity of the system to contaminant. In the diagram on the right, for which

the predator is least sensitive (CLC50

2 = 1000), the maximum allowable contaminant concentration

for coexistence is C ≈ 1.03 at xn = 400. In the diagram on the left, for which the superpredator is

least sensitive (CLC50

3 = 1000), the maximum allowable contaminant concentration for coexistence

is C ≈ 4.02 at xn = 400. This difference between the two scenarios indicates that the superpredator

plays an important role in the top-down control of the food chain.

5.2 Predator most sensitive

The next pair of systems examined are those in which the predator (i = 2) is species most

sensitive to contamination, and the results for these systems are shown in Fig. 5. The diagram on
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the left shows the case where the contaminant is least lethal to the superpredators (CLC50

1 = 100,

CLC50

2 = 10, CLC50

3 = 1000), while the diagram on the right shows the case where the contaminant

is least lethal to the prey (CLC50

1 = 1000, CLC50

2 = 10, CLC50

3 = 100).

Notice first that the two diagrams in Fig. 5 differ in the types of bifurcations present. The

diagram on the right exhibits transcritical, fold, Hopf, planar Hopf, and fold-Hopf bifurcations,

while the diagram on the left does not display any fold or fold-Hopf bifurcations. The diagram on

the left was generated using a 3.2GHz Pentium IV processor while the diagram on the right was

generated using a 1.7GHz Xeon processor. Both were generated using the Intel Fortran Compiler

7.1 for Linux. The average CPU time necessary to solve for fold and transcritical bifurcations

was 1.5 seconds for the diagram on the left and 9.72 seconds for the diagram on the right. The

average CPU time necessary to compute Hopf bifurcations was 9.15 seconds for the diagram on the

left and 41.4 seconds for the diagram on the right. The time necessary to solve for the fold-Hopf

codimension-two bifurcation point was 2502 seconds for the diagram on the right, and it took 318

seconds to show that no codimension-two fold-fold or fold-Hopf points existed for the diagram on

the left. The differences between the computation times for the two diagrams are clearly due in

part to the difference in the CPUs used.

As done previously, solution branch diagrams were generated for both cases examined in Fig.

5. The two diagrams were not quantitatively or qualitatively identical. However, the general

trends are quite similar with a few exceptions, which can be noted by the different order and

types of bifurcation curves encountered in the two diagrams in Fig. 5. Thus, only one solution

branch diagram is presented here. Fig. 6 is a solution branch diagram that illustrates the effect of

increasing the contaminant concentration for the case CLC50

1 = 1000, CLC50

2 = 10, and CLC50

3 = 100

(Fig. 5, right), with xn = 200 and D = 0.07. If Fig. 6 was generated for the system on the left in

Fig. 5, the main difference would be that the stable, coexisting steady state would not lose stability

in a Hopf bifurcation. Rather, the stable coexisting state would cease to exist in a transcritical
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bifurcation. Furthermore, the planar Hopf bifurcation would have no effect on system stability,

and no fold bifurcations would be observed. However, it is important to note that the general

trends observed for the steady-state biomasses for the three species are qualitatively similar when

increasing the contaminant concentration. As the contaminant concentration increases, the system

transitions to a stable, coexisting steady state. This occurs because the contaminant increases the

death rates of the species, causing unstable population cycles to dampen and collapse in a Hopf

bifurcation at C ≈ 0.269. Over the range of stability of this coexisting equilibrium state, increasing

the contaminant concentration has an unexpected effect. The superpredator and prey populations

both decrease while the predator population increases, despite the fact that the predator species

is the most sensitive to the contaminant. This behavior is obviously counterintuitive, but is once

again indicative of the top-down control of the food chain by the superpredator species.

The region of stable coexistence for the three species is shaded grey for both diagrams in Fig.

5. In the left diagram in Fig. 5, the lower bound of the region is defined by the Hopf bifurcation,

while the upper bound is defined by the rightmost transcritical bifurcation. In the right diagram,

the lower and upper bounds on the region of stable coexistence are defined by the Hopf bifurcation

curves. The same general trend for the region of stable coexistence is observed in the diagrams in

Fig. 5 as was observed in the diagrams in Fig. 3. That is, as the inflow nutrient concentration,

xn, increases, the maximum allowable contaminant concentration, C, for stable coexistence of the

food chain also increases. Furthermore, as in Fig. 3, the coexisting steady state is more tolerant

to higher contaminant concentrations in the system where the superpredator is least sensitive to

the ecotoxin. This is readily apparent by observing that the upper bound on the contaminant

concentration is C ≈ 1.17 for the right diagram, where the superpredator is moderately sensitive

(CLC50

3 = 100), while the upper bound is C ≈ 2.43 for the left diagram, where the superpredator is

least sensitive (CLC50

3 = 1000).

On last feature worth mentioning in Fig. 5 is the difference between the leftmost transcritical
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bifurcation curve in each diagram. This curve separates the region of feasibility for the nutrient-

only state from the region in which there is both a nutrient-only state and a nutrient-prey state.

Each transcritical bifurcation curve displays the same behavior qualitatively for large values of C

in that both proceed upwards, then curve to the right and begin to level off, much like the same

curves in the diagrams in Fig. 3. However, in the left diagram, this transcritical curve levels off

around a value of C ≈ 80, while in the right diagram this curve levels off around C ≈ 800. This

difference is expected, considering the order of magnitude difference in CLC50

1 between the two

diagrams in Fig. 5, and the simplicity of the state space in which this bifurcation occurs. So, while

the superpredator exerts top-down control on the limits of the stable, coexisting steady state, the

toxicity of the contaminant to the prey species determines the boundary between existence and

extinction for the prey species in the nutrient-prey state.

5.3 Superpredator most sensitive

The last set of bifurcation diagrams for Canale’s model with a hypothetical contaminant was

generated for the systems in which the superpredator (i = 3) is the species most sensitive to the

ecotoxin (CLC50

3 = 10). These systems are shown in Figs. 7 and 8. Fig. 7 shows the bifurcations

found at relatively large values of C, and Fig. 8 shows the bifurcations found at relatively small

values of C. Fig. 7 is a side-by-side comparison of the two diagrams for the purpose of analyzing

the differences in scale of the effect of C on the nutrient-prey state and the nutrient-prey-predator

state. The diagram on the left shows the case where the contaminant is least lethal to the prey

(CLC50

1 = 1000, CLC50

2 = 100, CLC50

3 = 10), while the diagram on the right shows the case where

the contaminant is least lethal to the predators (CLC50

1 = 100, CLC50

2 = 1000, CLC50

3 = 10). To

observe the behavior of the bifurcations controlling the stable, coexisting steady state, the diagrams

must be significantly rescaled to show only small values of C. When the left diagram is rescaled,

the result is the diagram shown in Fig. 8. When the right diagram is rescaled, it is virtually
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indistinguishable from Fig. 8, and so only the one diagram is given.

Generation of the diagrams in Fig. 7 and Fig. 8 took place on a 3.2GHz Pentium IV processor

using the Intel Fortran Compiler 7.1 for Linux. For the diagram on the left in Fig. 7 (and for Fig.

8), locating fold and transcritical bifurcations took an average of 1.3 seconds of CPU time, while

Hopf bifurcations took an average of 9.1 seconds, and the fold-Hopf codimension-two point took

169 seconds. For the right diagram in Fig. 7, locating fold and transcritical bifurcations took an

average of 1.5 seconds of CPU time, while Hopf bifurcations took an average of 9.8 seconds, and

the fold-Hopf codimension-two point took 161 seconds.

Fig. 7 illustrates the scaling differences between the two systems. In the diagram on the

left, where the prey is least sensitive to the ecotoxin and the predator is moderately sensitive, the

leftmost transcritical bifurcation is almost vertical. Were the scale extended along the C axis, one

would observe that this transcritical bifurcation curves to the left and levels off near C ≈ 800. In

the diagram on the right in Fig. 7, where the predator is least sensitive to the ecotoxin and the

prey is moderately sensitive, it is clear that, qualitatively, the same behavior is observed for the

equivalent bifurcation curve, with the exception that this curve now levels off near C ≈ 80. This is

the same behavior observed in the equivalent bifurcation curves in Fig. 5, and occurs for the same

reason discussed in Section 5.2. The remaining bifurcation curves viewable in the scale of Fig. 7 are

a transcritical bifurcation, and a planar Hopf bifurcation. Crossing the planar Hopf curve causes

the nutrient-prey-predator state to become stable with increasing contaminant concentration C.

By further increasing C and crossing the transcritical bifurcation, the nutrient-prey-predator state

becomes infeasible. Since both of these curves define behavior for the predator trophic level, it is

clear why there should be quantitative differences between the two cases shown in Fig. 7.

Fig. 8 is a magnification of the diagram on the left in Fig. 7 (CLC50

1 = 1000, CLC50

2 = 100,

CLC50

3 = 10). In this system, the prey is least sensitive to the contaminant, and the superpredators

are most sensitive. Fig. 8 shows the region of the stable, coexisting steady state. As previously
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observed, increasing the nutrient inflow concentration, xn, increases the maximum allowable con-

taminant concentration, C, prior to the coexisting state becoming unstable. In comparison to the

diagrams in Fig. 3 and Fig. 5, the region of stable coexistence shown in Fig. 8 is highly sensitive to

the concentration of the hypothetical contaminant. In fact, the system in Fig. 8 is approximately

an order of magnitude more sensitive than the most sensitive system previously studied. This

further illustrates the importance of the superpredator on the behavior in the coexisting steady

state.

A solution branch diagram was generated for the system shown in Fig. 8. This diagram

illustrates the effect of increasing the contaminant concentration, C, on the various feasible steady

states, with xn = 200 and D = 0.07. This diagram appears as Fig. 9. The qualitative behavior

shown in this diagram is very similar to the behavior observed for other systems. As the contam-

inant concentration increases, the coexisting state first becomes stable in a Hopf bifurcation. A

subsequent Hopf bifurcation causes the coexisting state to lose stability. However, increasing the

contaminant concentration, C, over the interval where the system is stable causes a decline in the

superpredator and prey populations, while the predator population increases.

While the specific scenarios of contamination cause the various systems examined here to

display different quantitative behaviors, the qualitative behavior of all the contamination scenarios

is strikingly similar. A common theme in theoretical ecology is that when species at the base of a

food chain are affected by some change in the system, the top species will be indirectly impacted.

This theme is readily apparent in the “paradox of enrichment”, and can also be seen by examining

the various contamination scenarios presented here. Furthermore, it is clear that the superpredator

species plays an important role in the top-down control of the stable, coexisting steady state in the

food chain. Considering the magnitude of the baseline death rate parameter values used (d0
1 = 0.01,

d0
2 = 0.001, d0

3 = 0.0001), we would expect the superpredator species to be most sensitive to small

changes in the death rate. However, consider the case (Fig. 5, left) in which the superpredators
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are two orders of magnitude less sensitive to the contaminant than the predators. In this case,

the predators should be more sensitive to the contaminant than the superpredators. However,

even in this case, for the stable coexisting steady-state, increasing the contaminant concentration

causes a decline in the superpredator population and an increase in the predator population. The

predator population does not begin to decline until levels of contaminant are reached at which

the superpredators are decimated. This sort of behavior can be quite counterintuitive, but is not

uncommon in nonlinear food chain and food web systems.

6 Concluding remarks

We have demonstrated here the utility of an interval-Newton approach for the computationally

rigorous and reliable computation of all equilibrium states and bifurcations of equilibria (fold,

transcritical, Hopf, double-fold and fold-Hopf) in nonlinear models of ecosystem dynamics, with

focus on a model that includes the effect of a contaminant. Using this methodology one can easily,

without any need for initialization or a priori insight into system behavior, generate complete

solution branch and bifurcation diagrams. The ability to easily and reliably analyze nonlinear food

chain models can expose unexpected and counterintuitive behavior. The knowledge provided by

this sort of analysis may be quite useful in managing risk in the complex and highly interdependent

nonlinear systems found in our environment.
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List of Figure Captions

Fig. 1. Bifurcation of equilibrium diagram for nutrient inflow concentration (xn) versus inflow rate

(D) in Canale’s chemostat model. TE: Transcritical of equilibrium; FE: Fold of equilibrium;

H: Hopf; Hp: Planar Hopf; FH: Fold- Hopf codimension-two. Region of stable coexistence

shaded in grey.

Fig. 2. Solution branch diagram illustrating the change in equilibrium states (species biomass)

with change in the nutrient concentration of the inflow (xn) for Canale’s chemostat model.

From left to right: prey, predator, and superpredator biomasses. D = 0.09 for all three plots.

Fig. 3. Bifurcation of equilibrium diagrams for nutrient inflow concentration (xn) versus con-

taminant concentration (C) in Canale’s chemostat model with modified death rates given by

Eq. (5). D = 0.07 for both plots. TE: Transcritical of equilibrium; FE: Fold of equilibrium;

H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Regions of stable coexistence

shaded in grey.

Fig. 4. Solution branch diagram illustrating the change in equilibrium states (species biomass)

with change in the contaminant concentration (C) for Canale’s chemostat model with modified

death rates given by Eq. (5). From left to right: prey, predator, and superpredator biomasses.

D = 0.07, xn = 200, CLC50

1 = 10, CLC50

2 = 100, and CLC50

3 = 1000 for all three plots.

Fig. 5. Bifurcation of equilibrium diagrams for nutrient inflow concentration (xn) versus con-

taminant concentration (C) in Canale’s chemostat model with modified death rates given by

Eq. (5). D = 0.07 for both plots. TE: Transcritical of equilibrium; FE: Fold of equilibrium;

H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Regions of stable coexistence

shaded in grey.

Fig. 6. Solution branch diagram illustrating the change in equilibrium states (species biomass)

30



with change in the contaminant concentration (C) for Canale’s chemostat model with modified

death rates given by Eq. (5). From left to right: prey, predator, and superpredator biomasses.

D = 0.07, xn = 200, CLC50

1 = 1000, CLC50

2 = 10, and CLC50

3 = 100 for all three plots.

Fig. 7. Bifurcation of equilibrium diagrams for nutrient inflow concentration (xn) versus contam-

inant concentration (C) in Canale’s chemostat model with modified death rates given by Eq.

(5). D = 0.07 for both plots. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H:

Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Regions of stable coexistence not

shown due to scale. See Fig. 8.

Fig. 8. Bifurcation of equilibrium diagram for nutrient inflow concentration (xn) versus contami-

nant concentration (C) in Canale’s chemostat model with modified death rates given by Eq.

(5) and D = 0.07. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H: Hopf; Hp:

Planar Hopf; FH: Fold-Hopf codimension-two. Region of stable coexistence shaded in grey.

See Fig. 7 for larger values of C.

Fig. 9. Solution branch diagram illustrating the change in equilibrium states (species biomass)

with change in the contaminant concentration (C) for Canale’s chemostat model with modified

death rates given by Eq. (5). From left to right: prey, predator, and superpredator biomasses.

D = 0.07, xn = 200, CLC50

1 = 1000, CLC50

2 = 100, and CLC50

3 = 10 for all three plots.
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Figure 1: Bifurcation of equilibrium diagram for nutrient inflow concentration (xn) versus inflow

rate (D) in Canale’s chemostat model. TE: Transcritical of equilibrium; FE: Fold of equilibrium;

H: Hopf; Hp: Planar Hopf; FH: Fold- Hopf codimension-two. Region of stable coexistence shaded

in grey.

32



Figure 2: Solution branch diagram illustrating the change in equilibrium states (species biomass) with change in the nutrient

concentration of the inflow (xn) for Canale’s chemostat model. From left to right: prey, predator, and superpredator biomasses.

D = 0.09 for all three plots.
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Figure 3: Bifurcation of equilibrium diagrams for nutrient inflow concentration (xn) versus contaminant concentration (C) in

Canale’s chemostat model with modified death rates given by Eq. (5). D = 0.07 for both plots. TE: Transcritical of equilibrium;

FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Regions of stable coexistence shaded in

grey.
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Figure 4: Solution branch diagram illustrating the change in equilibrium states (species biomass) with change in the contaminant

concentration (C) for Canale’s chemostat model with modified death rates given by Eq. (5). From left to right: prey, predator,

and superpredator biomasses. D = 0.07, xn = 200, CLC50

1 = 10, CLC50

2 = 100, and CLC50

3 = 1000 for all three plots.
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Figure 5: Bifurcation of equilibrium diagrams for nutrient inflow concentration (xn) versus contaminant concentration (C) in

Canale’s chemostat model with modified death rates given by Eq. (5). D = 0.07 for both plots. TE: Transcritical of equilibrium;

FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Regions of stable coexistence shaded in

grey.
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Figure 6: Solution branch diagram illustrating the change in equilibrium states (species biomass) with change in the contaminant

concentration (C) for Canale’s chemostat model with modified death rates given by Eq. (5). From left to right: prey, predator,

and superpredator biomasses. D = 0.07, xn = 200, CLC50

1 = 1000, CLC50

2 = 10, and CLC50

3 = 100 for all three plots.
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Figure 7: Bifurcation of equilibrium diagrams for nutrient inflow concentration (xn) versus contaminant concentration (C) in

Canale’s chemostat model with modified death rates given by Eq. (5). D = 0.07 for both plots. TE: Transcritical of equilibrium;

FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-two. Regions of stable coexistence not shown

due to scale. See Fig. 8.
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Figure 8: Bifurcation of equilibrium diagram for nutrient inflow concentration (xn) versus contam-

inant concentration (C) in Canale’s chemostat model with modified death rates given by Eq. (5)

and D = 0.07. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H: Hopf; Hp: Planar

Hopf; FH: Fold-Hopf codimension-two. Region of stable coexistence shaded in grey. See Fig. 7 for

larger values of C.
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Figure 9: Solution branch diagram illustrating the change in equilibrium states (species biomass) with change in the contaminant

concentration (C) for Canale’s chemostat model with modified death rates given by Eq. (5). From left to right: prey, predator,

and superpredator biomasses. D = 0.07, xn = 200, CLC50

1 = 1000, CLC50

2 = 100, and CLC50

3 = 10 for all three plots.
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