
A Parallel Frontal Solver For Large Scale Process Simulation and

Optimization

J. U. Mallya(1), S. E. Zitney(1)y, S. Choudhary(1), and M. A. Stadtherr(2)z

(1) Cray Research, Inc., 655-E Lone Oak Drive, Eagan, MN 55121, USA.
(2) Department of Chemical Engineering, University of Notre Dame,

Notre Dame, IN 46556, USA

Revised December, 1996

Keywords: Simulation, Optimization, Parallel Computing, Sparse Matrices

ycurrent address: AspenTech UK Ltd., Castle Park, Cambridge CB3 0AX, England
zAuthor to whom all correspondence should be addressed



Abstract

For the simulation and optimization of large-scale chemical processes, the overall computing time

is often dominated by the time needed to solve a large sparse system of linear equations. We present

here a new parallel frontal solver which can signi�cantly reduce the wallclock time required to solve

these linear equation systems using parallel/vector supercomputers. The algorithm exploits both

multiprocessing and vector processing by using a multilevel approach in which frontal elimination

is used for the partial factorization of each front. Results on several large scale process simulation

and optimization problems are presented.



1 Introduction

The solution of realistic, industrial-scale simulation and optimization problems is computation-

ally very intense, and may require the use of high performance computing technology to be done

in a timely manner. For example, Zitney et al. (1995) described a dynamic simulation problem at

Bayer AG requiring 18 hours of CPU time on a CRAY C90 supercomputer when solved with the

standard implementation of SPEEDUP (Aspen Technology, Inc.). To better use this leading edge

technology in process simulation and optimization requires the use of techniques that e�ciently

exploit vector and parallel processing. Since most current techniques were developed for use on

conventional serial machines, it is often necessary to rethink problem solving strategies in order to

take full advantage of supercomputing power. For example, by using a di�erent linear equation

solving algorithm and addressing other implementation issues, Zitney et al. (1995) reduced the

time needed to solve the Bayer problem from 18 hours to 21 minutes.

In the Bayer problem, as in most other industrial-scale problems, the solution of large, sparse

systems of linear equations is the single most computationally intensive step, requiring over 80% of

the total simulation time in some cases. Thus, any reduction in the linear system solution time will

result in a signi�cant reduction in the total simulation time for a given problem, as well as provide

the potential for solving much larger problems within a given time frame. The matrices that arise,

however, do not have any of the desirable properties, such as numerical or structural symmetry,

positive de�niteness, and bandedness often associated with sparse matrices, and usually exploited in

developing e�cient parallel/vector algorithms. Recently, an implementation of the frontal method

(Zitney, 1992; Zitney and Stadtherr, 1993; Zitney et al., 1995), developed at the University of Illi-

nois and later extended at Cray Research, Inc., has been described that is designed speci�cally for
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use in the context of process simulation. This solver (FAMP) has been incorporated in CRAY im-

plementations of popular commercial codes, such as ASPEN PLUS, SPEEDUP (Aspen Technology,

Inc.), and NOVA (Dynamic Optimization Technology Products, Inc.). FAMP is e�ective on vector

machines since most of the computations involved can be performed using e�ciently vectorized

dense matrix kernels. However, this solver does not well exploit the multiprocessing architecture

of parallel/vector supercomputers. In this paper we propose a new parallel/vector frontal solver

(PFAMP) that exploits both the vector and parallel processing architectures of modern supercom-

puters. Results demonstrate that the approach described leads to signi�cant reductions in the

wallclock time required to solve the sparse linear systems arising in large scale process simulation

and optimization.

2 Background

Consider the solution of a linear equation system Ax = b, where A is a large sparse n�n matrix

and x and b are column vectors of length n. While iterative methods can be used to solve such

systems, the reliability of such methods is questionable in the context of process simulation (Cofer

and Stadtherr, 1996). Thus we concentrate here on direct methods. Generally such methods can

be interpreted as an LU factorization scheme in which A is factored A = LU , where L is a lower

triangular matrix and U is an upper triangular matrix. Thus, Ax = (LU)x = L(Ux) = b, and the

system can be solved by a simple forward substitution to solve Ly = b for y, followed by a back

substitution to �nd the solution vector x from Ux = y.

The frontal elimination scheme used here is an LU factorization technique that was originally

developed to solve the banded matrices arising in �nite element problems (Irons, 1970; Hood, 1976).
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The original motivation was, by limiting computational work to a relatively small frontal matrix,

to be able to solve problems on machines with small core memories. Today it is widely used for

�nite element problems on vector supercomputers because, since the frontal matrix can be treated

as dense, most of the computations involved can be performed by using very e�cient vectorized

dense matrix kernels. Stadtherr and Vegeais (1985) extended this idea to the solution of process

simulation problems on supercomputers, and later (Vegeais and Stadtherr, 1990) demonstrated its

potential. As noted above, an implementation of the frontal method developed speci�cally for use

in the process simulation context has been described by Zitney (1992), Zitney and Stadtherr (1993),

and Zitney et al. (1995), and is now incorporated in supercomputer versions of popular process

simulation and optimization codes.

The frontal elimination scheme can be outlined brie
y as follows:

1. Assemble a row into the frontal matrix.

2. Determine if any columns are fully summed in the frontal matrix. A column is fully summed

if it has all of its nonzero elements in the frontal matrix.

3. If there are fully summed columns, then perform partial pivoting in those columns, eliminating

the pivot rows and columns and doing an outer-product update on the remaining part of the

frontal matrix.

This procedure begins with the assembly of row 1 into the initially empty frontal matrix, and

proceeds sequentially row by row until all are eliminated, thus completing the LU factorization. To

be more precise, it is the LU factors of the permuted matrix PAQ that have been found, where P

is a row permutation matrix determined by the partial pivoting, and Q is a column permutation

matrix determined by the order in which the columns become fully summed. Thus the solution
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to Ax = b is found as the solution to the equivalent system PAQQTx = LUQTx = Pb, which is

solved by forward substitution to solve Ly = Pb for y, back substitution to solve Uw = y for w, and

�nally the permutation x = Qw. To simplify notation, the permutation matrices will henceforth

not be shown explicitly.

To see this in mathematical terms, consider the submatrix A(k) remaining to be factored after

the (k � 1)-th pivot:

A(k) =

2
6664
F (k) 0

A
(k)
ps A

(k)
ns

3
7775 : (1)

Here F (k) is the frontal matrix. The subscript ps in A
(k)
ps indicates that it contains columns that

are partially summed (some but not all nonzeros in the frontal matrix) and the subscript ns in A
(k)
ns

indicates that it contains columns that are not summed (no nonzeros in the frontal matrix). If a

stage in the elimination process has been reached at which all remaining columns have nonzeros

in the frontal matrix, then A
(k)
ns and the corresponding zero submatrix will not appear in Eq. (1).

Assembly of rows into the frontal matrix then proceeds until gk � 1 columns become fully summed:

A(k) =

2
66666664

�F
(k)
11

�F
(k)
12 0

�F
(k)
21

�F
(k)
22 0

0 �A
(k)
ps

�A
(k)
ns

3
77777775
: (2)

�F (k) is now the frontal matrix and its submatrices �F
(k)
11 and �F

(k)
21 comprise the columns that have

become fully summed, which are now eliminated using rows chosen during partial pivoting and

which are shown as belonging to �F
(k)
11 here. This amounts to the factorization �F

(k)
11 = L

(k)
11 U

(k)
11 of

4



the order-gk block �F
(k)
11 , resulting in:

A(k) =

2
66666664

L
(k)
11 U

(k)
11 U

(k)
12 0

L
(k)
21 F (k+gk) 0

0 A
(k+gk)
ps A

(k+gk)
ns

3
77777775

(3)

where the new frontal matrix F (k+gk) is the Schur complement F (k+gk) = �F
(k)
22 �L

(k)
21 U

(k)
12 , which is

computed using an e�cient full-matrix outer-product update kernel, A
(k+gk)
ps = �A

(k)
ps and A

(k+gk)
ns =

�A
(k)
ns . Note that operations are done within the frontal matrix only. At this point L

(k)
11 and L

(k)
21

contain columns k through k + gk � 1 of L and U
(k)
11 and U

(k)
12 contain rows k through k + gk � 1

of U . The computed columns of L and rows of U are saved and the procedure continues with the

assembly of the next row into the new frontal matrix F (k+gk). Note that the index k used for the

A(k) submatrix and its blocks occurs in increments of gk. That is, after A
(k) is processed, the next

submatrix to be processed is A(k+gk). Thus, since gk may be greater than one, A(k) may not occur

for all integers k.

3 Small-grained Parallelism

In the frontal algorithm, the most expensive stage computationally is the outer-product update

of the frontal matrices. When executed on a single vector processor, FAMP performs e�ciently

because the outer-product update is readily vectorized. Essentially this takes advantage of a �ne-

grained, machine-level parallelism, in this case (CRAY C90) the overlapping, assembly-line style

parallelism provided by the internal architecture of a highly pipelined vector processor. An ad-

ditional level of parallelism might be obtained by multitasking the innermost loops that perform
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the outer-product update. Multitasking refers to the use of multiple processors to execute a task

with the aim of decreasing the actual wallclock time for that task. Microtasking, which is a form of

multitasking, involves the processing of tasks with small granularity. Typically, these independent

tasks can be identi�ed quickly and exploited without rewriting large portions of the code. Speci�c

directives in the source code control microtasking by designating the bounds of a control structure

in which each iteration of a DO loop is a process that can be executed in parallel. Since there

is an implicit synchronization point at the bottom of every control structure, all iterations within

the control structure must be �nished before the processors can proceed. Our experience (Mallya,

1996) has shown that the potential for achieving good speedups in FAMP with the exploitation

of only small-grained parallelism by microtasking is very limited. Often, speedups of only about

1.2 could be achieved using four processors. The reason is that the parallel tasks are simply not

computationally intense enough to overcome the synchronization cost and the overhead associated

with invoking multiple processors on the C90. This indicates the need for exploiting a higher,

coarse-grained level of parallelism to make multiprocessing worthwhile for the solution of sparse

linear systems in process simulation and optimization.

4 Coarse-grained Parallelism

The main de�ciency with the frontal code FAMP is that there is little opportunity for parallelism

beyond that which can be achieved by microtasking the inner loops or by using higher level BLAS in

performing the outer product update (Mallya, 1996; Camarda and Stadtherr, 1994). We overcome

this problem by using a coarse-grained parallel approach in which frontal elimination is performed

simultaneously in multiple independent or loosely connected blocks. This can be interpreted as

applying frontal elimination to the diagonal blocks in a bordered block-diagonal matrix.
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Consider a matrix in singly-bordered block-diagonal form:

A =

2
666666666664

A11

A22

. . .

ANN

S1 S2 : : : SN

3
777777777775

(4)

where the diagonal blocks Aii are mi �ni and in general are rectangular with ni � mi. Because of

the unit-stream nature of the problem, process simulation matrices occur naturally in this form, as

described in detail by Westerberg and Berna (1978). Each diagonal block Aii comprises the model

equations for a particular unit, and equations describing the connections between units, together

with design speci�cations, constitute the border (the Si). Of course, not all process simulation

codes may use this type of problem formulation, or order the matrix directly into this form. Thus

some matrix reordering scheme may need to be applied, as discussed further below.

The basic idea in the parallel frontal algorithm (PFAMP) is to use frontal elimination to partially

factor each of the Aii, with each such task assigned to a separate processor. Since the Aii are

rectangular in general, it usually will not be possible to eliminate all the variables in the block, nor

perhaps, for numerical reasons, all the equations in the block. The equations and variables that

remain, together with the border equations, form a \reduced" or \interface" matrix that must then

be factored.

The parallel frontal solver can also be interpreted as a special case of the multifrontal approach.

The multifrontal method (Du� and Reid, 1983, 1984; Du�, 1986; Amestoy and Du�, 1989) is a

generalization of the frontal method that has also been widely applied (e.g., Montry et al., 1987;

Lucas et al., 1987; Ingle and Mountziaris, 1995; Zitney et al., 1996; Mallya and Stadtherr, 1997) in
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the context of parallel and/or vector computing. In the classical multifrontal method, which is most

useful for symmetric or nearly symmetric systems, an elimination tree is used to represent the order

in which a series of frontal matrices is partially factored, and to determine which of these partial

factorizations can be performed in parallel. In the more general unsymmetric-pattern multifrontal

method (Davis and Du�, 1997), the elimination tree is replaced by a directed acyclic graph. In the

conventional multifrontal method, whether the classical or unsymmetric-pattern approach, there is

generally a relatively large number of relatively small frontal matrices, only some of which can be

partially factored in parallel, and the partial factorizations are done by conventional elimination. In

the parallel frontal method described here, there is generally a relatively small number of relatively

large frontal matrices, all of which are partially factored in parallel, and the partial factorizations are

done by frontal elimination. No elimination tree or directed acyclic graph is required. Du� and Scott

(1994) have applied this type of approach in solving �nite element problems and referred to it as a

\multiple fronts" approach in order to distinguish it from the conventional multifrontal approach.

The parallel frontal solver described here represents a multilevel approach to parallelism in which,

at the lower level, frontal elimination is used to exploit the �ne-grained parallelism available in

a single vector processor, while, at the upper level, there is a coarse-grained distribution of tasks

across multiple vector processors.

4.1 PFAMP Algorithm

The basic PFAMP algorithm is outlined below, followed by a more detailed explanation of the

key steps.
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Algorithm PFAMP:

Begin parallel computation on P processors

For i = 1 : N , with each task i assigned to the next available processor:

1. Do symbolic analysis on the diagonal block Aii and the corresponding portion of the border

(Si) to obtain memory requirements and last occurrence information (for determining when

a column is fully summed) in preparation for frontal elimination.

2. Assemble the nonzero rows of Si into the frontal matrix.

3. Perform frontal elimination on Aii, beginning with the assembly of the �rst row of Aii into

the frontal matrix (see Section 2). The maximum number of variables that can be eliminated

is mi, but the actual number of pivots done is pi � mi. The pivoting scheme used is described

in detail below.

4. Store the computed columns of L and rows of U . Store the rows and columns remaining in

the frontal matrix for assembly into the interface matrix.

End parallel computation

5. Assemble the interface matrix from the contributions of Step 4 and factor.

Note that for each block the result of Step 3 is

Ci C 0
i

Ri

R0
i

2
6664
LiUi U 0

i

L0
i Fi

3
7775

(5)

where Ri and Ci are index sets comprising the pi pivot rows and pi pivot columns, respectively. Ri
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is a subset of the row index set of Aii. R
0
i contains row indices from Si (the nonzero rows) as well

as from any rows of Aii that could not be eliminated for numerical reasons. As they are computed

during Step 3, the computed columns of L and rows of U are saved in arrays local to each processor.

Once the partial factorization of Aii is complete, the computed block-column of L and block-row

of U are written into global arrays in Step 4 before that processor is made available to start the

factorization of another diagonal block. The remaining frontal matrix Fi is a contribution block

that is stored in central memory for eventual assembly into the interface matrix in Step 5.

The overall situation at the end of the parallel computation section is:

C1 C2 : : : CN C 0

R1

R2

...

RN

R0

2
66666666666666664

L1U1 U 0
1

L2U2 U 0
2

. . .
...

LNUN U 0
N

L0
1 L0

2 : : : L0
N F

3
77777777777777775

(6)

where R0 =
NS
i=1

R0
i and C 0 =

NS
i=1

C 0
i. F is the interface matrix that can be assembled from the

contribution blocks Fi. Note that, since a row index in R0 may appear in more than one of

the R0
i and a column index in C 0 may appear in more than one of the C 0

i, some elements of F

may get contributions from more than one of the Fi. As this doubly-bordered block-diagonal

form makes clear, once values of the variables in the interface problem have been solved for, the

remaining triangular solves needed to complete the solution can be done in parallel using the same

decomposition used to do the parallel frontal elimination. During this process the solution to the

interface problem is made globally available to each processor.
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Once factorization of all diagonal blocks is complete, the interface matrix is factored. This is

carried out by using the FAMP solver, with microtasking to exploit loop-level parallelism for the

outer-product update of the frontal matrix. However, as noted above, this tends to provide little

speedup, so the factorization of the interface problem can in most cases be regarded as essentially

serial. It should also be noted that depending on the size and sparsity of the interface matrix,

some solver other than FAMP may in fact be more attractive for performing the factorization. For

example, if the order of the interface matrix is small, around 100 or less, then use of a dense matrix

factorization routine might be more appropriate.

4.2 Performance Issues

In the parallel frontal algorithm, the computational work is done in two main phases: the

factorization of the diagonal blocks and the factorization of the interface matrix. For the �rst

phase, the performance of the algorithm will depend on how well the load can be balanced across

the processors. Ideally, each diagonal block would be the same size (or more precisely, each would

require the same amount of work to factor). In this ideal case, if there were N = P diagonal

blocks, then the speedup of this phase of the algorithm would scale linearly up to P processors

(i.e., speedup of P on P processors). While this phase of the algorithm can be highly scalable,

the second phase is likely to be much less so. Despite e�orts to exploit small-grained parallelism

in the factorization of the interface matrix, in most cases it remains essentially serial. A lesson of

Amdahl's law is that even a small serial component in a computation can greatly limit scalability

beyond a small number of processors [see Vegeais and Stadtherr (1992) for further discussion of

this point]. Thus, the factorization of the interface matrix is a bottleneck and it is critical to keep

the size of the interface problem small to achieve good speedups for the overall solution process.

11



4.3 Numerical Pivoting

It is necessary to perform numerical pivoting to maintain stability during the elimination pro-

cess. The frontal code FAMP uses partial pivoting to provide numerical stability. However, with

the parallel frontal scheme of PFAMP, we need to ensure that the pivot row belongs to the diagonal

block Aii. We cannot pick a pivot row from the border Si because border rows may be shared by

more than one diagonal block. Thus for use here we propose a partial-threshold pivoting strategy.

Partial pivoting is carried out to �nd the largest element in the pivot column while limiting the

search to the rows that belong to the diagonal block Aii. This element is chosen as the pivot element

if it satis�es a threshold pivot tolerance criteria with respect to the largest element in the entire

pivot column (including the rows that belong to the diagonal block Aii and the border Si). In order

to explain this pivot strategy consider the example shown in Figure 1. Here rows 1-2 belong to the

border Si and rows 3-6 belong to the diagonal block Aii. Assume that column 1 is fully summed

and thus becomes a pivot column. First, we �nd the largest element, say element (2,1), in this

column. Since row 2 belongs to the border, we cannot pick this as the pivot row. Now, �nd the

largest element in column 1 restricting the search to rows that belong to the diagonal block, i.e.,

rows 3-6. Say element (4,1) is the largest. Now, element (4,1) is chosen as the pivot if it satis�es

a threshold stability criteria. That is, if element (4,1) has a magnitude greater than or equal to

t times the magnitude of element (2,1), then element (4,1) is chosen as pivot, where t is a preset

fraction (threshold pivot tolerance) in the range 0 < t � 1:0. A typical value of t is 0.1. If a pivot

search does not �nd an element that satis�es this partial-threshold criteria, then the elimination of

that variable is delayed and the pivot column becomes part of the interface problem. If there are

more than ni �mi such delayed pivots then pi < mi and a row or rows of the diagonal block will

also be made part of the interface problem. This has the e�ect of increasing the size of the interface
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problem; however, our computational experiments indicate that the increase in size is very small

compared to n, the overall problem size.

4.4 Matrix Reordering

As discussed above, for the solution method described above to be most e�ective, the size of

the interface problem must be kept small. Furthermore, for load balancing reasons, it is desirable

that the diagonal blocks be nearly equal in size (and preferably that the number of them be a

multiple of the number of processors to be used). For an ideal ordering, with each diagonal block

presenting an equal workload and no interface matrix (i.e., a block diagonal matrix), the speedup

of the algorithm would in principle scale linearly. However, this ideal ordering rarely exists.

For a large scale simulation or optimization problem, the natural unit-stream structure, as

expressed in Eq. (4), may well provide an interface problem of reasonable size. However, load

balancing is likely to be a problem, as the number of equations in di�erent unit models may vary

widely. This might be handled in an ad hoc fashion, by combining small units into larger diagonal

blocks (with the advantage of reducing the size of the border) or by breaking larger units into

smaller diagonal blocks (with the disadvantage of increasing the size of the border). Doing the

latter also facilitates an equal distribution of the workload across the processors by reducing the

granularity of the tasks. It should be noted in this context that in PFAMP task scheduling is

done dynamically, with tasks assigned to processors as the processors become available. This helps

reduce load imbalance problems for problems with a large number of diagonal blocks.

To address the issues of load balancing and of the size of the interface problem in a more

systematic fashion, and to handle the situation in which the application code does not provide

a bordered block-diagonal form directly in the �rst place, there is a need for matrix reordering
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algorithms. For structurally symmetric matrices, there are various approaches that can be used

to try to get an appropriate matrix reordering (e.g., Kernighan and Lin, 1970; Leiserson and

Lewis, 1989; Karypis and Kumar, 1995). These are generally based on solving graph partitioning,

bisection or min-cut problems, often in the context of nested dissection applied to �nite element

problems. Such methods can be applied to a structurally asymmetric matrix A by applying them

to the structure of the symmetric matrix A + AT , and this may provide satisfactory results if the

degree of asymmetry is low. However, when the degree of asymmetry is high, as in the case of

process simulation and optimization problems, the approach cannot be expected to always yield

good results, as the number of additional nonzeros in A + AT , indicating dependencies that are

nonexistent in the problem, may be large, nearly as large as the number of nonzeros indicating

actual dependencies.

To deal with structurally asymmetric problems, one technique that can be used is the min-

net-cut (MNC) approach of Coon and Stadtherr (1995). This technique is designed speci�cally to

address the issues of load balancing and interface problem size. It is based on recursive bisection

of a bipartite graph model of the asymmetric matrix. Since a bipartite graph model is used, the

algorithm can consider unsymmetric permutations of rows and columns while still providing a

structurally stable reordering. The matrix form produced is a block-tridiagonal structure in which

the o�-diagonal blocks have relatively few nonzero columns; this is equivalent to a special case

of the bordered block-diagonal form. The columns with nonzeros in the o�-diagonal blocks are

treated as belonging to the interface problem. Rows and other columns that cannot be eliminated

for numerical reasons are assigned to the interface problem as a result of the pivoting strategy used

in the frontal elimination of the diagonal blocks.

Another reordering technique that produces a potentially attractive structure is the tear drop
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(tear, drag, reorder, partition) algorithm given by Abbott (1996). This makes use of the block

structure of the underlying process simulation problem and also makes use of graph bisection

concepts. In this case a doubly-bordered block-diagonal form results. Rows and columns in the

borders are immediately assigned to the interface problem, along with any rows and columns not

eliminated for numerical reasons during factorization of the diagonal blocks.

In applying the frontal method to the factorization of each diagonal block, the performance

may depend strongly on the ordering of the rows (but not the columns) within each block. No

attempt was made to reorder the rows within each block to achieve better performance. It should

be noted that the �ll-reducing reordering strategies, such as minimum degree (Davis et al., 1996)

for the symmetric case and Markowitz-type methods (Davis and Du�, 1997) for the unsymmetric

case, normally associated with conventional multifrontal methods, are not directly relevant when

the frontal method is used, though similar row ordering heuristics can be developed for it (Camarda

and Stadtherr, 1995).

In the computational results presented below, we make no attempt to compare di�erent reorder-

ing approaches. The purpose of this paper is to demonstrate the potential of the parallel frontal

solver once an appropriate ordering has been established. It must be remembered, however, that

the ordering used may have a substantial e�ect on the performance of the solver.

5 Results and Discussion

In this section, we present results for the performance of the PFAMP solver on three sets of

process optimization or simulation problems. More information about each problem set is given

below. We compare the performance of PFAMP on multiple processors with its performance on one
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processor and with the performance of the frontal solver FAMP on one processor. The numerical

experiments were performed on a CRAY C90 parallel/vector supercomputer at Cray Research, Inc.,

in Eagan, Minnesota. The timing results presented represent the total time to obtain a solution

vector from one right-hand-side vector, including analysis, factorization, and triangular solves. The

time required to obtain an MNC or tear drop reordering is not included. A threshold tolerance of

t = 0:1 was used in PFAMP to maintain numerical stability, which was monitored using the 2-norm

of the residual b � Ax. FAMP uses partial pivoting. While the times presented here are for the

solution of a single linear system, it is important to realize that for a given dynamic simulation or

optimization run, the linear system may need to be solved hundreds of times, and these simulation

or optimization runs may themselves be done hundreds of times.

In the tables of matrix information presented below, each matrix is identi�ed by name and

order (n). In addition, statistics are given for the number of nonzeros (NZ), and for a measure of

structural asymmetry (as). The asymmetry, as, is the number o�-diagonal nonzeros aij (j 6= i)

for which aji = 0 divided by the total number of o�-diagonal nonzeros (as = 0 is a symmetric

pattern, as = 1 is completely asymmetric). Also given is information about the bordered block-

diagonal form used, namely the number of diagonal blocks (N), the order of the interface matrix

(NI), and the number of equations in the largest and smallest diagonal blocks, mi;max and mi;min,

respectively.

5.1 Problem Set 1

These three problems involve the optimization of an ethylene plant using NOVA, a chemical

process optimization package from Dynamic Optimization Technology Products, Inc. NOVA uses

an equation-based approach that requires the solution of a series of large sparse linear systems,
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which accounts for a large portion of the total computation time. The linear systems arising

during optimization with NOVA are in bordered block-diagonal form, allowing the direct use of

PFAMP for the solution of these systems. Matrix statistics for these problems are given in Table

1. Each problem involves a 
owsheet that consists of 43 units, including �ve distillation columns.

The problems di�er in the number of stages in the distillation columns. Figure 2 presents timing

results for the methods tested, with the parallel runs of PFAMP done on P=5 processors. Not

unsurprisingly the results on each problem are qualitatively similar, since all are based on the same

underlying 
owsheet.

We note �rst, that the single processor performance of PFAMP is better than that of FAMP.

This is due to the di�erence in the size of the largest frontal matrix associated with the frontal

elimination for each method. For solution with FAMP, the variables which have occurrences in the

border equations remain in the frontal matrix until the end. The size of the largest frontal matrix

increases due to this reason, as does the number of wasted operations on zeros, thereby reducing

the overall performance. This problem does not arise for solution with PFAMP because when the

factorization of a diagonal block is complete, the remaining variables and equations in the front

are immediately written out as part of the interface problem and a new front is begun for the

next diagonal block. Thus, for these problems and most other problems tested, PFAMP is a more

e�cient single processor solver than FAMP, though both take good advantage of the machine-level

parallelism provided by the internal architecture of the single processor. The usually better single

processor performance of PFAMP re
ects the advantages of the multifrontal-type algorithm used

by PFAMP, namely smaller and less sparse frontal matrices.

There are �ve large diagonal blocks in these matrices, corresponding to the distillation units,

with one of these blocks much larger (mi = 3337) than the others (1185 � mi � 1804). In
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the computation, one processor ends up working on the largest block, while the remaining four

processors �nish the other large blocks and the several much smaller ones. The load is unbalanced

with the factorization of the largest block becoming a bottleneck. This, together with the solution

of the interface problem, another bottleneck, results in a speedup (relative to PFAMP on one

processor) of less than two on �ve processors. It is likely that more e�cient processor utilization

could be obtained by using a better partition into bordered block-diagonal form.

5.2 Problem Set 2

These �ve problems have all been reordered into a bordered block-diagonal form using the MNC

approach (Coon and Stadtherr, 1995). Two of the problems (Hydr1c and Icomp) occur in dynamic

simulation problems solved using SPEEDUP (Aspen Technology, Inc.). The Hydr1c problem in-

volves a 7-component hydrocarbon process with a de-propanizer and a de-butanizer. The Icomp

problem comes from a plantwide dynamic simulation of a plant that includes several interlinked

distillation columns. The other three problems are derived from the prototype simulator SEQUEL

(Zitney and Stadtherr, 1988), and are based on light hydrocarbon recovery plants, described by

Zitney et al. (1996). Neither of the application codes produces directly a matrix in bordered

block-diagonal form, so a reordering such as provided by MNC is required. Matrix statistics for

these problems are given in Table 2. The SEQUEL matrices are more dense than the SPEEDUP

matrices and thus require a greater computational e�ort.

The performance of PFAMP on these problems is indicated in Figures 3 and 4. Since the

performance of the frontal solver FAMP can depend strongly on the row ordering of the matrix, it

was run using both the original ordering and the MNC ordering. For these problems, the di�erence

in performance when using the di�erent orderings was not signi�cant. As in Problem Set 1, on
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most problems the PFAMP algorithm outperforms FAMP even on a single processor, for the reasons

discussed above. This enhancement of performance can be quite signi�cant, around a factor of two

in the case of the SEQUEL matrices. MNC achieves the best reordering on the Icomp problem,

for which it �nds four diagonal blocks of roughly the same size (17168 �mi � 17393) and the size

of the interface problem is relatively small in comparison to n. The speedup observed for PFAMP

on this problem was about 2.5 on four processors. While this represents a substantial savings

in wallclock time, it still does not represent particularly e�cient processor utilization. As noted

above, the nearly serial performance on the interface problem, even though it is relatively small,

can greatly reduce the overall e�ciency of processor utilization.

5.3 Problem Set 3

These four problems arise from simulation problems solved using ASCEND (Piela et al. 1991),

and ordered using the tear drop approach (Abbott, 1996). Table 3 gives the statistics for each of the

matrices. Problem Bigequil.smms represents a 9-component, 30-stage distillation column. Problem

Wood 7k is a complex hydrocarbon separation process. Problems 4cols.smms and 10cols.smms

involve nine components with four and ten interlinked distillation columns, respectively.

The performance of PFAMP is shown in Figure 5. On these problems, the moderate task

granularity helps spread the load over the four processors used, but the size of the interface problem

tends to be relatively large, 14-19% of n, as opposed to less than about 7% on the previous problems.

The best parallel e�ciency was achieved on the largest problem (10cols.smms), with a speedup of

about two on four processors. This was achieved despite the relatively large size of the interface

problem because, for this system, the use of small-grained parallelism within FAMP for solving the

interface problem provided a signi�cant speedup (about 1.7). As on the previous problems, this
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represents a substantial reduction in wallclock time, but is not especially good processor utilization.

Overall on 10cols.smms the use of PFAMP resulted in the reduction of the wallclock time by a

factor of six; however only a factor of two of this was due to multiprocessing.

6 Concluding Remarks

The results presented above demonstrate that PFAMP can be an e�ective solver for use in pro-

cess simulation and optimization on parallel/vector supercomputers with a relatively small number

of processors. In addition to making better use of multiprocessing than the standard solver FAMP,

on most problems the single processor performance of PFAMP was better than that of FAMP. The

combination of these two e�ects led to four- to six-fold performance improvements on some large

problems. Two keys to obtaining better parallel performance are improving the load balancing in

factoring the diagonal blocks and better parallelizing the solution of the interface problem.

Clearly the performance of PFAMP with regard to multiprocessing depends strongly on the

quality of the reordering into bordered block-diagonal form. In most cases considered above it

is likely that the reordering used is far from optimal, and no attempt was made to �nd better

orderings or compare the reordering approaches used. The graph partitioning problems underlying

the reordering algorithms are NP-complete. Thus, one can easily spend a substantial amount of

computation time attempting to �nd improved orderings. The cost of a good ordering must be

weighed against the number of times the given simulation or optimization problem is going to be

solved. Typically, if the e�ort is made to develop a large scale simulation or optimization model,

then it is likely to be used a very large number of times, especially if it is used in an operations

environment. In this case, the investment made to �nd a good ordering for PFAMP to exploit

might have substantial long term paybacks.
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Figure Captions

Figure 1. Example used in text to explain pivoting strategy. Rows 1-2 belong to the border

and rows 3-6 to the diagonal block.

Figure 2. Comparison of FAMP and PFAMP on Problem Set 1 (NOVA matrices).

Figure 3. Comparison of FAMP and PFAMP on Problem Set 2 (SPEEDUP matrices). Note that,

as indicated by the arrows, the scale of the abscissa is not the same for both problems.

Figure 4. Comparison of FAMP and PFAMP on Problem Set 2 (SEQUEL matrices).

Figure 5. Comparison of FAMP and PFAMP on Problem Set 3 (ASCEND matrices). Note that,

as indicated by the arrows, the scale of the abscissa is not the same for all problems.
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1 2 3 4 5 6 7 8
1 × ×
2 × ×
3 × × ×
4 × × ×
5 × × × ×
6 × × × ×

Figure 1: Example used in text to explain pivoting strategy. Rows 1-2 belong to the border and

rows 3-6 to the diagonal block.
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Problem Set 1
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Figure 2: Comparison of FAMP and PFAMP on Problem Set 1 (NOVA matrices).
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Problem Set 2
(SPEEDUP Matrices)
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Figure 3: Comparison of FAMP and PFAMP on Problem Set 2 (SPEEDUP matrices). Note that, as indicated by the arrows,

the scale of the abscissa is not the same for both problems.
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Problem Set 2
(SEQUEL Matrices)
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Figure 4: Comparison of FAMP and PFAMP on Problem Set 2 (SEQUEL matrices).
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Problem Set 3
(ASCEND Matrices)
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Figure 5: Comparison of FAMP and PFAMP on Problem Set 3 (ASCEND matrices). Note that, as indicated by the arrows, the

scale of the abscissa is not the same for all problems.
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Table 1: Description of Problem Set 1 matrices. See text for de�nition of column headings.

Name n NZ as N mi;max mi;min NI

Ethylene 1 10673 80904 0.99 43 3337 1 708

Ethylene 2 10353 78004 0.99 43 3017 1 698

Ethylene 3 10033 75045 0.99 43 2697 1 708
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Table 2: Description of Problem Set 2 matrices. See text for de�nition of column headings.

Name n NZ as N mi;max mi;min NI

Hydr1c 5308 23752 0.99 4 1449 1282 180

Icomp 69174 301465 0.99 4 17393 17168 1057

lhr 17k 17576 381975 0.99 6 4301 1586 581

lhr 34k 35152 764014 0.99 6 9211 4063 782

lhr 71k 70304 1528092 0.99 10 9215 4063 1495
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Table 3: Description of Problem Set 3 matrices. See text for de�nition of column headings.

Name n NZ as N mi;max mi;min NI

Bigequil.smms 3961 21169 0.97 18 887 12 733

Wood 7k.smms 3508 16246 0.96 37 897 6 492

4cols.smms 11770 43668 0.99 24 1183 33 2210

10cols.smms 29496 109588 0.99 66 1216 2 5143
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