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Abstract

In model-based fault diagnosis for dynamic systems with uncertain parameters, an envelope of

all fault-free behaviors can be determined from the model and used as a reference for detecting

faults. We demonstrate here a method for generating an envelope that is rigorously guaranteed to

be complete, but without significant overestimation. The method is based on an interval approach,

but uses Taylor models to reduce the overestimation often associated with interval methods. To

speed fault detection, a method that uses bounded-error measurement data and a constraint propa-

gation procedure is proposed for shrinking the envelope. Several fault detection scenarios involving

nonlinear, continuous-time systems are used to evaluate this approach.



Introduction

Fault diagnosis is an important topic in modern control theory and practice. A fault may be

defined as “a non permitted deviation of a characteristic property which leads to the inability to

fulfill the intended purpose.”1 Such a fault may disturb normal operation, thus reducing the per-

formance of a system or even leading to breakdowns or catastrophic failure. There is an abundance

of literature on process fault diagnosis, including detection and isolation, as reviewed recently by

Venkatasubramanian et al.2–4 Methods can be classified into three general categories, statistical-

based, knowledge-based, and analytical.5 In the last category, a common model-based method for

fault detection is the analytical-redundancy (or model-reference) approach. In this case, a fault is

detected by comparing the actual measured behavior of a system to a model-generated estimation of

its normal (fault-free) behavior. If there are any discrepancies, expressed in terms of residuals, that

exceed some threshold, then this indicates a fault. The model may be obtained from first principles

or through use of identification techniques.6 Linearized models can be used, but may result in poor

performance when the system is sufficiently nonlinear.7 Likewise, discrete-time difference equation

models can be used, but for the demands of many real-world applications, continuous-time models

are more realistic.8 Thus, our focus here is on using nonlinear, continuous-time models. While

model development may require some effort, models used for fault detection potentially may be

used in connection with the related problems of fault isolation and diagnosis, or for other problems

involving process dynamics, and also provide general insight into process behavior.9

Since a model is rarely exact, normal behavior is generally represented by some range, or

envelope, of values. A system is then determined to be faulty if any measurement goes outside of

its envelope of normal values. The properties of the envelope are important in determining the

peformance of the fault detection process. An envelope is complete if it contains all possible normal

behaviors. An envelope is sound if it contains only normal behaviors. An ideal (exact) envelope
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would be both complete and sound. However, in practice, envelopes will be either overestimated

(complete but not sound) or underestimated (sound but not complete). Clearly, the completeness

and soundness of the envelope play a critical role in the robustness and sensitivity of the fault

detection. If the envelope is overbounded, it could fail to detect some faults in a timely manner.

On the other hand, if the envelope is underbounded, it may result in false alarms. It is generally

considered preferable to have a complete, slightly overestimated envelope.10

Armengol et al.10 have reviewed several methods for envelope generation. One common type of

approach is to use a model to obtain nominal values for normal behavior, and to then superimpose

uncertainties in the form of a tolerance (or threshold), thus creating an envelope. The threshold

may be either fixed or adaptive, but in either case it is difficult to guarantee completeness, leading

to the use of overly large thresholds and a highly overbounded envelope. Another type of approach

is to include uncertainties directly in the model, by regarding one or more model parameters as

uncertain. A widely used method of this type is Monte Carlo simulation. The model is solved using

a large number of different values for the uncertain parameters, and these are combined to create

the envelope of normal behaviors. The Monte Carlo envelope is always underestimated (sound but

not complete), but as the number of trials increases will approach the exact envelope. To obtain a

complete envelope that is guaranteed, a number of methods based on interval analysis11 have been

explored. In this case, intervals are used to represent the uncertain model parameters. However,

interval methods have a reputation of yielding highly overbounded envelopes. This is due10 pri-

marily to the dependency (multi-incidence) problem, which is inherent in interval arithmetic, and

the wrapping problem, which arises when interval calculations are done in state space. Both of

these difficulties are discussed in more detail below. The work described here is motivated by the

desire to obtain and use an envelope that is guaranteed to be complete, but without the large over-

estimations associated with interval methods. For obtaining this complete, slightly overestimated
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envelope, we propose a completely new approach that combines traditional interval methods with

the use of Taylor models.12

In this paper, we consider a model-reference approach for fault detection in systems described

by nonlinear, ordinary differential equation (ODE) models. To account for uncertainties, the model

parameters and initial states are taken to be interval valued. Intervals contain information about

upper and lower bounds only; thus, in using intervals, no assumptions are made about the prob-

ability distribution of the uncertainties or about the independence or correlation of parameters.

For obtaining a reference envelope of normal behavior, we use a new method13 for solving interval-

valued initial-value problems (IVPs). This method is based on a traditional interval approach,11 but

uses Taylor models12 to address overestimation issues. The envelope computed using this method

is rigorously guaranteed to be complete, yet generally without significant overestimation. For using

this reference envelope, two fault detection methods are decribed here. The first method makes

direct use of the envelope, while in the second method, a constraint propagation procedure based

on Taylor models is used, together with error-bounded measurements, to enable fault detection

earlier than with the first method.

The remainder of this paper is organized as follows. In the next section, we present a mathemat-

ical statement of the problem to be solved. This is followed by a section that provides background

on interval analysis and Taylor models, a section in which we summarize the method used for

envelope generation, and a section in which we describe the fault detection methods that use this

envelope-generation technique. Finally, we present example problems in which we demonstrate the

effectiveness of these methods in fault detection, and compare their performance to a standard

Monte Carlo simulation approach.
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Problem Statement

Consider a nonlinear, continuous-time system represented by the following model:

x′ = f(x,θ), x(0) = x0

y = h(x,θ),

(1)

where x is the m-dimensional state vector, θ is a p-dimensional time-invariant parameter vector,

and y is the r-dimensional output vector. Output measurements ŷj at t = tj are available with

error vj = ŷj − yj , where yj = h(xj ,θ) and xj = x(tj). The initial states x0 are assumed to lie

in a known interval X0. The parameter vector θ is assumed to be constant and to belong to a

known interval Θ, which represents the “normal set” of parameter values for a fault-free system.

The measurement error vj is bounded and assumed to belong to a known interval V j at each tj .

Therefore, the output vector yj belongs to a known box Y j = ŷj −V j. The structure of the model,

that is, the function f(x,θ), is assumed to be known (if the model structure is not known with

certainty, or if the model structure is poorly chosen, wider parameter intervals may be needed to

fully capture normal behaviors). We assume that f is (k−1)-times continuously differentiable with

respect to the state variables x. Here k is the order of the truncation error in the interval Taylor

series (ITS) method to be used in the integration procedure. We also assume that f and h are

(q + 1)-times continuously differentiable with respect to the uncertain quantities (initial states x0

and parameters θ), where q is the order of the Taylor model to be used to represent dependence

on these quantities.

A fault is defined to occur when one or more of the system parameters is no longer in its normal

set. The envelope of normal system output, generated using the parametric model with the normal

set of parameter values, describes the fault-free system behavior. Once faults occur, the output

Y j will lie outside the boundary of the envelope, and then a fault is reported. The goals of fault

detection are to report faults as soon as possible if they occur, and to avoid false alarms.
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Background

The approach described here for fault detection is based on interval analysis and employs Taylor

models. Thus, as background, we provide a brief summary of interval analysis and of Taylor models.

Much more detail on both topics is available elsewhere.

Interval analysis

A real interval X =
[
X,X

]
is defined by X =

{
x ∈ R | X ≤ x ≤ X

}
. We use an underline

to indicate the lower bound of an interval and an overline to indicate the upper bound. A real

interval vector X = (X1, X2, · · · , Xn)T ⊂ R
n has n real interval components and can be interpreted

geometrically as an n-dimensional rectangle or box. Unless noted otherwise, we use uppercase to

indicate intervals and lowercase (or uppercase with underline or overline) to indicate real numbers.

Arithmetic operations with intervals are defined by X op Y = {x op y | x ∈ X, y ∈ Y }, where

op ∈ {+,−,×,÷}. Interval versions of the elementary functions can be similarly defined. For

dealing with exceptions, such as division by an interval containing zero, extended models for interval

arithmetic are available, often based on the extended real system R
∗ = R∪{−∞,+∞}. The concept

of containment sets (csets) provides a valuable framework for constructing models for interval

arithmetic with consistent handling of exceptions.14,15 Implementations of interval arithmetic and

elementary functions are readily available, and recent compilers from Sun Microsystems directly

support interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension F (X) encloses the range of f(x) over X.

It is often computed by substituting X into f(x) and then evaluating the function using interval

arithmetic. This “natural” interval extension may be wider than the actual range of function values,

though it always includes the actual range. This overestimation of the function range is due to the

dependency (or multi-incidence) problem, which may arise when a variable occurs more than once in
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a function expression. While a variable may take on any value within its interval, it must take on the

same value each time it occurs in an expression. However, this type of dependency is not recognized

when interval arithmetic is used. In effect, when interval arithmetic is used, the range computed for

the function is the range that would occur if each instance of a particular variable were allowed to

take on a different value in its interval range. For the case in which f(x) is a single-use expression,

that is, an expression in which each variable occurs only once, interval arithmetic will always yield

the true function range. For more general situations, there are a variety of other approaches that

can be used to try to tighten interval extensions, including the use of Taylor models, as described in

the next subsection. Several good introductions to interval analysis, including interval arithmetic

and other aspects of computing with intervals, are available.14,16–18

Taylor models

Makino and Berz12 have described a remainder differential algebra (RDA) approach for bound-

ing function ranges and controlling the dependency problem of interval arithmetic.19 This method

is based on representing a function with a model consisting of a Taylor polynomial and an interval

remainder bound. Based on a Taylor expansion about the point x0 ∈ X ⊂ R
n, the q-th order Tay-

lor model Tf of f(x) consists of a q-th order polynomial function in (x − x0), pf , and an interval

remainder bound Rf , such that f ∈ Tf = pf + Rf for all x ∈ X . The function f is then bounded

by seeking bounds on the Taylor model Tf , which is also denoted Tf = (pf , Rf ).

Arithmetic operations with Taylor models can be done using the remainder differential algebra

described by Makino and Berz,12,19,20 which includes addition, multiplication, reciprocal, and

intrinsic functions. Using these, it is possible to start with simple functions such as the constant

function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi, for which

Tf = (xi0 + (xi − xi0), [0, 0]), and then to compute Taylor models for very complicated functions.
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Therefore, by using simple operator overloading with RDA operations, it is possible to compute a

Taylor model for any function representable in a computer environment.

An interval bound on a Taylor model T = (p,R) over X is denoted by B(T ) and is given by

B(T ) = B(p) + R, where B(p) is an interval bound on the polynomial part p. The range bounding

of the polynomial B(p) = P (X −x0) is an important issue, which directly affects the performance

of Taylor model methods. However, exact range bounding of an interval polynomial is NP hard,

and direct evaluation using interval arithmetic is very inefficient, often yielding only loose bounds.

Various bounding schemes21–23 have been used, mostly focused on exact bounding of the first- and

second-order polynomial terms. However, exact bounding of a general interval quadratic is also

computationally expensive (in the worst case, exponential in the number of variables). Thus, in

our implementation of Taylor models,13,24,25 we have used a compromise approach, in which only

the first-order and the diagonal second-order terms are considered for exact bounding, and other

terms are evaluated directly. That is,

B(p) =

n∑

i=1

[
ai (Xi − xi0)

2 + bi(Xi − xi0)
]

+ Q, (2)

where we seek to bound the summation exactly, with Q, the interval bound of all other terms,

obtained by direct evaluation with interval arithmetic. In the summation, since Xi occurs twice,

there is a dependency problem that appears to prevent the use of interval arithmetic to obtain

exact bounds. However, for |ai| ≥ ω, where ω is a small positive number, we can rearrange Eq. (2)

so that each Xi occurs only once in the summation; that is,

B(p) =

n∑

i=1

[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
+ Q. (3)

Using Eq. (3), the exact bounds on the summation can be obtained using interval arithmetic.

If |ai| < ω, evaluation with Eq. (2) is used instead. It has been shown that, compared to other

rigorous bounding methods, the Taylor model often yields sharper bounds for modest to complicated
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functional dependencies.12,19,23

Method for Envelope Generation

As noted previously, in model-based fault detection an envelope of normal states may be used,

and there are various methods for envelope generation.10 It is desired to obtain an envelope that is

complete, so that there is no possibility of false alarms, but with little overestimation, so that faults

are detected quickly. To generate such an envelope for nonlinear continuous-time systems, we need

an IVP solver for nonlinear ODEs that can compute rigorous bounds on the state variables x for

the case in which the initial values and parameters are given by intervals. Interval methods (also

called validated methods or verified methods) for ODEs provide a natural approach for computing

the desired enclosure of the state variables.

Traditional interval methods11 usually consist of two processes applied at each integration step.

In the first process, existence and uniqueness of the solution are proved using the Picard-Lindelöf

operator and the Banach fixed point theorem, and a rough enclosure of the solution is computed.

In the second process, a tighter enclosure of the solution is computed. In general, both processes

are realized by applying interval Taylor series (ITS) expansions with respect to time, and using

automatic differentiation to obtain the Taylor coefficients. An excellent review of the traditional

interval methods has been given by Nedialkov et al.,26 and more recent work has been reviewed by

Neher et al.27 For addressing this problem, there are various packages available, including AWA,28

VNODE29,30 and COSY VI,31 all of which consider uncertainties (interval valued) in initial values

only. In this study, we will use a new validated solver13 for parametric ODEs, which is used to

produced guaranteed bounds on the solutions of dynamic systems with interval-valued initial states

and parameters. The method makes use, in a novel way, of the Taylor model approach12,19,20 to

deal with the dependency problem on the uncertain variables (parameters and initial values). We
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will summarize here the basic ideas of the method used.

The ODE problem of interest is

x′ = f(x,θ), x(t0) = x0 ∈ X0, θ ∈ Θ, (4)

where t ∈ [t0, tN ] for some tN > t0, and X0 and Θ represent enclosures of initial values and

parameters, respectively, that correspond to normal, fault-free behavior. It is desired to determine

a verified enclosure of all possible solutions to this IVP. We denote by x(t; tj ,Xj ,Θ) the set of

solutions {x(t; tj ,xj,θ) | xj ∈ Xj ,θ ∈ Θ} , where x(t; tj ,xj ,θ) denotes a solution of x′ = f(x,θ)

for the initial condition x = xj at tj. We will summarize a method for determining enclosures X j

of the state variables at each time step j = 1, . . . , N , such that x(tj; t0,X0,Θ) ⊆ Xj.

Assume that at tj we have an enclosure X j of x(tj; t0,X0,Θ), and that we want to carry out

an integration step to compute the next enclosure X j+1. Then, in the first phase of the method,

the goal is to find a step size hj = tj+1 − tj > 0 and a rough enclosure X̃j of the solution such that

a unique solution x(t; tj,xj,θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj, tj+1], all xj ∈ Xj, and

all θ ∈ Θ. We apply a traditional interval method, with high order enclosure, to the parametric

ODEs by using an interval Taylor series (ITS) with respect to time. That is, we determine hj and

X̃j such that for Xj ⊆ X̃
0

j ,

X̃j =
k−1∑

i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

kF [k](X̃
0

j ,Θ) ⊆ X̃
0

j . (5)

Here k denotes the order of the Taylor series, and the coefficients F [i] are interval extensions of the

Taylor coefficients f [i] of x(t) with respect to time, which can be obtained recursively in terms of

x′(t) = f(x,θ). When Eq. (5) is satisfied, it demonstrates32 that there exists a unique solution

x(t; tj ,xj ,θ) ∈ X̃j for all t ∈ [tj, tj+1], all xj ∈ Xj , and all θ ∈ Θ.

In the second phase of the method, we compute a tighter enclosure X j+1 ⊆ X̃j , such that

x(tj+1; t0,X0,Θ) ⊆ Xj+1. This will be done by using an ITS approach to compute T xj+1(x0,θ),
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a Taylor model of xj+1 in terms of the initial values x0 and parameters θ, and then obtaining

the enclosure Xj+1 = B(T xj+1). For the Taylor model computations, we begin by representing

the interval initial states and parameters by the Taylor models (identity functions) T x0 and T θ,

respectively. Then, we can determine Taylor models T
f [i] of the interval Taylor series coefficients

f [i](xj ,θ) by using RDA operations to compute T
f [i] = f [i](T xj

,T θ). Using an interval Taylor

series for xj+1 with coefficients given by T
f [i] , and incorporating a novel approach for using the

mean value theorem on Taylor models, one can obtain T xj+1(x0,θ), the desired Taylor model of

xj+1 in terms of the parameters θ and initial states x0. It is also necessary to address the wrapping

effect.11 This occurs because the set x(tj+1; t0,X0,Θ) of solutions that we seek to enclose is rarely

an interval. When this set is wrapped in an interval, overestimation occurs. If interval enclosures

are used to propagate solution ranges from one time step to the next, this overestimation is also

propagated and can grow rapidly. Thus, to control the wrapping effect, the state enclosures are

propagated using a new type of Taylor model consisting of a polynomial and a parallelepiped

remainder bound. Complete details of the computation of T xj+1 are given by Lin and Stadtherr.13

An implementation of this approach, called VSPODE (Validating Solver for Parametric ODEs),

has been developed and tested by Lin and Stadtherr,13 who compared its performance with results

obtained using the popular VNODE package.29,30 For the test problems used, VSPODE provided

tighter enclosures on the state variables than VNODE, and required significantly less computation

time. The examples presented below provide further evidence that this approach can provide a

rigorously complete envelope with relatively little overestimation. Information about the availability

of VSPODE can be obtained by contacting the authors.
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Fault Detection Methods

Two methods for model-based fault detection are considered. The first is a simple method that

requires envelope generation only. The second is more complex, and involves the use of bounded-

error output measurements in a constraint propagation scheme to shrink the envelope of normal

outputs and accelerate fault detection.

Method 1

This is a basic method in which direct comparison is made to the computed envelope of normal

outputs. Using VSPODE for envelope generation, as described in the previous section, with the

normal sets of parameter values and initial states, Taylor models T xj
(x0,θ) of the state variables

at each time step j can be determined. Using Taylor model operations, we can then compute Taylor

models of the outputs T yj
= h(T xj

,T θ) at each time step j. The envelope of normal outputs is

then determined from B(T yj
), j = 1, . . . , N ; that is, by bounding T yj

over the normal sets θ ∈ Θ

and x0 ∈ X0. This envelope can then serve as a reference of fault-free system behaviors. If at some

time step j, the bounded-error measurement Yij of any output component i lies entirely outside of

the envelope (B(Tyij
) ∩ Yij = ∅), then a fault has been detected, and an alarm can be triggered.

Since the enclosure is rigorously guaranteed to include all possible solutions of the nonlinear ODE

system, the envelope is complete. Therefore, false alarms are effectively eliminated. In this method,

however, the measurement information has not been thoroughly utilized.

Method 2

In this method, the output measurements are used to accelerate the fault detection process. The

measurements provide information that can be used to reduce, at each time step, the uncertainties

in the model parameters and initial states, and to identify correlations between parameters if they
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exist.33 That is, information provided by the measurements is used to shrink Θ and X 0. With the

reduction of these uncertainties, a better (tighter) envelope can be obtained, thus resulting in earlier

detection of faults. If no faults have occurred, then at each measurement time tj, the predicted

fault-free output should be consistent with the error-bounded measurement. That is, y j ∈ Y j . This

condition can be satisfied (conservatively) by imposing the constraint B(T yj
) ⊆ Y j. Using this in

a constraint propagation procedure, as described next, parts of Θ and X 0 that are incompatible

with the measurements can be eliminated. If any component of either Θ or X 0 is ever completely

eliminated, then it means that the predicted fault-free outputs and the measurements have become

completely incompatible, indicating detection of a fault.

We will now describe a constraint propagation procedure (CPP) for using the constraint

B(T yj
) ⊆ Y j to reduce the uncertain quantities Θ and X 0. In this discussion it is convenient to

denote Z = (X0,Θ)T ⊂ R
n, with z = (x0,θ)T ∈ Z and n = m + p. Constraint propagation is

widely used in various forms (e.g., hull consistency) in connection with interval methods.14,16 Since

it is implemented using interval arithmetic, application of the CPP does not affect the completeness

of the envelope. Thus this method will not cause false alarms. We have found similar constraint

propagation strategies to be useful in other contexts.24,25 The procedure is described here in the

context of the fault detection problem.

Consider output component i at time step j, and say that the Taylor model Tyij
(z) has been

determined using VSPODE for z ∈ Z, and that the bounded-error output measurement Yij is also

available. We want to use the constraint B(Tyij
) ⊆ Yij to determine if any part of Z is incompatible

with the measurement and thus can be eliminated to shrink Z. We first compute B(Tyij
) and check

to see if either B(Tyij
) < Yij or B(Tyij

) > Yij. If so, then clearly B(Tyij
) 6⊆ Yij and no part of the

current Z is consistent with the measurement. Thus the predicted fault-free output is incompatible

with the measurement and a fault has been detected. Doing these checks is equivalent to Method
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1.

In Method 2, we continue the constraint propagation by first expressing B(Tyij
) in the form of

Eq. (3). For some component k of Z, and assuming |ak| ≥ ω, this leads to

B(Tyij
) = ak

(
Zk − zk0 +

bk

2ak

)2

− b2
k

4ak
+ Sk, (6)

where

Sk =

n∑

l=1
l 6=k

[
al

(
Zl − zl0 +

bl

2al

)2

− b2
l

4al

]
+ Q. (7)

Here zk0 ∈ Zk and is usually the midpoint zk0 = m(Zk); the value of zk0 will not change during

the CPP. We can reduce the computational effort to obtain Sk by recognizing that this quantity is

just B(Tyij
) less the k-th term in the summation, and B(Tyij

) was already computed earlier in the

CPP. Thus, for each k, Sk can be determined by dependent subtraction using

Sk = B(Tyij
) 	

[
ak

(
Zk − zk0 +

bk

2ak

)2

− b2
k

4ak

]
. (8)

The dependent subtraction operation for intervals is defined by C 	A = [C−A,C −A] and is valid

if C depends additively on A. Now define the intervals Uk = Zk − zk0 + bk

2ak
and Vk =

b2
k

4ak
− Sk,

so that B(Tyij
) = akU

2
k − Vk. The goal is to identify and retain only the part of Zk that contains

values of zk for which it is possible to satisfy the constraint B(Tyij
) = akU

2
k −Vk ⊆ Yij, or U2

k ⊆ Wk,

with Wk = (Vk + Yij)/ak. This corresponds to the requirement that

U2
k ≤ Wk and U2

k ≥ Wk. (9)

The set Uk that satisfies Eq. (9) can be determined to be

Uk =





∅ if Wk < 0

[
−

√
Wk,

√
Wk

]
if Wk ≤ 0 ≤ Wk

−√
Wk ∪√

Wk if Wk > 0.

(10)
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The part of Zk to be retained is then Zk = Zk ∩
(
Uk + zk0 − bk

2ak

)
. Only a part of Zk in which the

constraint is guaranteed not to be satisfied has been eliminated.

If |ak| < ω and |bk| ≥ ω, then Eq. (3) should not be used, but Eq. (2) can be used instead.

Following a procedure similar to that used above, we now have B(Tyij
) = bkUk − Vk with Uk =

Zk − zk0 and Vk = −
(
B(Tyij

) 	 bk(Zk − zk0)
)
. Note that all quadratic terms are now included

in Vk. In identifying bounds on the part of Zk in which it is possible to satisfy the constraint,

the set Uk can be determined to be Uk = (Vk + Yij)/bk. The part of Zk to be retained is then

Zk = Zk ∩ (Uk + zk0). If both |ak| and |bk| are less than ω, then no CPP will be applied on Zk.

The overall CPP is implemented by beginning with k = 1 and proceeding component by com-

ponent. If, for any k, the result Zk = ∅ is obtained, then there is an inconsistency between the

predicted fault-free output and the measurement. This means that a fault has been detected and

that the CPP can be stopped. Otherwise the CPP proceeds until all components of Z have been

updated. Note that, in principle, each time an improved (smaller) Zk is found, it could be used

in computing Sk for subsequent components of Z. However, this requires recomputing the bound

B(Tyij
), which is expensive. Thus, the CPP for each component is done using the bounds B(Tyij

)

computed from the original Z. If, after each component is processed, Z has been sufficiently re-

duced (by more than 10% by volume), then a new bound B(Tyij
) is obtained, now over the smaller

Z, and a new CPP is started. Otherwise, the CPP terminates.

Method 2 can now be summarized as follows: Beginning at t = 0, with given initial state interval

X0 and parameter interval Θ, and time step counter set at j = 1,

1. Integrate the system using VSPODE and obtain the Taylor model Txj
(x0,θ) of the states at

t = tj .

2. Calculate the Taylor models Tyj
(x0,θ) of the outputs.
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3. Perform the CPP using the constraint B(T yj
) ⊆ Y j to try to shrink X0 and Θ.

(a) If any component of either X0 and Θ is eliminated in the CPP, declare a FAULT at tj .

(b) Otherwise, continue.

4. Set j = j + 1 and go to Step 1 to do the next time step in the integration (using the updated

X0 and Θ).

Examples

We now consider fault detection in several scenarios involving three different nonlinear systems:

a system of three coupled tanks, an electromechanical positioning system, and an exothermic batch

reactor with cooling jacket. This is a diverse set of examples involving different types of nonlinear-

ities. In addition to using the new fault detection methods described here, we also use a standard

Monte Carlo simulation (MCS) approach to provide a basis for comparison. In the MCS method,

an envelope of normal outputs is generated by solving Eq. (1) many times using initial states x0

randomly selected from X0 and parameters θ randomly selected from Θ. If at some time step j,

the bounded-error measurement Yij of any output component i lies entirely outside of the MCS

envelope, a fault is declared. The MCS envelope is sound but not complete, thus this method is

subject to false alarms, though if a sufficiently large number of simulations is done, the risk of false

alarms can be made quite small. In the examples here, the MCS envelope is determined using 100

simulations. For Methods 1 and 2, when VSPODE is used for envelope generation, this is done

using ITS order k = 17 and Taylor model order q = 3.

15



Three coupled tanks

As the first example problem with which to demonstrate the fault detection methods suggested

here, we use a system of three coupled tanks.34 As shown in Fig. 1, this is a nonlinear system

consisting of three cylindrical tanks which are coupled through connecting pipes of circular cross-

section. Tank 1 has an incoming flow Q1 which is controlled by a pump, and the outflow is from

Tank 3. All three liquid levels h1, h2 and h3 are measured. Sainz et al.34 also use this example

to demonstrate an interval-based fault detection method. However, their method requires that the

model be treated as a set of discrete-time difference equations. Using the new approach described

here, we can directly use the underlying continuous-time ODE model.

The dynamical model of the system is derived using material balances on each tank. Assuming

constant fluid density and using Torricelli’s Law, this gives:

A1h
′
1 = Q1 − c1

√
h1 − h2 − l1

√
h1

A2h
′
2 = c1

√
h1 − h2 − c2

√
h2 − h3 − l2

√
h2

A3h
′
3 = c2

√
h2 − h3 − c3

√
h3 − l3

√
h3

(11)

where the Ai, i = 1, 2, 3, are the cross-sectional areas of the tanks, and the ci and li, i = 1, 2, 3,

denote the valve constants and leakage constants, respectively. Here, it is assumed that h1 ≥ h2 ≥

h3. The output variables yi, i = 1, 2, 3, are the state variables (liquid levels).

The value of the incoming flow is available as an interval corresponding to an imprecise mea-

surement; that is, Q1 ∈ [0.00495, 0.00505] m3/s. Output measurements (fluid levels) ŷi, i = 1, 2, 3,

are available, but with noise bounded by Vi = [−0.01, 0.01] m, i = 1, 2, 3. Thus, the true fluid levels

yi are enclosed by yi ∈ Yi = ŷi − Vi, i = 1, 2, 3. All areas are assumed to be known exactly, and to

have the values A1 = A2 = A3 = 1 m2. In a fault-free system, the valve constants are only known

to belong to the interval ci ∈ [0.0099, 0.0101] m5/2/s, i = 1, 2, 3. It is also assumed that the system

is normal if the leakage constants are less than 0.0001; that is, the normal set for these parameters
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is li ∈ [0, 0.0001] m5/2/s, i = 1, 2, 3. The initial liquid levels are also not known precisely, and are

given by h10 ∈ [0.59, 0.61] m, h20 ∈ [0.49, 0.51] m and h30 ∈ [0.39, 0.41] m.

VSPODE was used, with the interval-valued parameters and initial states given above, to gen-

erate the envelope of normal outputs. This envelope is shown by the solid curves in Fig. 2. It is

rigorously guaranteed to be complete, but is not sound. To get some indication of how much this

envelope overestimates the true range of normal outputs, we also determined an envelope using

MCS. This provides a sound, but not complete, envelope, which is shown by the shaded area in

Fig. 2, and which is an underestimation of the true range of normal outputs. Table 1 provides a

more quantitative comparison of the two envelopes at selected values of time. Comparison of the

VSPODE envelope and the Monte Carlo envelope suggests that by using VSPODE we were able

to obtain a rigorously guaranteed complete envelope with very little overestimation.

We consider here four fault scenarios involving clogging (decrease of a valve constant) and/or

leaking (increase of a leakage constant). In all scenarios, the fault occurs at t = 0. A set of

measurement data for each scenario was generated by simulation using the nominal (midpoint)

values of the parameters and initial states, and then adding measurement noise, which was a

random number between −0.01 and +0.01 m.

In the first scenario, some clogging occurs between tanks 2 and 3, which decreases the valve

constant. Specifically, the valve constant is reduced to c2 = 0.008 m5/2/s. Fig. 3 shows the fault

detection results for the clogging scenario. At t = tj, each bounded-error measurement Yij is shown

by a vertical bar. Two envelopes are shown for each output. The larger envelope is the same as

shown in Fig. 2 and was generated by VSPODE without use of the CPP. This envelope is used

in fault detection Method 1. It can be seen that the level measurement in tank 3 falls completely

outside of this envelope at t = 26 s, thus triggering an alarm. The alarm would be triggered at

t = 21 s (not shown in the Figure) if the incomplete MCS envelope is used as the reference for
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normal outputs. The smaller (tighter) envelope is the envelope generated using VSPODE with

the CPP, and is the envelope used for fault detection Method 2. Now, at t = 12 s, we see that

the envelope for the level in tank 2 has become empty. This occurs because in the CPP it has

been determined that there is an inconsistency between the measurements and the normal set of

parameter values, thus triggering an alarm. By using the CPP and taking advantage of real-time

measurement data, the speed of the fault detection has been significantly improved. The average

CPU time for fault detection at each time step (1 s) in Method 2 was 0.08 s (Intel P4 3.2 GHz

machine). For this scenario, and all the scenarios considered for this and the other example systems,

the computation time required for fault detection with Method 2 was much less than the sampling

period, thus allowing real-time implementation.

In the second scenario, excessive leakage occurs from tank 2, which increases the leakage con-

stant. Specifically, the leakage constant is increased to l2 = 0.001 m5/2/s. Fig. 4 shows the fault

detection results for the excessive leakage scenario. Again, the larger envelope is the same as shown

in Fig. 2 and was generated by VSPODE without use of the CPP (Method 1). For this case,

the fault was detected at t = 45 s, when the level measurement for tank 2 falls entirely below the

envelope. The fault is detected at t = 20 s (not shown) if the incomplete Monte Carlo envelope is

used. The tighter envelope comes from VSPODE with the CPP (Method 2). This leads to quicker

fault detection, at t = 17 s.

For the third scenario, we allowed both of these clogging and leaking faults to occur at the same

time (t = 0). For this scenario, a fault was reported at t = 20 s using either Method 1 or the MCS

method, and at t = 17 s using Method 2. Detailed results are not shown for this case. Because

the measurement data used have random noise, and thus are not the same as used in connection

with either of the first two scenarios, these performance results are not directly comparable to the

earlier results.
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In the final fault scenario, there is an incipient leak from tank 2 that begins at t = 0 and

then slowly increases with time. Specifically, the leakage constant is assumed to be l2 = 0.00005 +

0.00002t. Fig. 5 shows the fault detection results for this scenario. Again the larger envelope

corresponds to Method 1, and the smaller envelope to Method 2. A fault was reported at t = 56

s using Method 1 and at t = 51 s using MCS (not shown). For Method 2, the fault was detected

much sooner, at t = 30 s. Results on this and the other scenarios indicate that Method 2 provides

significantly faster fault detection than Method 1, which is not surprising since Method 2 uses

real-time measurements and Method 1 does not. Both Methods 1 and 2 are based on rigorously

guaranteed complete envelopes of normal output, and thus are not susceptible to false alarms.

The MCS method can provide earlier alarms than Method 1, but it is based on an incomplete

(underestimated) envelope, with an accompanying risk of false alarms, and this must be considered

to make a fair comparison.

Electromechanical positioning system

We consider an electromechanical positioning system35 in which a bar with length l and mass m

is positioned (rotated) in a vertical plane using a DC motor with mechanical damping. A spring is

attached to the bar to provide additional stiffness. This system is governed by the following second

order system:

Jθ′′ + fθ′ + ζθ + mgl sin(θ) = kau. (12)

Here θ is the angular displacement of the motor shaft, u = A sin(ωt) is a sinusoidal voltage applied

to the DC motor armature through an electronic power amplifier with gain ka, J is the joint inertia

of the bar and the motor armature, f is the viscous damping coefficient of the mechanical damper, ζ

is the spring stiffness constant and g is the acceleration due to gravity. The system can be rewritten
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as a first order autonomous ODE system

ξ′1 = ξ2

ξ′2 = −bξ2 − cξ1 − k1 sin(ξ1) + Ak sin(ωξ3) + w(ξ3) (13)

ξ′3 = 1

with states ξ1 = θ, ξ2 = θ′, ξ3 = t, and parameters b = f/J ∈ [0.95, 1.05] s−1, c = ζ/J ∈ [0.39, 0.41]

s−2, k1 = mgl/J = 0.1 s−2, Ak = Aka/J = 0.5 s−2 and ω = 0.25π s−1. The additional term w(ξ3)

accounts for the faults that will be considered for this system. For fault-free behavior, w = 0. The

initial conditions are (ξ1, ξ2, ξ3)
T
0 = (0, 0, 0)T. The output is y = ξ1 and is measured every 0.2 s,

but subject to noise bounded by V = [−0.05, 0.05].

The envelope of normal outputs generated using VSPODE for Method 1 is shown by the solid

curves in Fig. 6. An envelope was also generated using MCS, and this is shown as the shaded area

in Fig. 6. Table 2 gives a comparison of the two envelopes at selected values of time. Considering

that the MCS envelope is an underestimate of the true envelope of normal outputs, it appears that

VSPODE was able to determine a rigorously complete envelope with very little overestimation.

Two fault scenarios are considered: 1. There is a malfunctioning of the power electronics

resulting in an extraneous constant voltage being applied to the motor. In this case w will be

a nonzero constant, which we take to be w = 0.02 s−2. 2. There is an electronics malfunction

resulting in an extraneous time-varying voltage being applied to the motor. In this case, we take

w = 0.001t = 0.001ξ3 s−2. In both scenarios, the fault occurs at t = 0. A set of measurement data

for each scenario was generated by simulation using nominal (midpoint) values of parameters, and

then adding measurement noise, which was a random number between −0.05 and 0.05.

Fig. 7 shows the fault detection results for the constant voltage scenario. In this case, Method

1, Method 2, and MCS all report the fault at t = 4.6 s. The envelope generated by Method 2 is

very thin and not easily seen in Fig. 7. This shows that Method 2 will not always detect a fault
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faster than Method 1, but since the envelope used by Method 2 is always within the envelope used

by Method 1, the performance of Method 2 will never be worse than Method 1. Fig. 8 shows the

fault detection results for the varying voltage scenario. Method 1 reports the fault at t = 14.4 s,

with the MCS method at t = 10 s. Method 2 detects the fault at t = 9.4 s. Here Method 2 provides

rapid fault detection that, unlike MCS, is not subject to false alarms.

Batch reactor system

We consider a first-order exothermic reaction A → B in a batch reactor fitted with a segmented,

variable area cooling jacket. The model36 is given by the following material and energy balances

dX

dt
= k0 exp

(
− Ea

RT

)
(1 − X)

dT

dt
=

UA

CA0V Cp
(Ta − T ) − ∆HRk0

Cp
exp

(
− Ea

RT

)
(1 − X), (14)

where X is the conversion and T is the reactor temperature. Other quantities and their values are

shown in Table 3. The values shown for the heat transfer constant UA and the coolant temperature

Ta are nominal values, since these parameters are not known with certainty. These two uncertain

parameters are assumed (arbitrarily) to be UA ∈ [2.7, 2.9] W/K, and Ta ∈ [298, 302]K. The output

is the temperature, y = T , which is measured every 10 s. These temperature measurements are

subject to noise bounded by V = [−2, 2]K. The initial conditions are X0 = 0 and T0 ∈ [398, 402]

K. The time required in the batch reactor is 300 s.

Fig. 9 shows the envelope of normal outputs determined using VSPODE (solid curves) and using

MCS (shaded area). These two envelopes are also compared in Table 4 for selected values of time.

The MCS envelope is sound but not complete, underestimating the true envelope. The VSPODE

envelope is rigorously complete but not sound, overestimating the true envelope. However, it is

clear from the results in Fig. 9 and Table 4 that the amount of overestimation is extremely small.

Two fault scenarios are considered: 1. A clogging in a segment of the cooling jacket at t = 0,
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causing the heat transfer constant to decrease from its nominal value 2.8 W/K to 2.6 W/K. 2. A

gradual increase in coolant temperature from its nominal value 300 K to 310 K at a rate of 0.2 K/s,

beginning at t = 50 s. A set of measurement data for each scenario was generated by simulation

using nominal values of parameters, and then adding measurement noise, which was a random

number between −2 and 2 K.

Fig. 10 shows the fault detection results for the first scenario (drop of heat transfer constant).

For this case, Method 1, Method 2, and MCS all report the fault at t = 30 s. Fig. 11 shows

the fault detection results for the second scenario (gradual increase of coolant temperature). Both

Method 1 and MCS report the fault at t = 170 s, and Method 2 reports the fault at t = 130 s. As

in the previous examples, Method 2 reduces the fault detection time, and does so on the basis of a

rigorously complete envelope, not subject to false alarms.

Concluding Remarks

We have demonstrated here an approach for generating an envelope of normal, fault-free outputs

for nonlinear systems described by continuous-time models with uncertain parameters and/or initial

states. This approach is rigorously guaranteed to be complete, but does not cause significant

overestimation. Two fault detection methods were described based on this approach. The first

method made direct use of the envelope, while in the second method, a constraint propagation

procedure based on Taylor models was used, together with error-bounded output measurements,

thus enabling fault detection earlier than when using the first method. Several fault detection

scenarios involving nonlinear, continuous-time systems were used to successfully demonstrate these

methods.

There are many other analytical approaches to model-based fault detection. However, as em-

phasized by Venkatasubramanian et al.,2 these are mostly limited to the use of linear models, or
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very specific nonlinear models. The strategy presented here provides a rigorous approach for deal-

ing with general nonlinear models, without having to resort to potentially poor linearizations. The

residuals used for fault detection in the methods described here are based simply on the differences

in the error-bounded output measurements compared to the envelopes of expected, fault-free out-

puts obtained from the model. While such residuals may be used to detect a fault, they may not

be directly useful in isolating the fault. Thus, in many other approaches for fault detection there is

an emphasis on determining diagnostic residuals that are sensitive to only a subset of the possible

faults. Standard techniques2 for generating such residuals include use of diagnostic observers, par-

ity relationships and Kalman filters. Enhanced techniques for generating more selective residuals

include the directional-residual37,38 and structural-residual39 methods. In the approach presented

here, it is possible to use any residual that is a function of the error-bounded measurements and

the state bounds determined from the model. However, we have not considered how to best choose

the residuals for purposes of fault isolation and diagnosis.

Another type of method for model-based fault detection is parameter estimation.1 Online

measurements can be used to estimate parameters in a model, based on techniques such as least

squares, and if a parameter deviates sufficiently from its normal value, a fault is detected. The

second method described here incorporates a technique of this type. If the parameter interval that

is consistent with the error-bounded measurements becomes inconsistent with the normal range of

the parameter, then this method detects a fault. If the parameter that has deviated from its normal

range has real physical meaning, as in the case of a first-principles model, then this approach may

be directly useful for fault isolation and diagnosis.
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Table 1: Envelope of normal outputs for the three tank example determined by VSPODE and by

Monte Carlo simulation (MCS). For each value of time, the outputs are given in the order h1, h2,

h3.

Envelope (m)

t (s) VSPODE MCS

10 [ 0.6054, 0.6279 ] [ 0.6071, 0.6254 ]

[ 0.4878, 0.5099 ] [ 0.4896, 0.5063 ]

[ 0.3609, 0.3819 ] [ 0.3623, 0.3801 ]

20 [ 0.6184, 0.6432 ] [ 0.6214, 0.6393 ]

[ 0.4849, 0.5084 ] [ 0.4878, 0.5034 ]

[ 0.3374, 0.3593 ] [ 0.3399, 0.3559 ]

30 [ 0.6293, 0.6563 ] [ 0.6332, 0.6516 ]

[ 0.4817, 0.5071 ] [ 0.4855, 0.5010 ]

[ 0.3182, 0.3407 ] [ 0.3212, 0.3361 ]

40 [ 0.6386, 0.6675 ] [ 0.6432, 0.6622 ]

[ 0.4786, 0.5053 ] [ 0.4831, 0.4987 ]

[ 0.3024, 0.3255 ] [ 0.3058, 0.3198 ]

50 [ 0.6464, 0.6773 ] [ 0.6517, 0.6714 ]

[ 0.4756, 0.5036 ] [ 0.4808, 0.4965 ]

[ 0.2892, 0.3129 ] [ 0.2932, 0.3069 ]

29



Table 2: Envelope of normal outputs for the positioning system example, as determined by

VSPODE and by Monte Carlo simulation (MCS).

Envelope

t (s) VSPODE MCS

5 [ 0.4843, 0.5324 ] [ 0.4883, 0.5292 ]

10 [−0.1197,−0.0823 ] [−0.1171,−0.0866 ]

15 [−0.3936,−0.3494 ] [−0.3909,−0.3544 ]

20 [ 0.5887, 0.6568 ] [ 0.5948, 0.6526 ]
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Table 3: Batch reactor parameters.

Parameter Description Value

k0 Kinetic rate constant 0.022 s−1

CA0 Initial concentration of A 10 mol/m3

V Volume of the reactor 0.1 m3

Cp Total heat capacity 60 J/mol K

Ea Activation energy 6000 J/mol

R Gas constant 8.314 J/mol/K

∆HR Heat of reaction −140,000 J/mol

UA Heat transfer constant 2.8 W/K

Ta Coolant temperature 300 K
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Table 4: Envelope of normal outputs for the batch reactor example, as determined by VSPODE

and by Monte Carlo simulation (MCS).

Envelope (K)

t (s) VSPODE MCS

50 [ 486.71, 512.93 ] [ 488.23, 510.79 ]

100 [ 455.55, 482.79 ] [ 455.86, 481.73 ]

150 [ 406.73, 425.93 ] [ 407.19, 425.14 ]

200 [ 374.24, 386.38 ] [ 374.67, 385.95 ]

250 [ 355.26, 363.53 ] [ 355.68, 363.32 ]

300 [ 343.53, 349.94 ] [ 343.88, 349.81 ]

32



List of Figure Captions

Figure 1. Coupled three-tank system.

Figure 2. Envelope of normal tank levels computed using VSPODE (solid curves) compared to

envelope obtained by Monte Carlo simulation (shaded area).

Figure 3. Fault detection for scenario of clogging between tanks 2 and 3. See text for discussion.

Figure 4. Fault detection for scenario of excess leakage from tank 2. See text for discussion.

Figure 5. Fault detection for scenario of slowly increasing leakage from tank 2. See text for

discussion.

Figure 6. Envelope of normal positions computed using VSPODE (solid curves) compared to

envelope obtained by Monte Carlo simulation (shaded area).

Figure 7. Fault detection for scenario of constant voltage. See text for discussion.

Figure 8. Fault detection for scenario of varying voltage. See text for discussion.

Figure 9. Envelope of normal batch reactor temperature computed using VSPODE (solid curves)

compared to envelope obtained by Monte Carlo simulation (shaded area).

Figure 10. Fault detection for scenario of drop of heat transfer constant at t = 0. See text for

discussion.

Figure 11. Fault detection for scenario of rising coolant temperature (beginning at t = 50). See

text for discussion.
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Figure 1: Coupled three-tank system.
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Figure 2: Envelope of normal tank levels computed using VSPODE (solid curves) compared to

envelope obtained by Monte Carlo simulation (shaded area).
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Figure 3: Fault detection for scenario of clogging between tanks 2 and 3. See text for discussion.
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Figure 4: Fault detection for scenario of excess leakage from tank 2. See text for discussion.
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Figure 5: Fault detection for scenario of slowly increasing leakage from tank 2. See text for

discussion.
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Figure 6: Envelope of normal positions computed using VSPODE (solid curves) compared to

envelope obtained by Monte Carlo simulation (shaded area).
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Figure 7: Fault detection for scenario of constant voltage. See text for discussion.
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Figure 8: Fault detection for scenario of varying voltage. See text for discussion.
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Figure 9: Envelope of normal batch reactor temperature computed using VSPODE (solid curves)

compared to envelope obtained by Monte Carlo simulation (shaded area).
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Figure 10: Fault detection for scenario of drop of heat transfer constant at t = 0. See text for

discussion.
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Figure 11: Fault detection for scenario of rising coolant temperature (beginning at t = 50). See

text for discussion.
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