A Parallel Frontal Solver for Process Simulation

J. Mallya* M.A. Stadtherr! S.E. Zitneyt S. Choudhary?

Abstract

The solution of large-scale chemical processes is often dominated by the time spent
to solve large sparse systems of linear equations. We describe here a parallel frontal
algorithm which significantly reduces the wallclock time to solve these linear equation
systems. The algorithm is based on a bordered block-diagonal form arising in equation-
based process simulation, and exploits vector and multiprocessing by using a multilevel
approach in which frontal elimination is used for partial factorization of each diagonal
block. Results on several large-scale process simulation and optimization problems are
presented.

1 Introduction

The solution of realistic, industrial-scale process simulation and optimization problems
is computationally very intense, and often requires high performance computing (HPC)
technology to be done in a timely manner. To better use HPC technology in process
simulation requires the use of techniques that effectively take advantage of vector and/or
parallel processing.

In large-scale process simulation and optimization using rigorous equation-based
models, the key computational step is the solution of sparse linear equation systems (Az = b
and ATz = b), representing as much as 80% of the total computation time. Zitney and
Stadtherr [1] have demonstrated the usefulness of a frontal based linear solver scheme which
exploits the vector processing capabilities of the CRAY-C90 vector/parallel supercomputer.
By using this frontal solver and addressing other implementation issues, they reduced the
time needed to solve a dynamic simulation problem at Bayer AG from 18 hours to 21
minutes [2]. This implementation of the frontal algorithm (called FAMP) is currently used
in CRAY versions of commercially used simulation packages such as SPEEDUP (Aspen
Technology, Inc.) and ASPEN PLUS (Aspen Technology, Inc.)

FAMP is effective on vector machines since most of the computations involved can be
performed using efficiently vectorized dense matrix kernels. However, this solver does not
‘well exploit the multiprocessing architecture of parallel/vector supercomputers. In this
paper we describe a new parallel frontal solver (PFAMP) that exploits both the vector and
parallel processing architectures of modern supercomputers. Results demonstrate that the
approach described leads to significant reductions in the wallclock time required to solve
the sparse linear systems arising in large scale process simulation and optimization.

*Cray Research, 655E Lone Oak Drive, Eagan, MN 55121

tDepartment of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556
*Cray Research (now with AspenTech UK Ltd., Castle Park, Cambridge CB3 0AX)
$Cray Research, 655E Lone Oak Drive, Eagan, MN 55121

1

2

2 Background

The frontal elimination scheme used here can be briefly outlined as follows:
1. Assemble a row into the frontal matrix.

2. Determine if any columns are fully summed in the frontal matrix. A column is fully
summed if it has all of its nonzero elements in the frontal matrix.

3. If there are fully summed columns, then perform partial pivoting in those columns,
eliminating the pivot rows and columns and doing an outer-product update on the
remaining part of the frontal matrix.

This procedure begins with the assembly of row 1 into the initially empty frontal matrix,
and proceeds sequentially row by row until all are eliminated, thus completing the LU
factorization. To be more precise, it is the LU factors of the permuted matrix PAQ
that have been found, where P is a row permutation matrix determined by the partial
pivoting, and @ is a column permutation matrix determined by the order in which the
columns become fully summed. Thus the solution to Az = b is found as the solution to the
equivalent system PAQQTz = LUQTz = Pb, which is solved by forward substitution to
solve Ly = Pb for y, back substitution to solve Uw = y for w, and finally the permutation
z = Quw.

In the frontal algorithm, the most expensive stage computationally is the outer-product
update of the frontal matrices. When executed on a single vector processor, FAMP performs
efficiently because the outer-product update is readily vectorized. However, the main
deficiency with the frontal code FAMP is that there is little opportunity for parallelism
beyond that which can be achieved by microtasking the inner loops or by using higher level
BLAS in performing the outer product update. Mallya [3] has shown that only very limited
speedups (often only about 1.2 on four processors) could be achieved by adopting this
strategy, primarily because the small-grained parallel tasks generated are simply not large
enough to overcome the synchronization cost and the overhead associated with invoking
multiple processors on the C90.

3 Coarse-grained Parallelism

We overcome the deficiencies of the frontal code FAMP by using a coarse-grained parallel
approach in which frontal elimination is performed simultaneously on multiple indepen-
dent or loosely connected blocks. Consider a matrix in singly-bordered block-diagonal form:

An
Ao

Ann

S1 S ... Sy

where the diagonal blocks A;; are m; x n; and in general are rectangular with n; > m;.
Because of the unit-stream nature of the problem, process simulation matrices occur
naturally in this form, as described in detail by Westerberg and Berna [4]. Each diagonal
block A;; comprises the model equations for a particular unit, and equations describing the

3

connections between units, together with design specifications, constitute the border (the
S;). Of course, not all process simulation codes may use this type of problem formulation,
or order the matrix directly into this form. Thus some matrix reordering scheme may need
to be applied, as discussed further below.

The basic idea in the parallel frontal algorithm (PFAMP) is to use frontal elimination
to partially factor each of the A;;, with each such task assigned to a separate processor.
Since the A;; are rectangular in general, it usually will not be possible to eliminate all
the variables in the block, nor perhaps, for numerical reasons, all the equations in the
block. The equations and variables that remain, together with the border equations, form
a “reduced” or “interface” matrix that must then be factored. This approach is similar
to the multiple fronts approach for solving finite element problems described by Duff and
Scott [5].

4 Parallel Frontal Algorithm (PFAMP)
Algorithm PFAMP:

Begin parallel computation on P processors
For i =1: N, with each task ¢ assigned to the next available processor:

1. Do symbolic analysis on the diagonal block A;; and the corresponding portion of
the border (S;) to obtain memory requirements and last occurrence information (for
determining when a column is fully summed) in preparation for frontal elimination.

2. Assemble the nonzero rows of S; into the frontal matrix.

3. Perform frontal elimination on A;;, beginning with the assembly of the first row of A;;
into the frontal matrix . The maximum number of variables that can be eliminated
is m;, but the actual number of pivots done is p; < m;. The pivoting scheme used is
described in detail in Section 4.1.

4. Store the computed columns of L and rows of U. Store the rows and columns
remaining in the frontal matrix for assembly into the interface matrix.

End parallel computation
5. Assemble the interface matrix from the contributions of Step 4 and factor.

Note that for each block the result of Step 3 is

¢ C
(2) R; LU; U]
R! L F

where R; and C; are index sets comprising the p; pivot rows and p; pivot columns,
respectively. R; is a subset of R{‘, the row index set of A;;. R; contains all row indices from
R;-g , the row index set of nonzero rows of S;, as well as the indices of any rows of A;; that
could not be eliminated for numerical reasons. As they are computed during Step 3, the
computed columns of L and rows of U are saved in arrays local to each processor. Once the
partial factorization of A;; is complete, the computed block-column of L and block-row of U
are written into global arrays in Step 4 before that processor is made available to start the

4

factorization of another diagonal block. The remaining frontal matrix F; is a contribution
block that is stored in central memory for eventual assembly into the interface matrix in
Step 5.

The overall situation at the end of the parallel computation section is:

C1 Cy Cn c'
R LUy Ui
R, LyUs Us
(3)
Ry LyUn U]'\f
R Ly L, ... Ly |F
N N
where R' = |J R; and C' = |J Cj. F is the interface matrix that can be assembled
i=1 i=1

from the contribution blocks F;. Note that, since a row index in R’ may appear in more
than one of the R; and a column index in C' may appear in more than one of the C}, some
elements of F' may get contributions from more than one of the F;. As this doubly-bordered
block-diagonal form makes clear, once values of the variables in the interface problem have
been solved for, the remaining triangular solves needed to complete the solution can be
done in parallel using the same decomposition used to do the parallel frontal elimination.
During this process the solution to the interface problem is made globally available to each
processor.

Once factorization of all diagonal blocks is complete, the interface matrix is factored.
This is carried out by using the FAMP frontal solver, with microtasking to exploit loop-level
parallelism for the outer-product update of the frontal matrix. However, as noted above,
this tends to provide little speedup, so the factorization of the interface problem can in
most cases be regarded as essentially serial. This constitutes a computational bottleneck.
Therefore, it is critical to keep the size of the interface problem small to achieve good
speedups for the overall solution process.

4.1 Numerical Pivoting

We use a partial-threshold pivoting strategy to maintain numerical stability while choosing
pivots. With the parallel frontal scheme of PFAMP, we need to ensure that the pivot row
belongs to the diagonal block A;;. We cannot pick a pivot row from the border S; because
border rows may be shared by more than one diagonal block. Partial pivoting is carried out
to find the largest magnitude element (say, a;xp) in the pivot column p while limiting the
search to the rows that belong to the diagonal block A;; (so i* € R#). This element is chosen
as the pivot element if it satisfies a threshold pivot tolerance criterion with respect to the
largest magnitude element (say, a;«p) in the entire pivot column (so j* € RA U RY). That
is, if ajxp > u X ajxp, then a;x, is chosen as pivot, where u is a threshold pivot tolerance in
the range 0 < u < 1. If a pivot search does not find an element that satisfies this criterion,
then the elimination of that variable is delayed and the pivot column becomes part of the
interface problem. This increases the size of the mostly serial interface problem; however
our computational experiments indicates that the increase in size is very small compared
to n, the overall problem size.

4.2 Load Balancing and Reordering

As discussed above, for the solution method described above to be most effective, the size
of the interface problem must be kept small. Furthermore, for load balancing reasons, it is
desirable that the diagonal blocks be nearly equal in size (and preferably that the number
of them be a multiple of the number of processors to be used). For an ideal ordering, with
each diagonal block presenting an equal workload and no interface matrix (i.e., a block
diagonal matrix), the speedup of the algorithm would in principle scale linearly. However,
this ideal ordering rarely exists. '

In a natural unit-stream structure, the interface problem size may be small, but the
number of equations in different units may vary widely thereby giving rise to blocks of
various sizes. This may be handled by combining some of the smaller blocks into larger
blocks. In our experience, even that may not be possible as one block ‘may be larger than
all the rest combined together. It is also possible to break the larger block into smaller
diagonal blocks with the disadvantage of increasing the interface problem size.

To address the issues of load balancing and of the size of the interface problem in a
more systematic fashion, and to handle the situation in which the application code does not
provide a bordered block-diagonal form directly in the first place, there is a need for matrix
reordering algorithms. For structurally symmetric matrices, there are various approaches
that can be used to try to get an appropriate matrix reordering (e.g., [6], [7], [8]). These
are generally based on solving graph partitioning, bisection or min-cut problems, often in
the context of nested dissection applied to finite element problems. Such methods can
be applied to a structurally asymmetric matrix A by applying them to the structure of
the symmetric matrix A + AT, and this may provide satisfactory results if the degree of
asymmetry is low. However, when the degree of asymmetry is high, as in the case of process
simulation and optimization problems, the approach cannot be expected to always yield
good results, as the number of additional nonzeros in A+ A7, indicating dependencies that
are nonexistent in the problem, may be large, nearly as large as the number of nonzeros
indicating actual dependencies.

To deal with structurally asymmetric problems, one technique that can be used is
the min-net-cut (MNC) approach of Coon and Stadtherr [9]. This technique is designed
specifically to address the issues of load balancing and interface problem size. It is based on
recursive bisection of a bipartite graph model of the asymmetric matrix. Since a bipartite
graph model is used, the algorithm can consider unsymmetric permutations of rows and
columns while still providing a structurally stable reordering. The matrix form produced
is a block-tridiagonal structure in which the off-diagonal blocks have relatively few nonzero
columns; this is equivalent to a special case of the bordered block-diagonal form. The
columns with nonzeros in the off-diagonal blocks are treated as belonging to the interface
problem. Rows and other columns that cannot be eliminated for numerical reasons are
assigned to the interface problem as a result of the pivoting strategy used in the frontal
elimination of the diagonal blocks.

5 Results and Discussion

In this section, we present results for the performance of the PFAMP solver on two sets
of problems. We compare the performance of PFAMP on multiple processors with its
performance on one processor and with the performance of the frontal solver FAMP on
one processor. The numerical experiments were performed on a CRAY C90 parallel/vector
supercomputer at Cray Research, Inc., in Eagan, Minnesota. The timing results presented

TABLE 1
Description of Test Problems.

No. Name 7 NZ as | N | Mimaz | Mimin | NI
1 | ethylene_1 | 10673 | 80904 | 0.99 | 43 | 3337 1 708
2 | ethylene 2 | 10353 | 78004 | 0.99 | 43 | 3017 1 698
3 | ethylene 3 | 10033 | 75045 | 0.99 | 43 | 2697 1 708
4 hydrlc 5308 23752 1099 | 4 1449 1282 180
5 Icomp 69174 | 301465 | 0.99 | 4 | 17393 | 17168 | 1057
6 lhr 34k | 35152 | 764014 | 0.99 | 6 9211 4063 | 782
7 Ihr_ 71k | 70304 | 1528092 | 0.99 | 10 | 9215 4063 | 1495

represent the total time to obtain a solution vector from one right-hand-side vector,
including analysis, factorization, and triangular solves. A threshold tolerance of u = 0.1
was used in PFAMP to maintain numerical stability, which was monitored using the 2-norm
of the residual b — Azx.

The first set of problems (Problems 1-3) come from the optimization of an ethylene
plant using NOVA, a chemical process optimization package from Dynamic Optimization
Technology Products, Inc. NOVA uses an equation-based approach that requires the
solution of a series of large sparse linear systems, which accounts for a large portion of
the total computation time. This application code produces directly a matrix in bordered
block-diagonal form based on the natural unit-stream structure of the problem. Thus, no
reordering is done prior to use of PFAMP for the solution of these systems. The second set
of problems includes dynamic simulation problems (Problems 4-5) solved using SPEEDUP
(Aspen Technology, Inc.) and steady-state simulation problems solved using SEQUEL [10].
Neither of these application codes directly produces a matrix in bordered block-diagonal
form, so the MNC reordering is used prior to use of PFAMP. Reordering time is not included
in the results, as in these applications the reordering can be reused in the factorization of
many systems of similar structure.

In Table 1, each matrix is identified by problem number, name and order (n). In
addition, statistics are given for the number of nonzeros (NZ), and for a measure of
structural asymmetry (as). The asymmetry, as, is the number off-diagonal nonzeros a;;
(4 # 1) for which aj; = 0 divided by the total number of off-diagonal nonzeros (as =0 is a
symmetric pattern, as = 1 is completely asymmetric). Also given is information about the
bordered block-diagonal form used, namely the number of diagonal blocks (N), the order of
the interface matrix (NI), and the number of equations in the largest and smallest diagonal
blocks, m; maez and Mm; min, respectively.

Timing comparisons are given for the first set of problems in Table 2, and for the second
in Table 3. We note first that the single processor performance of PFAMP is somewhat
better then that of FAMP. This is because FAMP keeps the variables associated with the
interface in the front until the end. The size of the largest frontal matrix increases for
this reason, as does the number of wasted operations on zeros, thereby reducing the overall
performance. This problem does not arise for solution with PFAMP because when the
factorization of a diagonal block is complete, the remaining variables and equations in the
front are immediately written out as part of the interface problem and a new front is begun
for the next diagonal block.

For Problems 1-3, there are five large diagonal blocks in the matrices, with one of these

TABLE 2

Timings (wallclock) for Problems 1-8 in milliseconds.

No. | FAMP | PFAMP | PFAMP
(1 CPU) | (5 CPUs)
1 697 550 297
2 667 510 290
3 628 505 280
TABLE 3

Timings (wallclock) for Problems 4—7 in milliseconds.

No. | FAMP | FAMP PFAMP PFAMP
(MNC) | (MNC; 1 CPU) | (MNC; 4 CPUs)
4 | 201 258 243 139
5 | 3990 | 3777 4328 1716
6 | 7402 | 7178 3813 1783
7 | 14960 | 14797 7670 3036

blocks much larger (m; = 3337) than the others (1185 < m; < 1804). In the computation,
one processor ends up working on the largest block, while the remaining four processors
finish the other large blocks and the several much smaller ones. The load is unbalanced with
the factorization of the largest block being a bottleneck. This, together with the solution
of the interface problem, another bottleneck, results in a speedup (relative to PFAMP on
one processor) of less than two on five processors. It is likely that more efficient processor
utilization could be obtained by using a better partition into bordered block-diagonal form.

Problems 4-7 were reordered using MNC. Thus, since the performance of the frontal
solver FAMP usually depends on the row ordering in the matrix, it was run using both
the original ordering and the MNC ordering. The difference in the performance of
FAMP when using the different orderings was not significant. MNC achieves the best
ordering for Problem 5, for which it finds four diagonal blocks of roughly the same size
(17168 < m; < 17393) and the size of the interface problem is relatively small in comparison
to n. The speedup observed for PFAMP on this problem was about 2.5 on four processors.
While this represents a substantial savings in wallclock time, even a small interface problem
can substantially decrease the speedup attained.

6 Concluding Remarks

The results presented above demonstrate that PFAMP can be an effective solver for use
in process simulation and optimization on parallel/vector supercomputers with a relatively
small number of processors. In addition to making better use of multiprocessing than the
standard solver FAMP, on most problems the single processor performance of PFAMP was
better than that of FAMP. The combination of these two effects led to four- to six-fold
performance improvements on some large problems. Two keys to obtaining better parallel
performance are improving the load balancing in factoring the diagonal blocks and better
parallelizing the solution of the interface problem.

Clearly the performance of PFAMP with regard to multiprocessing depends strongly on

8

the quality of the reordering into bordered block-diagonal form. In most cases considered
above it is likely that the reordering used is far from optimal, and no attempt was made to
find better orderings or compare the reordering approaches used. The graph partitioning
problems underlying the reordering algorithms are NP-complete. Thus, one can easily spend
a substantial amount of computation time attempting to find improved orderings. The cost
of a good ordering must be weighed against the number of times the given simulation or
optimization problem is going to be solved. Typically, if the effort is made to develop
a large scale simulation or optimization model, then it is likely to be used a very large
number of times, especially if it is used in an operations environment. In this case, the
investment made to find a good ordering for PFAMP to exploit might have substantial long
term paybacks. '

References

[1] S. E. Zitney and M. A. Stadtherr Frontal Algorithms for Equation-Based Chemical Process
Flowsheeting on Vector and Parallel Computers, Computers and Chemical Engineering, 17
(1993), pp. 319-338.

[2] S. E. Zitney, L. Briill, L. Lang and R. Zeller Plantwide Dynamic Simulation on Supercomputers
for Modeling a Bayer Distillation Process, AIChE Symposium Series, 91(304), 1995, pp. 313-
316.

[3] J. U. Mallya Vector and Parallel Algorithms for Chemical Process Simulation on Supercom-
puters, PhD thesis, Dept. of Chemical Engr., Univ. of Illinois, Urbana, Illinois, 1996.

[4] A. W. Westerberg and T. J. Berna Decomposition of Very Large-Scale Newton-Raphson based
Flowsheeting Problems, Computers and Chemical Engineering, 2, 61, 1978.

[5] I. S. Duff and J. A. Scott The use of Multiple Fronts in Gaussian Elimination, Technical
Report, RAL, 94-040, Rutherford Appleton Laboratory, Oxon, UK, 1994.

[6] B. W. Kernighan and S. Lin An Efficient Heuristic Procedure for Partitioning Graphs, Bell
System Tech. J., 49, 1970, pp. 291-307.

[7] C. E. Leiserson and J. G. Lewis Orderings for Parallel Sparse Symmetric Factorization, In
Rodrigue G., editor, Parallel Processing for Scientific Computing, SIAM, Philadelphia, 1989,
pp. 27-31.

[8] G.Karypis and V. Kumar Multilevel k-way Partitioning Scheme for Irregular Graphs, Technical
Report 95-064, Dept. of Computer Science, Univ. of Minnesota, 1995.

[9] A.B. Coon and M. .A. Stadtherr Generalized Block-Tridiagonal Matriz Orderings for Parallel
Computation in Process Flowsheeting, Computers and Chemical Engineering, 19, 1995, pp. 787-
805.

[10] S. E. Zitney and M. A. Stadtherr Computational Ezperiments in Equation-Based Chemical
Process Flowsheeting, Computers and Chemical Engineering, 12 (1988), pp. 1171-1186.

