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Abstract: Parameter estimation is a key problem in the development of process models, both steady- and unsteady-
state, and thus is an importantissue in both process design and control. The error-in-variable approach differs distinctly
from the standard approach in that measurement errors in both dependent and independent system variables are taken
into account when formulating the objective function in the parameter estimation problem. It is not uncommon for
the objective function in nonlinear parameter estimation problems to have multiple local optima. However, the usual
methods used to solve these problems are local methods that offer no guarantee that the global optimum, and thus
the best set of model parameters, has been found. We demonstrate here a technique, based on interval analysis, that
can solve the error-in-variable parameter estimation problem with complete reliability, providing a mathematical and
computational guarantee that the global optimum is found. As examples, we consider the estimation of parameters
in both steady and unsteady-state models, including a vapor-liquid equilibrium (VLE) model, a CSTR model, and a
reaction kinetics model.
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1 Introduction Since the optimization problem to be solved may be
The mathematical modeling of physical phenomenarignconvex, there may exist multiple local optima. How-
a core aspect of the simulation and optimization tools usexer, the standard methods used to solve these problems
for purposes of chemical process design and control. Téwe local methods that offer no guarantee that the global
features and accuracy of the models used determine dptimum, and thus the best set of model parameters, has
realism with which the actual process can be representeelen found. Hence, there is a need for global optimiza-
Use of appropriate models is helpful not only in improwon in nonlinear parameter estimation. One approach that
ing process analysis and in optimizing process operatimgs been suggested is adaptive random search. Here the
conditions, but also in the design of the control strategiegarch for the optimal parameter values has a random-
for the process under consideration. A key problem, hoized component, allowing the potential for discovering
ever, in the development of process models, either steanyttiple local optima. However, such stochastic meth-
state or dynamic, is parameter estimation. That is, simags cannot provide any mathematical guarantees that the
models of interest often include undetermined parametegiebal optimum has been found. Another approach, sug-
a reliable technique is needed for estimating these parayasted by Esposito and Floudas (1998), is to reformulate
eters from laboratory or process data so that a “best-fitte problem in terms of convex underestimating functions
model is achieved. and then use a branch and bound procedure. This is a de-
In the standard approach to parameter estimationteaministic global optimization method that can provide a
distinction is made between dependent and independéeoretical guarantee of global optimality. One difficulty
variables, with the assumption that there are no measwwih this approach is that in general it is necessary to per-
ment errors in the independent variables. In chemical pform problem reformulations and develop convex under-
cess modeling, however, parameters are often obtaigstimators specific to each new application. Also, branch
by fitting experimental observations to models in whiciind bound methods implemented in floating point arith-
all variables are subject to error with a known or partlyetic may be vulnerable to rounding error problems, and
known variance. Thus, there is no distinction between dbus lose their theoretical guarantees. An alternative ap-
pendent and independent variables. The error-in-variapteach for global optimization in this context is the use
(EIV) approach differs distinctly from the standard apef interval analysis. Gau and Stadtherr (1999a, 2000)
proach in that measurement errors in both dependent &iaste successfully applied interval analysis in the estima-
independent system variables are taken into account wkien of parameters in the Wilson model for binary vapor-
formulating the objective function in the parameter e$iquid equilibrium when using a standard (not EIV) rel-
timation problem. The best estimate of the parametexive least-squares approach. Not only did they discover
can then be obtained by minimizing the objective funthe existence of multiple local minima in the relative least-
tion subject to constraints representing the model eqsguares objective function, but in several problems they
tions. In many cases the constraints may be eliminatldo found new globally optimal parameter values that had
by substitution into the objective function. Thus, eitherlzeen missed when a standard local optimizer was used
constrained or unconstrained optimization problem negémehling et al., 1977).
to be solved, which in general will be nonlinear and po- We extend here the interval methodology to problems
tentially nonconvex. in process engineering in which the EIV approach to pa-
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rameter estimation is used. As examples, we consider theThis formulation of the parameter estimation problem
estimation of parameters in both steady- and unsteadytypically referred to as the error-in-variable (EIV) ap-
state models, including a vapor-liquid equilibrium (VLEproach. The key distinction of this approach from clas-
model, a CSTR model, and a reaction kinetics model. $ical least-squares (LS) regression is that in the EIV ap-
each example, we demonstrate how a simple global optieach all variables are assumed to be subject to measure-
mization procedure based on interval analysis can be ugseeht errors, whereas in classical LS a distinction is made
to reliably and effectively determine the globally optimddetween dependent and independent variables, with the
parameter values, while simultaneously performing a datssumption that there are ho measurement errors in the
reconciliation. The method used involves the use of ardependent variables. Also note that, in solving the op-
interval-Newton technique combined with interval brandimization problem above, the results not only provide an
and bound. This method represents a deterministic &gtimate of the parameter vec#rbut also an estimate
proach to global optimization, and provides a mathemaif-the “true” value of the state variable vectarThus, in

ical and computational guarantee of global optimality imsing the EIV approach, there is the advantage that both
parameter estimation. parameter estimation and data reconciliation problems are

2 Error-in-Variable Approach being solved simultaneously.

It should first be noted that several good introductions In the problems considered hgre, thenode| equa-
to the problem of parameter estimation are available (eet}gﬂsg’lan b_le_:huse%to S%Ivt?[a:ig?]bi;ezlc?rlllygﬁcgf tht(iav" ?ta:eti n
Bard, 1974). More details concerning the formulation : a els. us, ysm: S ”do i 0 t?o Jecble unc %
é}g_q. (1), an unconstrained optimization problem can be

the error-in-variable approach are also available elsewh ; .
(e.g., Kim et al., 1990; Esposito and Floudas, 1998). €asily obtained. The unconstrained problem can be stated

Consider a model of the general functional form

f(0,z) = 0, where@ = (01,6s,...,0,)T is an un- mi,n ¢(6,v:) )
known parameter vector for which the “best-fit” values o
are soughtz is the vector of state variables for the sy§yherev;, i = 1,...,m, refers to thex — p independent

tem to be modeled, anflis a vector ofp model fg”C' state variables not eliminated using the model equations,
tions. Suppose that measurements= (z;1, ..., zin)~ Of and¢(0, v;) is the objective function in Eq. (1) after the

state variables from = 1,...,m experiments are avail- ), yependent state variables have been eliminated by sub-
able. Whether in laboratory experiments or process opgfitution.

ations, it is impossible to measure the true values of state (g6 of the EIV approach in process systems engi-

variables since all measurements are more or less su ring has attracted considerable attention, both in terms
to error. Thus there is a vector of measurement erfspecific practical applications and in terms of improv-
e = 2;—2;, i =1,...,m, thatreflects the difference be;n the numerical methods used to solve the optimization
tween the measured valugsand the unknown “true” val- 5 5hjiem. Among the numerical issues that have been ad-
uesz;. Using amaximum likelihood e_sUmator_aan aSSUMiressed are convergence difficulties, and the increased di-
ing that the errore; present a Gaussian distribution with, e ngjonality of the problem, which unlike in classical LS,
zero mean and a known covariance mawixhat is con- s with the number of experiments. However, despite
stant overall experiments, then the objective in the parajf, fact that most EIV optimization problems are nonlin-
eter estimation problem is to minimiZe;;_, e; V™"ei. o5r and many may be nonconvex, relatively little atten-
Since the covariance matrix is usually determined on th@n, with the notable exception of Esposito and Floudas
basis of the standard deviations in measuring the indivﬁggg), has been given to the possible existence of multi-
ual state variables, rather than in replicate measuremeiiis;oca| minima, and thus the need for use of global opti-
of the whole system, it is often assumed that the errorSrﬁﬂlzation techniques. We will demonstrate here the use of
each experiment are independent and uncorrelated. 184§y 4| analysis for solving the global optimization prob-

means thaV is a diagonal matrix, and each diagonal elgsmg arising in parameter estimation by the EIV approach
mentv;; can be chosen to be the square of standard devia- gmnp y PP '

tion associated with the corresponding state variable; that
IS vj; = O'JZ With these assumptions, the optimizatiog Interval Analysis

roblem becomes . . . .
P Several good introductions to interval analysis are

e (B — zi)? available (e.g., Kearfott, 1996). Of particular interest here
0 Z Z o2 (1) s the interval Newton technique. Given a nonlinear equa-

=l g=1 J tion system with a finite number of real roots in some

subject to the model constraints initial interval, this technique provides the capability to
£(0,7)=0, i=1,....m. 2 find (or, more precisely, narrowly enclose) all the roots

of the system within the given initial interval. For the
It should be noted that, since the optimization is over bafihconstrained minimization of the objective function in
0 andz;, this is likely to be a nonlinear optimization probparameter estimation problems, a common approach is
lem even for models that are linear in the parameters. to seek stationary points, that is, to seek a solution of



g(0,v:) = V¢(0,¥;) = 0. For simplicity, the vector is set up and solved for a new interv¥), where

of independent variables in this set of equations will lig’(Y (¥)) is an interval extension of the Jacobiargg§),
denotedy = (8,v;)". The global minimum will be a andy(® is a point in the interior ofy *), usually taken
root of this nonlinear equation system, but there may R¢pe the midpoint. Comparison of the current interval
many other roots as well, representing local minima agd*) and theimageN*) provides a powerful existence
mgxima and saddle points. Thus, for this approach to §§d uniqueness test (Kearfott, 1996).Nf*) and'Y (*)
reliable, the capability to find all the roots gfy) = 0is  have a null intersection, then this is mathematical proof
needed, and this is provided by the interval Newton tegiiat there is no solution dy) =0inY® If N* isa

nique. In_practi_ce, th(_a interval Newton procedure can a'EFbper subset oY *), then this is mathematical proof that
be combined with an interval branch and bound techniqygere is auniquesolution ofg(y) = 0 in Y®). If nei-
so that rogts og(y% = 0 that cannot be the global mini-yher of these two conditions is true, then no conclusions
mumhnee In(.)t beI ouhﬁ. _ _ _can be made about the number of solutions in the cur-
TI e solution algorithm is applied to a se(?(l)J)ence of ifant interval. However, it is known (Kearfott, 1996) that
tervals, beginning Wlth some initial interval SPECI-  any solutions that do exist must lie in the intersection of
fied by the user. (In this section, upper case quantities &) andy(*). If this intersection is sufficiently smaller
intervals, and lower case quantities real numbers.) Tig\n the current interval, one can proceed by reapplying
initial interval can be chosen to be sufficiently large e interval Newton test to the intersection. Otherwise,
enclose all physically feasible behavior. It is assumeg intersection is bisected, and the resulting two intervals
here that the global optimum will occur at an interior stayyged to the sequence of intervals to be tested. These are
tlo(rg;ary minimum of¢(y) and not at the boundaries ofpe pasic ideas of an interval Newton/generalized bisec-
Y'™. Since the estimatap is derived based on a prod+ion (IN/GB) method. When properly implemented, this
uct of Gaussian distribution functions corresponding t@ethod provides a procedure that is mathematicaiy
each data point, only a stationary global minimum is regomputationally guaranteed to find the global minimum

sonable for statistical regression problems such as congifl (y), or, if desired (by turning off the objective range
ered here. Details of the basic solution algorithm used 3&t), to enclosall of its stationary points.

given by Gau and Stadtherr (2000). Only the key ideas

of the methodology, together with a discussion of recent Two recent improvements in the basic methodology
improvements, are presented here. have also been incorporated into the implementation of

For an intervalY *) in the sequence, the first step iAfN/GB used here. The first of these involves the method
the solution algorithm is theunction range testHere an used to solve Eq. (4) for the ima@é*). The standard
interval extensiorG (Y (®)) of the functiong(y) is cal- Method used is a preconditioned Gauss-Seidel approach
culated. An interval extension provides upper and low# Which an inverse midpoint preconditioning matrix is
bounds on the range of values that a function may ha&ed (this is either the inverse of the midpoint matrix of
in a given interval. It is often computed by substitutinfe interval Jacobia@” (Y *)) or the inverse of the point
the given interval into the function and then evaluatindfcobian matrix evaluated at the midpaynt)). How-
the function using interval arithmetic. The interval extergver, by using a different preconditioning scheme it may
sion so determined is often wider than the actual rangelsf possible to more tightly bound the solution set of Eq.
function values, but it always includes the actual range.(#) and thus obtain a smaller interval for the image, which
there is any component of the interval exteng@gy (*))  will in general improve the efficiency of the interval New-
that does not contain zero, then we may discard the ci@n step in reducing or eliminating intervals under consid-
rentintervalY (*), since the range of the function does neration. With this in mind, we have recently developed
include zero anywhere in this interval, and thus no sol{fsau and Stadtherr, 1999b) a new hybrid precondition-
tion of g(y) = 0 exists in this interval. We may then proing scheme which incorporates the standard inverse mid-
ceed to consider the next interval in the sequence, simgdnt scheme with a new approach in which precondition-
the current interval cannot contain a stationary point tfg rows are generated on a row by row basis in order to
#(y). Otherwise, ifo € G(Y*), then testing ofy (*) optimize the result of the interval Newton step. Details
continues. of this preconditioning procedure are beyond the scope of

The next step is thebjective range testThe inter- this paper and will be provided elsewhere. The second im-
val extensiorid(Y (%)), which contains the range ¢f{y) provementin the basic methodology involves the formula-
overY (¥, is computed. If the lower bound @(Y(*)) is tion of Eq. (4). Here the real poigt*) can be any pointin
greater than a known upper bound on the global minimdhe intervalY (%), but is most commonly chosen to be the
of ¢(y), thenY®) cannot contain the global minimummidpoint of Y(¥). We have developed a new procedure
and need not be further tested. Otherwise, testifgjt in which this real point is allowed to be varied in order

continues. to optimize the result of the interval Newton step. As in
The next step is the interval Newton test. Here iige case of the hy_bnd preco_ndltlonl_ng scheme, this can be
linear interval equation system done on a row-wise (coordinate-wise) basis. Again, de-

tails of this procedure are beyond the scope of this paper
G'(YP)YINW —yk)) = _g(y(k)) (4) and will be presented elsewhere. For problems with more



than a small number of independent variables, such asthedel equations (5) and (6) are used to elimin&tand
example problems considered below, which range in sige  Thus, the vector of independent state variables is
from 12 to 32 variables, use of these improvements in the= (z;,7')". In the optimization problem the indepen-
methodology is essential to obtain efficient computationdént variables ar@ (two variables) and;, i = 1,...,5
performance. (five vectors of two variables each), for a total of 12 in-
dependent variables. The initial intervals on the param-
4 Examples and ResuIFs ) o etersf, andf, were both taken afd, 2] (as in Esposito
4.1 Problem 1: Vapor-Liquid Equilibrium (VLE) Model ang Floudas, 1998). In order to give the initial inter-

Because of its importance in the design of separatigg| 5 statisticab9.7% probability of containing the true
systems, much attention has been given to modeling §igte variable values, the initial intervals on the state vari-
thermodynamics of phase equilibrium in fluid mixturegples were taken aé ; € [z1; — 301,71, + 301] and
Typically these models take the form of excess Gibbs epr o [T/ = 305, T! + 30u] fori = 1,...,5.

ergy or activity coefficient models or equation of state’ Using the interval methodology described above, the

models, with binary parameters in the models determin&gba"y optimal parameter values obtained wére—
by parameter estimation from experimental data. 1.9116 and , = 1.6083, with an objective value of

As an example, we consider here the EIV estimg- - . .
. - ; .32582. It should be noted that, while point approxima-
tion from binary VLE data of the two parameters in th ons are reported here, and in subsequent examples, for

Van Laar equation for liquid-phase activity coefficien e parameter estimation results, we have actually deter-

; . . h

(Tlhg'séor;rg?,'gn;shissiﬂsgnzeﬁ%fggf?f;gg) byTIﬂ;n bEi:rt1 ?fk‘ined verified enclosures of the corresponding stationary
mixture of interpest is the svstem methanc;l(l) and fée}_Sints. Each such enclosure is an extremely narrow in-

. ys! ; ‘ferval known to contain aniquestationary point, based
dlchlo_roethane(Z). Th_e experimental data consist of ﬂ}ﬂﬁ the interval-Newton uniqueness test described above.
:)é?ee;.lmerré?slu?ga(rgg;rgs)f()t;;?u;rgsfgswuzic)j Titalf dv y turning off the objective range test, thus allowing the
mole .fra?ction of com %r’lent lp and vapor r,nothe fracgechnique to enclosall the stationary points, not just the

. 1 P ' P global minimum, it was also ascertained that there is only
tion y; of component 1.

The model equations to describe this system are ‘%J%?a?tiﬁi:rr\]/:y point (the global minimumy in the specfied
pressed here as '

The CPU time required to perform the global pa-
p= o 1— o 5) rameter estimation was 807.9 seconds on a Sun Ultra
1Py (T) +72(1 = 21)p5(T) ®) 2/1300 workstation. This is roughly half the CPU time
Y218 (T) required by Esposito and Floudas (1998) to obtain these
Y1 = (6) results on an HP 9000 C160 machine (which, based on the

N (T 1-— T
. ’y1x1p1(. )+l . 7)pa(T) SPECfp95 benchmark, is a slightly faster machine than
where (using the data in Esposito and Floudas, 1998) the Sun Ultra 2/1300).

O(T) o 18.5875 3626.55 } 4.2 Problem 2: CSTR Model
= €ex . -
" ’ T —34.29 This example considers an adiabatic CSTR with an ir-
2997 17 reversible, first-order reaction
NT) = 16.1764 — ———*_
W) = exp 10700~ 22T ] .

and from the Van Laar equation ) . .
as discussed by Kim et al. (1990) and Esposito and

( A >—2] Floudas (1998). As discussed in more detail below, simu-

Y1 = exp T + B1—2 lated r_n_easurer_nents with noise added were created for five
L guantities: the inlet temperaturg (K), the outlet temper-
_2 atureT (K), the outlet concentrations of A and B, denoted
_ B 1 B1-um A andB (mol/L), respectively, and the inlet concentration
V2= XD B ( A ) ] ' Ao (MollL) of A.

) ] ) With the assumption that the feed is pure A, the model
Again following Esposito and Floudas (1998), temperggr the irreversible reaction system is
ture is scaled by a reference temperatiife= 323.15 K.
In these terms, the parameter vecto€ is- (RiTr, RLTT)T
and the state variable vectords= (z1,7", P,y,)" where
T' = T/T.. The standard deviations (using the data in _B
Esposito and Floudas, 1998) in the measurementasé — +kA=0 (8)
o = (0.005,3.09 x 107%,0.75,0.015) L. T

In order to formulate the EIV parameter estimation
problem as an unconstrained optimization problem, the

LAy~ A)~ kA =0 @)

—AH,
pPLp

LT, ~T)+ — 5 (k4) = 0 ©)



wherer = 100 s is the residence time of reactd&rd, = that this global minimum is the only stationary point in
-4180 J/mol is the heat of reactign= 1.0 g/L is the den- the specified initial interval.

sity of the reaction mixture, and, = 4.18 J/g K is the The CPU time required for the 22-variable global op-
heat capacity of the reaction mixture. The reaction raimization was 28.8 seconds on a Sun Ultra 2/1300 work-

constant can be expressed as station. As in the previous example, this time compares
very favorably with that reported by Esposito and Floudas

b = ¢ ox —@1 (1998), who tried three different problem formulations,
L= AP pr with a fastest solution time of 282.2 seconds on an HP

9000 C160, which, as noted above, is a slightly faster ma-
where the Arrhenius constantsand(); are the parame- chine than the Sun Ultra 2/1300. Thus, an order of mag-
ters to be determined. Next a parameter transformatiomigide improvement in computation time is observed.
done, similar to that used by Kim et al. (1990) and Espozi—3 Problem 3: Batch Reaction Kinetics Model

ito and Floudas (1998), resulting in . ) . .
This example considers the chemical conversion of

, 1 T. initially pure species A to species B in an isothermal batch
ki = n 01 exp {—92 (T - 1)} reactor
A5 B
with 1 a problem originally presented by Bard (1974). Exper-
6, = —exp ( & > imental measurements were made of the reaction time
€1 RT, (h), the system temperatute (K), and the fraction, of
—Q1 the initial amount of component A that remains at titne
s = RT This system is modeled by the the differential equa-
r tion
where T, is some reference temperature. The parame- dy —k
ter vector is thus the vectd = (6,,6,)", whose com- at Y

ponents are given by the above expressions. Ten sifMierek is a first-order rate constant. With the initial con-
lated data points foz = (Ao, A, B, To, T)" were taken ditiony = 1 at¢ = 0, the solution to this equation is

from Esposito and Floudas (1998). These simulated data

were created using; = 5000 s and Q; = 83600 y = exp(—kt) (10)
J/mol with added noise having a standard deviation
o = (0.01,0.01,0.01,1.0,1.0)T.

To formulate the EIV parameter estimation problem as 05
an unconstrained optimization problem, the model equa- k =61 exp <_T>
tions (7-9) are used to eliminaté,, A andT,. Thus,
the vector of independent state variables is (B,T)T. Here the Arrhenius constanfs and6, are the parame-

In the optimization problem the independent variables dg#s to be estimated using the EIV approach. The first
0 (two variables) and;, i = 1,...,10 (ten vectors of data set to be considered is taken from Table 5-2 (Sec-
two variables each), for a total of 22 independent vations 5-21 and 6-13) in Bard (1974), and consists of 15
ables. For the reference temperattie a value of 680 data points, five at each of three different temperatures
K, which is within the range of the measured temper§L00 K, 200 K and 300 K). Based on calculations done by
ture values (663-754 K), was chosen. The initial intervard (1974), the vector of standard deviations was set as
used for the parameters wefle € [24.165,141124.8] s o = (0.01,0.5,0.016624)T for the measurement vector
andf, € [—17.65,—5.88]; these were chosen to correz = (t,T,y)".

spond to the initial intervals used by Esposito and Floudas To obtain an unconstrained optimization problem, the
(1998), who use a differefft, (800 K) and a slightly dif- model equation (10) was used to elimingteThus, the
ferent parameter transformation. As done in the previotgctor of independent state variablesvis= (¢,7)". In
example, in order to give the initial interval a statisticdhe optimization problem the independent variablestare
99.7% probability of containing the true state variable valiwo variables) andr;, i = 1,...,15 (15 vectors of two
ues, the initial intervals on the state variables were takétriables each), for a total of 32 independent variables.
asB; € [B;—303, B;+303] andT; € [T;—305,T;+305] The initial intervals on the parameters were setate

\%ere the reaction rate constdntan be expressed as

fori=1,...,10. [1,10000] h—! andd, € [1,10000] K. The initial intervals
Using the interval methodology, the results obtainé the state variables were again set using plus and minus
for the globally optimal parameter values wete = three standard deviations; thatise [t; — 301,t; + 301]

532.476 s andf, = —14.627, corresponding to an ob-andT; € [T; — 302,T; + 30s|fori=1,...,15.

jective function value of 29.04731. In terms of the orig- The results of applying the interval method for global
inal parameters, the results are= 4229.0389 s~! and optimization are the parameter val#gs= 1171.817h~!

Q1 = 82695.5491 J/mol. By running the algorithm with andf, = 1027.954 K with the globally minimum objec-
the objective range test turned off, it was demonstrattaek value 0f16.55240. The CPU time required for the



32-variable global optimization problem was 1317.8 seasing the EIV approach in chemical process modeling.
onds on a Sun Ultra 2/1300 workstation. The method is based on interval analysis, in particular an

A second data set was also considered for this systénterval Newton/generalized bisection algorithm. The ap-
This data set involves seven data points, the first five pfoach provides a mathematical and computational guar-
which (at 100 K) are the same as in the first data set. Témgtee that the global optimum in the parameter estima-
sixth and seventh data points arelgt= 7> = 200 K tion problem is found. The technique used is general-
and areys = 0.554 attg = 0.07 h andy; = 0.669 at purpose and was applied here to a diverse set of appli-
t; = 0.16 h. Because of suspicions about the quality aftions. The computation times required are significantly
the data af” = 200 K, for this case the initial intervals onless than those reported for a convex underestimation ap-
t; andT},i = 1,...,7, were set using plus and minus fivgproach to the global optimization, but are still much larger
standard deviations. This is a 16-variable optimizatidghan what is required by the local optimization methods
problem. The globally optimal parameter values found foypically used in parameter estimation. Of course, such
this case aré, = 336.474 h—! andd, = 870.757 K, with local methods give no guarantee that the global optimum
an objective value 084.24904. The CPU time required will be found, and as demonstrated in the batch reac-
was 100.5 seconds on a Sun Ultra 2/1300 workstation.tion kinetics example, results that are only locally opti-

In order to investigate the possibility of other local, buhal could lead to extremely poor modeling results. Thus,
not global, minima for this problem, the problem was réhere is a choice between fast methods that may give the
solved with the objective range test turned off. This meamwsong answer, or slower methods that are guaranteed to
that the interval method will findll the stationary points give the correct answer. Ultimately, the modeler must
within the specified initial interval, not just the globainake a decision concerning how important it is to get the
minimum. When this was done, two stationary pointorrect answer.

were found, one the global minimum reported above, and ) )
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