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Abstract: Parameter estimation is a key problem in the development of process models, both steady- and unsteady-
state, and thus is an important issue in both process design and control. The error-in-variable approach differs distinctly
from the standard approach in that measurement errors in both dependent and independent system variables are taken
into account when formulating the objective function in the parameter estimation problem. It is not uncommon for
the objective function in nonlinear parameter estimation problems to have multiple local optima. However, the usual
methods used to solve these problems are local methods that offer no guarantee that the global optimum, and thus
the best set of model parameters, has been found. We demonstrate here a technique, based on interval analysis, that
can solve the error-in-variable parameter estimation problem with complete reliability, providing a mathematical and
computational guarantee that the global optimum is found. As examples, we consider the estimation of parameters
in both steady and unsteady-state models, including a vapor-liquid equilibrium (VLE) model, a CSTR model, and a
reaction kinetics model.
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1 Introduction
The mathematical modeling of physical phenomena is

a core aspect of the simulation and optimization tools used
for purposes of chemical process design and control. The
features and accuracy of the models used determine the
realism with which the actual process can be represented.
Use of appropriate models is helpful not only in improv-
ing process analysis and in optimizing process operating
conditions, but also in the design of the control strategies
for the process under consideration. A key problem, how-
ever, in the development of process models, either steady-
state or dynamic, is parameter estimation. That is, since
models of interest often include undetermined parameters,
a reliable technique is needed for estimating these param-
eters from laboratory or process data so that a “best-fit”
model is achieved.

In the standard approach to parameter estimation, a
distinction is made between dependent and independent
variables, with the assumption that there are no measure-
ment errors in the independent variables. In chemical pro-
cess modeling, however, parameters are often obtained
by fitting experimental observations to models in which
all variables are subject to error with a known or partly
known variance. Thus, there is no distinction between de-
pendent and independent variables. The error-in-variable
(EIV) approach differs distinctly from the standard ap-
proach in that measurement errors in both dependent and
independent system variables are taken into account when
formulating the objective function in the parameter es-
timation problem. The best estimate of the parameters
can then be obtained by minimizing the objective func-
tion subject to constraints representing the model equa-
tions. In many cases the constraints may be eliminated
by substitution into the objective function. Thus, either a
constrained or unconstrained optimization problem needs
to be solved, which in general will be nonlinear and po-
tentially nonconvex.

Since the optimization problem to be solved may be
nonconvex, there may exist multiple local optima. How-
ever, the standard methods used to solve these problems
are local methods that offer no guarantee that the global
optimum, and thus the best set of model parameters, has
been found. Hence, there is a need for global optimiza-
tion in nonlinear parameter estimation. One approach that
has been suggested is adaptive random search. Here the
search for the optimal parameter values has a random-
ized component, allowing the potential for discovering
multiple local optima. However, such stochastic meth-
ods cannot provide any mathematical guarantees that the
global optimum has been found. Another approach, sug-
gested by Esposito and Floudas (1998), is to reformulate
the problem in terms of convex underestimating functions
and then use a branch and bound procedure. This is a de-
terministic global optimization method that can provide a
theoretical guarantee of global optimality. One difficulty
with this approach is that in general it is necessary to per-
form problem reformulations and develop convex under-
estimators specific to each new application. Also, branch
and bound methods implemented in floating point arith-
metic may be vulnerable to rounding error problems, and
thus lose their theoretical guarantees. An alternative ap-
proach for global optimization in this context is the use
of interval analysis. Gau and Stadtherr (1999a, 2000)
have successfully applied interval analysis in the estima-
tion of parameters in the Wilson model for binary vapor-
liquid equilibrium when using a standard (not EIV) rel-
ative least-squares approach. Not only did they discover
the existence of multiple local minima in the relative least-
squares objective function, but in several problems they
also found new globally optimal parameter values that had
been missed when a standard local optimizer was used
(Gmehling et al., 1977).

We extend here the interval methodology to problems
in process engineering in which the EIV approach to pa-
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rameter estimation is used. As examples, we consider the
estimation of parameters in both steady- and unsteady-
state models, including a vapor-liquid equilibrium (VLE)
model, a CSTR model, and a reaction kinetics model. In
each example, we demonstrate how a simple global opti-
mization procedure based on interval analysis can be used
to reliably and effectively determine the globally optimal
parameter values, while simultaneously performing a data
reconciliation. The method used involves the use of an
interval-Newton technique combined with interval branch
and bound. This method represents a deterministic ap-
proach to global optimization, and provides a mathemat-
ical and computational guarantee of global optimality in
parameter estimation.

2 Error-in-Variable Approach
It should first be noted that several good introductions

to the problem of parameter estimation are available (e.g,
Bard, 1974). More details concerning the formulation of
the error-in-variable approach are also available elsewhere
(e.g., Kim et al., 1990; Esposito and Floudas, 1998).

Consider a model of the general functional form
f(�; z) = 0, where� = (�1; �2; : : : ; �q)

T is an un-
known parameter vector for which the “best-fit” values
are sought,z is the vector of state variables for the sys-
tem to be modeled, andf is a vector ofp model func-
tions. Suppose that measurementszi = (zi1; :::; zin)

T of
state variables fromi = 1; : : : ;m experiments are avail-
able. Whether in laboratory experiments or process oper-
ations, it is impossible to measure the true values of state
variables since all measurements are more or less subject
to error. Thus there is a vector of measurement errors
ei = ~zi�zi, i = 1; : : : ;m, that reflects the difference be-
tween the measured valueszi and the unknown “true” val-
ues~zi. Using a maximum likelihood estimator and assum-
ing that the errorsei present a Gaussian distribution with
zero mean and a known covariance matrixV that is con-
stant over all experiments, then the objective in the param-
eter estimation problem is to minimize

Pm
i=1 e

T
i V

�1ei.
Since the covariance matrix is usually determined on the
basis of the standard deviations in measuring the individ-
ual state variables, rather than in replicate measurements
of the whole system, it is often assumed that the errors in
each experiment are independent and uncorrelated. This
means thatV is a diagonal matrix, and each diagonal ele-
mentvjj can be chosen to be the square of standard devia-
tion associated with the corresponding state variable; that
is vjj = �2j . With these assumptions, the optimization
problem becomes

min
�;~zi

mX
i=1

nX
j=1

(~zij � zij)
2

�2j
(1)

subject to the model constraints

f(�; ~zi) = 0; i = 1; : : : ;m: (2)

It should be noted that, since the optimization is over both
� and~zi, this is likely to be a nonlinear optimization prob-
lem even for models that are linear in the parameters.

This formulation of the parameter estimation problem
is typically referred to as the error-in-variable (EIV) ap-
proach. The key distinction of this approach from clas-
sical least-squares (LS) regression is that in the EIV ap-
proach all variables are assumed to be subject to measure-
ment errors, whereas in classical LS a distinction is made
between dependent and independent variables, with the
assumption that there are no measurement errors in the
independent variables. Also note that, in solving the op-
timization problem above, the results not only provide an
estimate of the parameter vector�, but also an estimate
of the “true” value of the state variable vectorz. Thus, in
using the EIV approach, there is the advantage that both
parameter estimation and data reconciliation problems are
being solved simultaneously.

In the problems considered here, thep model equa-
tions can be used to solve algebraically forp of then state
variables. Thus, by substitution into the objective function
in Eq. (1), an unconstrained optimization problem can be
easily obtained. The unconstrained problem can be stated

min
�;~vi

�(�; ~vi) (3)

where~vi, i = 1; : : : ;m, refers to then � p independent
state variables not eliminated using the model equations,
and�(�; ~vi) is the objective function in Eq. (1) after the
p dependent state variables have been eliminated by sub-
stitution.

Use of the EIV approach in process systems engi-
neering has attracted considerable attention, both in terms
of specific practical applications and in terms of improv-
ing the numerical methods used to solve the optimization
problem. Among the numerical issues that have been ad-
dressed are convergence difficulties, and the increased di-
mensionality of the problem, which unlike in classical LS,
grows with the number of experiments. However, despite
the fact that most EIV optimization problems are nonlin-
ear, and many may be nonconvex, relatively little atten-
tion, with the notable exception of Esposito and Floudas
(1998), has been given to the possible existence of multi-
ple local minima, and thus the need for use of global opti-
mization techniques. We will demonstrate here the use of
interval analysis for solving the global optimization prob-
lems arising in parameter estimation by the EIV approach.

3 Interval Analysis

Several good introductions to interval analysis are
available (e.g., Kearfott, 1996). Of particular interest here
is the interval Newton technique. Given a nonlinear equa-
tion system with a finite number of real roots in some
initial interval, this technique provides the capability to
find (or, more precisely, narrowly enclose) all the roots
of the system within the given initial interval. For the
unconstrained minimization of the objective function in
parameter estimation problems, a common approach is
to seek stationary points, that is, to seek a solution of



g(�; ~vi) � r�(�; ~vi) = 0. For simplicity, the vector
of independent variables in this set of equations will be
denotedy = (�; ~vi)

T. The global minimum will be a
root of this nonlinear equation system, but there may be
many other roots as well, representing local minima and
maxima and saddle points. Thus, for this approach to be
reliable, the capability to find all the roots ofg(y) = 0 is
needed, and this is provided by the interval Newton tech-
nique. In practice, the interval Newton procedure can also
be combined with an interval branch and bound technique,
so that roots ofg(y) = 0 that cannot be the global mini-
mum need not be found.

The solution algorithm is applied to a sequence of in-
tervals, beginning with some initial intervalY(0) speci-
fied by the user. (In this section, upper case quantities are
intervals, and lower case quantities real numbers.) This
initial interval can be chosen to be sufficiently large to
enclose all physically feasible behavior. It is assumed
here that the global optimum will occur at an interior sta-
tionary minimum of�(y) and not at the boundaries of
Y(0). Since the estimator� is derived based on a prod-
uct of Gaussian distribution functions corresponding to
each data point, only a stationary global minimum is rea-
sonable for statistical regression problems such as consid-
ered here. Details of the basic solution algorithm used are
given by Gau and Stadtherr (2000). Only the key ideas
of the methodology, together with a discussion of recent
improvements, are presented here.

For an intervalY(k) in the sequence, the first step in
the solution algorithm is thefunction range test. Here an
interval extensionG(Y(k)) of the functiong(y) is cal-
culated. An interval extension provides upper and lower
bounds on the range of values that a function may have
in a given interval. It is often computed by substituting
the given interval into the function and then evaluating
the function using interval arithmetic. The interval exten-
sion so determined is often wider than the actual range of
function values, but it always includes the actual range. If
there is any component of the interval extensionG(Y(k))
that does not contain zero, then we may discard the cur-
rent intervalY(k), since the range of the function does not
include zero anywhere in this interval, and thus no solu-
tion of g(y) = 0 exists in this interval. We may then pro-
ceed to consider the next interval in the sequence, since
the current interval cannot contain a stationary point of
�(y). Otherwise, if0 2 G(Y(k)), then testing ofY(k)

continues.
The next step is theobjective range test. The inter-

val extension�(Y(k)), which contains the range of�(y)
overY(k), is computed. If the lower bound of�(Y(k)) is
greater than a known upper bound on the global minimum
of �(y), thenY(k) cannot contain the global minimum
and need not be further tested. Otherwise, testing ofY(k)

continues.
The next step is the interval Newton test. Here the

linear interval equation system

G0(Y(k))(N(k)
� y(k)) = �g(y(k)) (4)

is set up and solved for a new intervalN(k), where
G0(Y(k)) is an interval extension of the Jacobian ofg(y),
andy(k) is a point in the interior ofY(k), usually taken
to be the midpoint. Comparison of the current interval
Y(k) and theimageN(k) provides a powerful existence
and uniqueness test (Kearfott, 1996). IfN(k) andY(k)

have a null intersection, then this is mathematical proof
that there is no solution ofg(y) = 0 in Y(k). If N(k) is a
proper subset ofY(k), then this is mathematical proof that
there is auniquesolution ofg(y) = 0 in Y(k). If nei-
ther of these two conditions is true, then no conclusions
can be made about the number of solutions in the cur-
rent interval. However, it is known (Kearfott, 1996) that
any solutions that do exist must lie in the intersection of
N(k) andY(k). If this intersection is sufficiently smaller
than the current interval, one can proceed by reapplying
the interval Newton test to the intersection. Otherwise,
the intersection is bisected, and the resulting two intervals
added to the sequence of intervals to be tested. These are
the basic ideas of an interval Newton/generalized bisec-
tion (IN/GB) method. When properly implemented, this
method provides a procedure that is mathematicallyand
computationally guaranteed to find the global minimum
of �(y), or, if desired (by turning off the objective range
test), to encloseall of its stationary points.

Two recent improvements in the basic methodology
have also been incorporated into the implementation of
IN/GB used here. The first of these involves the method
used to solve Eq. (4) for the imageN(k). The standard
method used is a preconditioned Gauss-Seidel approach
in which an inverse midpoint preconditioning matrix is
used (this is either the inverse of the midpoint matrix of
the interval JacobianG0(Y(k)) or the inverse of the point
Jacobian matrix evaluated at the midpointy(k)). How-
ever, by using a different preconditioning scheme it may
be possible to more tightly bound the solution set of Eq.
(4) and thus obtain a smaller interval for the image, which
will in general improve the efficiency of the interval New-
ton step in reducing or eliminating intervals under consid-
eration. With this in mind, we have recently developed
(Gau and Stadtherr, 1999b) a new hybrid precondition-
ing scheme which incorporates the standard inverse mid-
point scheme with a new approach in which precondition-
ing rows are generated on a row by row basis in order to
optimize the result of the interval Newton step. Details
of this preconditioning procedure are beyond the scope of
this paper and will be provided elsewhere. The second im-
provement in the basic methodology involves the formula-
tion of Eq. (4). Here the real pointy(k) can be any point in
the intervalY(k), but is most commonly chosen to be the
midpoint ofY(k). We have developed a new procedure
in which this real point is allowed to be varied in order
to optimize the result of the interval Newton step. As in
the case of the hybrid preconditioning scheme, this can be
done on a row-wise (coordinate-wise) basis. Again, de-
tails of this procedure are beyond the scope of this paper
and will be presented elsewhere. For problems with more



than a small number of independent variables, such as the
example problems considered below, which range in size
from 12 to 32 variables, use of these improvements in the
methodology is essential to obtain efficient computational
performance.

4 Examples and Results
4.1 Problem 1: Vapor-Liquid Equilibrium (VLE) Model

Because of its importance in the design of separation
systems, much attention has been given to modeling the
thermodynamics of phase equilibrium in fluid mixtures.
Typically these models take the form of excess Gibbs en-
ergy or activity coefficient models or equation of state
models, with binary parameters in the models determined
by parameter estimation from experimental data.

As an example, we consider here the EIV estima-
tion from binary VLE data of the two parameters in the
Van Laar equation for liquid-phase activity coefficient.
This problem has also been considered by Kim et al.
(1990) and Esposito and Floudas (1998). The binary
mixture of interest is the system methanol(1) and 1,2-
dichloroethane(2). The experimental data consist of five
experimental data points for four measured state vari-
ables: pressureP (mmHg), temperatureT (K), liquid
mole fractionx1 of component 1, and vapor mole frac-
tion y1 of component 1.

The model equations to describe this system are ex-
pressed here as

P = 1x1p
0
1(T ) + 2(1� x1)p

0
2(T ) (5)

y1 =
1x1p

0
1(T )

1x1p01(T ) + 2(1� x1)p02(T )
(6)

where (using the data in Esposito and Floudas, 1998)

p01(T ) = exp

�
18:5875�

3626:55

T � 34:29

�

p02(T ) = exp

�
16:1764�

2927:17

T � 50:22

�
and from the Van Laar equation

1 = exp

"
A

RT

�
1 +

A

B

x1
1� x1

��2
#

2 = exp

"
B

RT

�
1 +

B

A

1� x1
x1

��2
#
:

Again following Esposito and Floudas (1998), tempera-
ture is scaled by a reference temperature,Tr = 323:15 K.
In these terms, the parameter vector is� = ( A

RTr
; B
RTr

)T

and the state variable vector isz = (x1; T
0; P; y1)

T where
T 0 = T=Tr: The standard deviations (using the data in
Esposito and Floudas, 1998) in the measurement ofz are
� = (0:005; 3:09� 10�4; 0:75; 0:015)T.

In order to formulate the EIV parameter estimation
problem as an unconstrained optimization problem, the

model equations (5) and (6) are used to eliminateP and
y1. Thus, the vector of independent state variables is
v = (x1; T

0)T. In the optimization problem the indepen-
dent variables are� (two variables) and~vi, i = 1; : : : ; 5
(five vectors of two variables each), for a total of 12 in-
dependent variables. The initial intervals on the param-
eters�1 and�2 were both taken as[1; 2] (as in Esposito
and Floudas, 1998). In order to give the initial inter-
val a statistical99:7% probability of containing the true
state variable values, the initial intervals on the state vari-
ables were taken as~x1;i 2 [x1;i � 3�1; x1;i + 3�1] and
~T 0
i 2 [T 0

i � 3�2; T
0
i + 3�2] for i = 1; : : : ; 5.

Using the interval methodology described above, the
globally optimal parameter values obtained were�1 =
1:9116 and �2 = 1:6083, with an objective value of
3:32582. It should be noted that, while point approxima-
tions are reported here, and in subsequent examples, for
the parameter estimation results, we have actually deter-
mined verified enclosures of the corresponding stationary
points. Each such enclosure is an extremely narrow in-
terval known to contain auniquestationary point, based
on the interval-Newton uniqueness test described above.
By turning off the objective range test, thus allowing the
technique to encloseall the stationary points, not just the
global minimum, it was also ascertained that there is only
one stationary point (the global minimum) in the specfied
initial interval.

The CPU time required to perform the global pa-
rameter estimation was 807.9 seconds on a Sun Ultra
2/1300 workstation. This is roughly half the CPU time
required by Esposito and Floudas (1998) to obtain these
results on an HP 9000 C160 machine (which, based on the
SPECfp95 benchmark, is a slightly faster machine than
the Sun Ultra 2/1300).

4.2 Problem 2: CSTR Model

This example considers an adiabatic CSTR with an ir-
reversible, first-order reaction

A
k1
�! B

as discussed by Kim et al. (1990) and Esposito and
Floudas (1998). As discussed in more detail below, simu-
lated measurements with noise added were created for five
quantities: the inlet temperatureT0 (K), the outlet temper-
atureT (K), the outlet concentrations of A and B, denoted
A andB (mol/L), respectively, and the inlet concentration
A0 (mol/L) of A.

With the assumption that the feed is pure A, the model
for the irreversible reaction system is

1

�
(A0 �A)� k1A = 0 (7)

�B

�
+ k1A = 0 (8)

1

�
(To � T ) +

��Hr

�Cp
(k1A) = 0 (9)



where� = 100 s is the residence time of reactor,�Hr =
-4180 J/mol is the heat of reaction,� = 1.0 g/L is the den-
sity of the reaction mixture, andCp = 4.18 J/g K is the
heat capacity of the reaction mixture. The reaction rate
constant can be expressed as

k1 = c1 exp

�
�Q1

RT

�

where the Arrhenius constantsc1 andQ1 are the parame-
ters to be determined. Next a parameter transformation is
done, similar to that used by Kim et al. (1990) and Espos-
ito and Floudas (1998), resulting in

k01 =
1

k1
= �1 exp

�
��2

�
Tr
T
� 1

��

with

�1 =
1

c1
exp

�
Q1

RTr

�

�2 =
�Q1

RTr

whereTr is some reference temperature. The parame-
ter vector is thus the vector� = (�1; �2)

T, whose com-
ponents are given by the above expressions. Ten simu-
lated data points forz = (A0; A;B; T0; T )

T were taken
from Esposito and Floudas (1998). These simulated data
were created usingc1 = 5000 s�1 and Q1 = 83600
J/mol with added noise having a standard deviation of
� = (0:01; 0:01; 0:01; 1:0; 1:0)T.

To formulate the EIV parameter estimation problem as
an unconstrained optimization problem, the model equa-
tions (7–9) are used to eliminateA0, A andT0. Thus,
the vector of independent state variables isv = (B; T )T.
In the optimization problem the independent variables are
� (two variables) and~vi, i = 1; : : : ; 10 (ten vectors of
two variables each), for a total of 22 independent vari-
ables. For the reference temperatureTr, a value of 680
K, which is within the range of the measured tempera-
ture values (663–754 K), was chosen. The initial intervals
used for the parameters were�1 2 [24:165; 141124:8] s
and�2 2 [�17:65;�5:88]; these were chosen to corre-
spond to the initial intervals used by Esposito and Floudas
(1998), who use a differentTr (800 K) and a slightly dif-
ferent parameter transformation. As done in the previous
example, in order to give the initial interval a statistical
99:7% probability of containing the true state variable val-
ues, the initial intervals on the state variables were taken
as ~Bi 2 [Bi�3�3; Bi+3�3] and ~Ti 2 [Ti�3�5; Ti+3�5]
for i = 1; : : : ; 10.

Using the interval methodology, the results obtained
for the globally optimal parameter values were�1 =
532:476 s and�2 = �14:627, corresponding to an ob-
jective function value of 29.04731. In terms of the orig-
inal parameters, the results arec1 = 4229:0389 s�1 and
Q1 = 82695:5491 J/mol. By running the algorithm with
the objective range test turned off, it was demonstrated

that this global minimum is the only stationary point in
the specified initial interval.

The CPU time required for the 22-variable global op-
timization was 28.8 seconds on a Sun Ultra 2/1300 work-
station. As in the previous example, this time compares
very favorably with that reported by Esposito and Floudas
(1998), who tried three different problem formulations,
with a fastest solution time of 282.2 seconds on an HP
9000 C160, which, as noted above, is a slightly faster ma-
chine than the Sun Ultra 2/1300. Thus, an order of mag-
nitude improvement in computation time is observed.

4.3 Problem 3: Batch Reaction Kinetics Model
This example considers the chemical conversion of

initially pure species A to species B in an isothermal batch
reactor

A
k
�! B

a problem originally presented by Bard (1974). Exper-
imental measurements were made of the reaction timet
(h), the system temperatureT (K), and the fractiony of
the initial amount of component A that remains at timet.

This system is modeled by the the differential equa-
tion

dy

dt
= �ky

wherek is a first-order rate constant. With the initial con-
dition y = 1 at t = 0, the solution to this equation is

y = exp(�kt) (10)

where the reaction rate constantk can be expressed as

k = �1 exp

�
�
�2
T

�
:

Here the Arrhenius constants�1 and�2 are the parame-
ters to be estimated using the EIV approach. The first
data set to be considered is taken from Table 5-2 (Sec-
tions 5-21 and 6-13) in Bard (1974), and consists of 15
data points, five at each of three different temperatures
(100 K, 200 K and 300 K). Based on calculations done by
Bard (1974), the vector of standard deviations was set as
� = (0:01; 0:5; 0:016624)T for the measurement vector
z = (t; T; y)T.

To obtain an unconstrained optimization problem, the
model equation (10) was used to eliminatey. Thus, the
vector of independent state variables isv = (t; T )T. In
the optimization problem the independent variables are�

(two variables) and~vi, i = 1; : : : ; 15 (15 vectors of two
variables each), for a total of 32 independent variables.
The initial intervals on the parameters were set at�1 2
[1; 10000] h�1 and�2 2 [1; 10000]K. The initial intervals
on the state variables were again set using plus and minus
three standard deviations; that is,~ti 2 [ti � 3�1; ti+3�1]

and ~Ti 2 [Ti � 3�2; Ti + 3�2] for i = 1; : : : ; 15.
The results of applying the interval method for global

optimization are the parameter values�1 = 1171:817 h�1

and�2 = 1027:954 K with the globally minimum objec-
tive value of16:55240. The CPU time required for the



32-variable global optimization problem was 1317.8 sec-
onds on a Sun Ultra 2/1300 workstation.

A second data set was also considered for this system.
This data set involves seven data points, the first five of
which (at 100 K) are the same as in the first data set. The
sixth and seventh data points are atT6 = T7 = 200 K
and arey6 = 0:554 at t6 = 0:07 h andy7 = 0:669 at
t7 = 0:16 h. Because of suspicions about the quality of
the data atT = 200 K, for this case the initial intervals on
~ti and ~Ti, i = 1; : : : ; 7, were set using plus and minus five
standard deviations. This is a 16-variable optimization
problem. The globally optimal parameter values found for
this case are�1 = 336:474 h�1 and�2 = 870:757K, with
an objective value of34:24904. The CPU time required
was 100.5 seconds on a Sun Ultra 2/1300 workstation.

In order to investigate the possibility of other local, but
not global, minima for this problem, the problem was re-
solved with the objective range test turned off. This means
that the interval method will findall the stationary points
within the specified initial interval, not just the global
minimum. When this was done, two stationary points
were found, one the global minimum reported above, and
the second a local minimum at�1 = 7575:339 h�1 and
�2 = 1494:218 K, with the objective value of36:46666.
Even though the objective function values at these two sta-
tionary points do not differ greatly, there are substantial
differences in predicted reaction ratesr = ky. For exam-
ple, with the globally optimal parameter values, the initial
reaction rate at 100 K is 0.0556 h�1. However, if the pa-
rameter values that are only locally optimal are used, the
predicted initial reaction rate at 100 K is 0.0025 h�1, over
an order of magnitude different from the predicted result
using the globally optimal parameters. Clearly, if a local
optimizer was used on this problem, and it converged to
the local, but not global, solution, and those results were
used for reactor design studies, the results could be dan-
gerously incorrect.

Since, as noted above, there is some suspicion about
the quality of this data set, the data reconciliation results
(i.e., the components of the measurement errors~zi � zi,
i = 1; : : : ; 7) are also of interest. The relatively large er-
rors that can be observed, based on either the globally or
locally optimal solution, for data pointsi = 6 andi = 7
(i.e., the data at 200 K), is a strong indication that these
two points are outliers, perhaps due to an instrumentation
failure, or other systematic error.

It is interesting to also consider the case in which these
two “bad” data points are replaced by “good” data, in this
case the first two data points at 200 K from the first data
set. Now, when the 16-variable global optimization is
done, the parameter values found are�1 = 856:410 h�1

and�2 = 961:505 K. These yield a predicted initial re-
action rate at 100 K of 0.0571 h�1, quite close to that
predicted using the globally optimal result from the “bad”
data set.

5 Concluding Remarks
We have demonstrated here a new methodology for

reliably solving nonlinear parameter estimation problems

using the EIV approach in chemical process modeling.
The method is based on interval analysis, in particular an
interval Newton/generalized bisection algorithm. The ap-
proach provides a mathematical and computational guar-
antee that the global optimum in the parameter estima-
tion problem is found. The technique used is general-
purpose and was applied here to a diverse set of appli-
cations. The computation times required are significantly
less than those reported for a convex underestimation ap-
proach to the global optimization, but are still much larger
than what is required by the local optimization methods
typically used in parameter estimation. Of course, such
local methods give no guarantee that the global optimum
will be found, and as demonstrated in the batch reac-
tion kinetics example, results that are only locally opti-
mal could lead to extremely poor modeling results. Thus,
there is a choice between fast methods that may give the
wrong answer, or slower methods that are guaranteed to
give the correct answer. Ultimately, the modeler must
make a decision concerning how important it is to get the
correct answer.
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