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Abstract

For the simulation and optimization of large scale chemical processes, the overall computing

time is often dominated by the time needed to solve a large sparse system of linear equations.

A parallel frontal solver can be used to signi�cantly reduce the wallclock time required to solve

these linear equation systems using parallel/vector supercomputers. This is done by exploiting

both multiprocessing and vector processing, using a multifrontal-type approach in which frontal

elimination is used for the partial factorization of each front. However, the algorithm is based on a

bordered block-diagonal matrix form and thus its performance depends on the extent to which the

matrix can be reordered to this form. Various approaches to achieving this ordering are discussed

here. The performance of these di�erent matrix reordering strategies for achieving the bordered

block-diagonal form is then considered. Results, including a visualization of the di�erent matrix

orderings on one problem, are presented for several large scale process engineering problems.



1 Introduction

The future success of the chemical process industries depends on the ability to design and

operate complex, highly interconnected plants that are pro�table and that meet quality, safety,

environmental and other standards. Towards this goal, process simulation and optimization tools

are increasingly being used industrially in every step of the design process and in subsequent

plant operations. However, the solution of realistic, industrial-scale process modeling problems for

dynamic simulation and optimization is computationally very intense, and may require the use of

high performance computing (HPC) technology to be done in a timely manner, especially if real-

time performance is required. For example, Zitney et al. (1995) described a dynamic simulation

problem at Bayer AG requiring 18 hours of CPU time on a CRAY C90 supercomputer when solved

with the standard implementation of SPEEDUP (Aspen Technology, Inc.). To better use HPC

technology in such process simulation problems requires the use of techniques that more e�ectively

take advantage of parallel and/or vector processing.

Since most currently used techniques for solving such problems were developed for use on

conventional serial machines, it is often necessary to rethink problem solving strategies in order

to take full advantage of HPC power. For example, by using a linear equation solving algorithm

that exploits vector processing and by addressing other implementation issues, Zitney et al. (1995)

reduced the time needed to solve the Bayer problem from 18 hours to 21 minutes. In this problem, as

in most other industrial-scale problems when an equation-oriented approach is used, the solution of

large, sparse systems of linear equations is the single most computationally intensive step, requiring

over 80% of the total simulation time in some cases (Zitney, 1992). Thus, any reduction in the linear

system solution time will result in a signi�cant reduction in the total simulation time. The matrices
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that arise, however, generally do not have any of the desirable structural or numerical properties,

such as numerical or structural symmetry, positive de�niteness, and diagonal dominance, often

associated with sparse matrices, and usually exploited in developing e�cient algorithms for high

performance computing. We consider here a parallel frontal solver (Mallya et al., 1997) which

can signi�cantly reduce the wallclock time required to solve the linear equation systems arising in

large scale process simulation problems, and concentrate on the matrix reordering issues that arise

when this algorithm is used. In the next section, we outline the key features of the algorithm.

In Section 3, we discuss the matrix reordering issues that arise in the application of the parallel

frontal method, and outline various approaches to doing the reordering. Results comparing the

performance of di�erent reorderings are then presented and discussed in Section 4. As an aid in

interpreting these results, di�erent matrix orderings are visualized for one example problem.

2 Numerical Algorithm

The numerical algorithm seeks to exploit both multiprocessing and vector processing in the

solution of process simulation problems by using a multilevel approach incorporating as many as

three levels of task granularity, ranging from �ne-grained to large-grained. Each level of granularity

is now considered in more detail.

2.1 Fine-Grained Parallelism

Consider the solution of a linear equation system Ax = b, where A is a large sparse n�n matrix

and x and b are column vectors of length n. While iterative methods can be used to solve such

systems, the reliability of such methods is questionable in the context of process simulation (Cofer

and Stadtherr, 1996). Thus we concentrate here on direct methods. Generally such methods can

2



be interpreted as an LU factorization scheme in which A is factored A = LU , where L is a lower

triangular matrix and U is an upper triangular matrix. Thus, Ax = (LU)x = L(Ux) = b, and the

system can be solved by a simple forward substitution to solve Ly = b for y, followed by a back

substitution to �nd the solution vector x from Ux = y.

To exploit �ne-grained parallelism we use frontal elimination. The frontal method is an LU

factorization technique that was originally developed to solve the banded matrices arising in �nite

element problems (Irons, 1970; Hood, 1976). The original motivation was, by limiting computa-

tional work to a relatively small frontal matrix, to be able to solve problems on machines with small

core memories. Using codes such as MA42 (successor to the well-known MA32) from the Harwell

Subroutine Library, this method is widely applied to �nite element problems on vector supercom-

puters, because, since the frontal matrix can be treated as dense, most of the computations involved

can be performed by using very e�cient vectorized dense matrix kernels. Stadtherr and Vegeais

(1985) extended this idea to the solution of process simulation problems on supercomputers, and

later (Vegeais and Stadtherr, 1990) demonstrated its potential on some small problems.

More recently, an implementation (FAMP) of the frontal method, developed at Cray Research,

Inc. and the University of Illinois speci�cally for use in the process simulation context, has been

described by Zitney and Stadtherr (1993), and Zitney et al. (1995). This solver has been incor-

porated in supercomputer versions of popular process simulation and optimization codes such as

ASPEN PLUS (Aspen Technology, Inc.), SPEEDUP (Aspen Technology, Inc.), and NOVA (Dy-

namic Optimization Technology Products, Inc.). Zitney (1992) and Zitney et al. (1994,1995) give

several examples, including the Bayer problem discussed above, showing how the use of the frontal

solver (as opposed to conventional solvers) has led to dramatic improvements in the performance

of ASPEN PLUS and SPEEDUP. Recent experiments at Rutherford Appleton Laboratory (Du�,
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1997) have shown that, on the Cray platform, FAMP is signi�cantly faster than the Harwell frontal

solver MA42. This has led to improvements in MA42, but FAMP remains faster on most problems.

2.2 Small-Grained Parallelism

In frontal elimination, the most expensive stage computationally involves outer-product up-

dates of the frontal matrix. When executed on a single vector processor, FAMP performs e�-

ciently because the outer-product update is readily vectorized, which as noted above is essentially

a �ne-grained, machine-level parallelism. An additional level of parallelism might be exploited

by microtasking the innermost loops that perform the outer-product update. Microtasking refers

to the multiprocessing of tasks with small granularity. Typically, these independent tasks can be

identi�ed quickly and exploited using compiler directives without signi�cant code changes. Spe-

ci�c directives in the source code may be used to control microtasking by designating the bounds

of a control structure in which each iteration of a DO loop is a process that can be executed

in parallel. Our experience (Mallya, 1996), however, has shown that, at least on the Cray C90

platform, the potential for exploiting small-grained parallelism by microtasking the outer-product

updates in FAMP is limited. The reason is that the parallel tasks are simply not large enough to

overcome the synchronization cost and the overhead associated with invoking multiple processors

on the C90. This indicates the need for exploiting a higher, coarse-grained level of parallelism to

make multiprocessing worthwhile for the solution of sparse linear systems in process simulation and

optimization.

2.3 Coarse-Grained Parallelism

The main de�ciency with the frontal code FAMP is that there is little opportunity for mul-
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titasking beyond that which can be achieved by microtasking the inner loops or by using higher

level BLAS in performing the outer product update (Mallya, 1996). We overcome this problem by

using a coarse-grained parallel approach in which frontal elimination is performed simultaneously

in multiple independent or loosely connected blocks. This can be interpreted as applying frontal

elimination to the diagonal blocks in a bordered block-diagonal matrix form as described below. It

can also be interpreted as a multifrontal approach (e.g., Davis and Du�, 1997; Zitney et al., 1996;

Mallya and Stadtherr, 1997) with large independent pivot blocks factored by frontal elimination.

Du� and Scott (1994) have applied this type of approach in solving �nite element problems and

referred to it as a \multiple fronts" (as opposed to multifrontal) approach.

Consider a matrix in singly-bordered block-diagonal form:

A =

2
666666666664

A11

A22

. . .

ANN

S1 S2 : : : SN

3
777777777775

(1)

where the diagonal blocks Aii are mi � ni and in general are rectangular with ni � mi. Because

of the unit-stream nature of the problem, process simulation matrices may occur naturally in this

form, as described in detail by Westerberg and Berna (1978). Each diagonal block Aii comprises

the model equations for a particular unit, and equations describing the connections between units,

together with design speci�cations, constitute the border (the Si). Of course, not all process

simulation codes may use this type of problem formulation, or order the matrix directly into this

form. Thus some matrix reordering scheme may need to be applied, as discussed further below.

The basic idea in the parallel frontal algorithm (PFAMP) is to use frontal elimination to partially
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factor each of the Aii, with each such task assigned to a separate processor. Since the Aii are

rectangular in general, it usually will not be possible to eliminate all the variables in the block, nor

perhaps, for numerical reasons, all the equations in the block. The equations and variables that

remain, together with the border equations, form a \reduced" or \interface" matrix that must then

be factored. It should be emphasized that while frontal elimination is used here to partially factor

the diagonal blocks, since the target machine is a vector processor, any factorization method can

be used in this context. For instance, if the target architecture involves parallel computing on a

network of scalar processors, then each processor might use Gaussian elimination with Markowitz-

style pivoting (as in the Harwell code MA48, for example).

2.3.1 The PFAMP algorithm

The basic PFAMP algorithm is outlined below. For complete details and further discussion, see

Mallya et al. (1997).

Algorithm PFAMP:

Begin parallel computation on P processors

For i = 1 : N , with each task i assigned to the next available processor:

1. Do symbolic analysis on the diagonal block Aii and the corresponding portion of the border

(Si) to obtain memory requirements and last occurrence information (for determining when

a column is fully summed) in preparation for frontal elimination.

2. Assemble the nonzero rows of Si into the frontal matrix.

3. Perform frontal elimination on Aii, beginning with the assembly of the �rst row of Aii into

the frontal matrix. The maximum number of variables that can be eliminated is mi, but the
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actual number of pivots done is pi � mi. The numerical pivoting scheme used is discussed

below.

4. Store the computed columns of L and rows of U . Store the rows and columns remaining in

the frontal matrix for assembly into the interface matrix.

End parallel computation

5. Assemble the interface matrix from the contributions of Step 4 and factor.

Note that for each block the result of Step 3 is

Ci C 0
i

Ri

R0
i

2
6664
LiUi U 0

i

L0
i Fi

3
7775

(2)

where Ri and Ci are index sets comprising the pi pivot rows and pi pivot columns, respectively. Ri

is a subset of the row index set of Aii. R
0
i contains row indices from Si (the nonzero rows) as well

as from any rows of Aii that could not be eliminated for numerical reasons. As they are computed

during Step 3, the computed columns of L and rows of U are saved in arrays local to each processor.

Once the partial factorization of Aii is complete, the computed block-column of L and block-row

of U are written into global arrays in Step 4 before that processor is made available to start the

factorization of another diagonal block. The remaining frontal matrix Fi is a contribution block

that is stored in central memory for eventual assembly into the interface matrix in Step 5.

The overall situation at the end of the parallel computation section is:
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C1 C2 : : : CN C 0

R1

R2

...

RN

R0

2
66666666666666664

L1U1 U 0
1

L2U2 U 0
2

. . .
...

LNUN U 0
N

L0
1

L0
2

: : : L0
N F

3
77777777777777775

(3)

where R0 =
NS
i=1

R0
i and C 0 =

NS
i=1

C 0
i. F is the interface matrix that can be assembled by the

summation of elements from the contribution blocks Fi. Note that, since a row index in R0 may

appear in more than one of the R0
i and a column index in C 0 may appear in more than one of the

C 0
i, some elements of F may get contributions from more than one of the Fi.

Once factorization of all diagonal blocks is complete, the interface matrix is factored. This is

carried out using the FAMP solver, with microtasking to exploit loop-level parallelism for the outer-

product update of the frontal matrix. However, as noted above, this tends to provide little speedup,

though there are some exceptions. Thus the factorization of the interface problem can in most cases

be regarded as essentially serial. This constitutes a computational bottleneck. Thus, it is critical

to keep the size of the interface problem small to achieve good speedups for the overall solution

process. It should also be noted that depending on the size and sparsity of the interface matrix,

some solver other than FAMP may in fact be more attractive for performing the factorization.

As the doubly-bordered block-diagonal form makes clear, once the interface matrix has been

factored and its solution obtained, the remaining triangular solves needed to obtain the overall

solution can be done in parallel using the same decomposition used to do the parallel frontal

elimination. During this process the solution to the interface problem is made globally available to
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each processor.

2.3.2 Numerical Pivoting

It is necessary to perform numerical pivoting to maintain stability during the elimination pro-

cess. The frontal code FAMP uses partial pivoting to provide numerical stability. However, with

the parallel frontal scheme of PFAMP, we need to ensure that the pivot row belongs to the diagonal

block Aii. We cannot pick a pivot row from the border Si because border rows are shared by more

than one diagonal block. Thus we use here a partial-threshold pivoting strategy. Partial pivoting

is carried out to �nd the largest element in the pivot column while limiting the search to the rows

that belong to the diagonal block Aii. This element is chosen as the pivot element if it satis�es a

threshold pivot tolerance criterion with respect to the largest element in the entire pivot column

(including the rows that belong to the diagonal block Aii and the border Si). If a pivot search

does not �nd an element that satis�es this partial-threshold criteria, then the elimination of that

variable is delayed and the pivot column becomes part of the interface problem. If there are more

than ni �mi such delayed pivots then pi < mi and a row or rows of the diagonal block will also

be made part of the interface problem. This has the e�ect of increasing the size of the interface

problem; however, our computational experiments indicate that the increase in size is very small

compared to n, the overall problem size.

3 Matrix Reordering

For the solution method described above to be most e�ective, the size of the interface problem

must be kept small. Furthermore, for load balancing reasons, it is desirable that the diagonal blocks

be nearly equal in size (and preferably that the number of them be a multiple of the number of
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processors to be used). For a large scale simulation or optimization problem, the natural unit-

stream structure, as expressed in Eq. (1), may well provide an interface problem of reasonable

size. This structure is used in two of the test problems, both occurring in problems solved using

NOVA. When the unit-stream structure is used, load balancing is likely to be a problem, as the

number of equations in di�erent unit models may vary widely. This might be handled in an ad hoc

fashion, by combining small units into larger diagonal blocks (with the advantage of reducing the

size of the border) or by breaking larger units into smaller diagonal blocks (with the disadvantage

of increasing the size of the border). Doing the latter also facilitates an equal distribution of the

workload across the processors by reducing the granularity of the tasks. It should be noted in this

context that in PFAMP task scheduling is done dynamically, with tasks assigned to processors as

the processors become available. This helps reduce load imbalance problems for problems with a

large number of diagonal blocks.

To address the issues of load balancing and of the size of the interface problem in a more

systematic fashion, and to handle the situation in which the application code does not provide

a bordered block-diagonal form directly in the �rst place, there is a need for matrix reordering

algorithms. For matrices that are structurally symmetric or nearly so, there are various approaches

that can be used to try to get an appropriate matrix reordering (e.g., Kernighan and Lin, 1970;

Leiserson and Lewis, 1989; O'Neil and Szyld, 1990; Karypis and Kumar, 1995; Choi and Szyld,

1996). These are generally based on solving (undirected) graph partitioning, bisection or min-

cut problems, often in the context of nested dissection applied to �nite element problems or in

the context of block preconditioners for iterative linear solvers. Such methods are applied to

a structurally asymmetric matrix A by applying them to the structure of the symmetric matrix

A+AT . This may provide satisfactory results if the degree of asymmetry is low. However, when the
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degree of asymmetry is very high, as in the case of process simulation and optimization problems,

the approach cannot be expected to always yield good results, as the number of additional nonzeros

in A + AT , indicating dependencies that are nonexistent in the problem, may be large, nearly as

large as the number of nonzeros indicating actual dependencies. To test one reordering method in

this category, we used the TPABLO code of Choi and Szyld (1996) on three of the test problems.

The TPABLO code was developed in the context of block preconditioning, and aims to �nd an

ordering with relatively few nonzeros with magnitude below a given threshold outside the diagonal

blocks. For our experiments no threshold was used, so in e�ect the TPABLO code was executing

the earlier PABLO algorithm (O'Neil and Szyld, 1990), which does not have provision for a thresh-

old. This algorithm is based on partitioning an undirected graph G into a number of subgraphs

corresponding to diagonal blocks in the reordered matrix. A vertex is added to a subgraph based

on criteria that consider the number of adjacent vertices in the subgraph (relative to the number

of adjacent vertices not in the subgraph) and the density of the corresponding diagonal block.

The goal is to produce a permutation that has relatively dense diagonal blocks with relatively few

nonzeros outside the diagonal blocks. When used in connection with the parallel frontal method,

the columns containing nonzeros outside the diagonal blocks become part of the interface problem.

Rows and other columns that cannot be eliminated for numerical reasons are assigned to the in-

terface problem as a result of the pivoting strategy used in the frontal elimination of the diagonal

blocks.

To deal with structurally asymmetric problems, one technique that can be used is the min-

net-cut (MNC) approach of Coon and Stadtherr (1995). This technique is designed speci�cally to

address the issues of load balancing and interface problem size. It is based on recursive bisection of a

directed bipartite graph model of the asymmetric matrix. Since a directed bipartite graph model is
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used, the algorithm can consider unsymmetric permutations of rows and columns. The kernel of the

algorithm is the bisection of a directed bipartite graph ~G into two subgraphs with a small connecting

set. This set is determined by choosing vertex pairs to move or swap across the partition boundary,

in order to reduce the size of the connecting set. This is done based on heuristics, with the aim

to minimize (approximately) the size of the connecting set. This partitioning proceeds recursively

to the resulting subgraphs until a stopping criterion is reached. The matrix form produced is a

block-tridiagonal structure in which the o�-diagonal blocks have relatively few nonzero columns;

this is equivalent to a special case of the bordered block-diagonal form. In applying this in the

context of the parallel frontal algorithm, the columns with nonzeros in the o�-diagonal blocks are

treated as belonging to the interface problem. Rows and other columns that cannot be eliminated

for numerical reasons are assigned to the interface problem as a result of the pivoting strategy used

in the frontal elimination of the diagonal blocks. This reordering was used on all the test problems.

Another reordering technique that produces a potentially attractive structure is the tear drop

(tear, drag, reorder, partition) algorithm given by Abbott et al. (1997). This makes use of the

block structure of the underlying process simulation problem (Stadtherr and Wood, 1984), and also

employs graph bisection concepts, applied to a directed acyclic graph representation of the matrix.

In this case a recursive bordered block-diagonal form results. Rows and columns in the borders are

immediately assigned to the interface problem in the parallel frontal method, along with any rows

and columns not eliminated for numerical reasons during factorization of the diagonal blocks. This

reordering is used on two of the test problems.

In the computational results presented below, we use seven test problems, each a matrix arising

in a large scale process engineering problem. For each matrix, two di�erent orderings are considered.

The results are used to demonstrate the potential of the parallel frontal solver, and to consider the
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e�ects of reordering. This is not intended to be a systematic comparison of reordering algorithms.

4 Results and Discussion

In this section, we present results for the performance of the PFAMP solver on seven process

engineering problems. More information about each problem is given below. We compare the

performance of PFAMP on multiple processors with its performance on one processor and with

the performance of the frontal solver FAMP on one processor. Of particular interest is the e�ect

of matrix reordering. The numerical experiments were performed on a CRAY C90 parallel/vector

supercomputer at Cray Research, Inc., in Eagan, Minnesota. The timing results presented represent

the total time to obtain a solution vector from one right-hand-side vector, including analysis,

factorization, and triangular solves. The time required for reordering is not included. A threshold

tolerance of t = 0:1 was used in PFAMP to maintain numerical stability, which was monitored

using the 2-norm of the residual b�Ax. FAMP uses partial pivoting.

In Table 1, each matrix is identi�ed by name and order (n). In addition, statistics are given for

the number of nonzeros (NZ), and for a measure of structural asymmetry (as). The asymmetry,

as, is the number o�-diagonal nonzeros aij (j 6= i) for which aji = 0 divided by the total number

of o�-diagonal nonzeros (as = 0 is a symmetric pattern, as = 1 is completely asymmetric). Also

given, for each ordering used, is information about the resulting bordered block-diagonal form,

namely the number of diagonal blocks (N), the order of the interface matrix (NI), and the number

of equations in the largest and smallest diagonal blocks, mmax
i and mmin

i , respectively.

The �rst two problems (Ethylene 1 and Ethylene 2 ) involve the application of NOVA to an

ethylene plant. Each problem involves a 
owsheet that consists of 43 units, including �ve distillation

columns. The problems di�er in the number of stages in the distillation columns. The linear systems
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arising in NOVA are naturally in bordered block-diagonal form, allowing the direct use of PFAMP

for the solution of these systems. To see the e�ect of a di�erent ordering, the MNC reordering was

also used.

We note �rst, that the single processor performance of PFAMP is better than that of FAMP.

This is due to the di�erence in the size of the largest frontal matrix associated with the frontal

elimination for each method. For solution with FAMP, the variables which have occurrences in the

border equations remain in the frontal matrix until the end. The size of the largest frontal matrix

increases for this reason, as does the number of wasted operations on zeros, thereby reducing the

overall performance. This problem does not arise for solution with PFAMP because when the

factorization of a diagonal block is complete, the remaining variables and equations in the front

are immediately written out as part of the interface problem and a new front is begun for the

next diagonal block. Thus, for these problems and most other problems tested, PFAMP is a more

e�cient serial solver than FAMP. This re
ects the advantages of the multifrontal-type approach

used by PFAMP, namely smaller and less sparse frontal matrices.

In the natural ordering for each problem, there are 43 diagonal blocks, of which �ve are large,

corresponding to the distillation units, with one of these blocks much larger (mi = 3337 on Ethy-

lene 1 ) than the others (1185 � mi � 1804 on Ethylene 1 ). In the computation, with �ve processors

being used, one processor ends up working on the largest block, while the remaining four processors

�nish the other large blocks and the several much smaller ones. The load is unbalanced with the

factorization of the largest block being the bottleneck. This, together with the solution of the

interface problem, results in a speedup (relative to PFAMP on one processor) of two or less on �ve

processors. Use of the MNC reordering provides a somewhat better load balance and a smaller

interface problem. This provides for improved processor utilization (e.g., speedup of 2.2 on four
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processors vs. speedup of 1.8 on 5 processors on the Ethylene 2 problem), though this is still not

particularly e�cient processor utilization. Given the irregular and highly asymmetric nature of

these problems this is not surprising, however.

The next three problems have been reordered into a bordered block-diagonal form using both

MNC and TPABLO. Two of these problems (Hydr1c and Icomp) occur in dynamic simulation

problems solved using SPEEDUP (Aspen Technology, Inc.). The Hydr1c problem involves a 7-

component hydrocarbon process with a de-propanizer and a de-butanizer. The Icomp problem

comes from a plantwide dynamic simulation of a plant that includes several interlinked distilla-

tion columns. The lhr 71 problem is derived from the prototype simulator SEQUEL (Zitney and

Stadtherr, 1988), and is based on a light hydrocarbon recovery plant. Neither of the application

codes produces directly a matrix in bordered block-diagonal form. For example, the occurrence

matrix for the Hydr1c problem is shown in Figure 1. Thus a reordering such as provided by MNC

or TPABLO is required.

When the TPABLO reordering is used, the size of the interface problem is extremely large, over

half the size of the original problem. Since the interface problem is a bottleneck in PFAMP, its

performance would be clearly be very ine�cient when this ordering is used, and actual numerical

runs were thus not attempted. It should be noted that TPABLO has a user adjustable parameter

for the maximum block size allowed. For each of the three matrices, the largest block found matched

the maximum allowable block size. When this parameter was adjusted, di�erent block partitions

were found, but in general the size of the interface problem remained extremely large. The di�culty

can be seen in the occurrence matrix shown in Figure 2 for the Hydr1c matrix after ordering with

TPABLO. Clearly diagonal blocks are being formed, but with a very large number of nonzeros

outside these blocks. The poor performance of this type of reordering method is not surprising
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since it is based on symmetric permutations of very highly asymmetric systems. This is apparently

not an appropriate application for TPABLO, which performs quite well in other contexts.

On the other hand, the MNC ordering, which does allow for asymmetric permutations, performs

relatively well on these problems, as seen in the MNC reordering of Hydr1c in Figure 3. Here there

are four diagonal blocks of fairly similar size and relatively few nonzeros outside these diagonal

blocks.

On two of the three problems, the PFAMP algorithm again outperforms FAMP even on a

single processor, for the reasons discussed above. This enhancement of performance can be quite

signi�cant, around a factor of two in the case of lhr 71 . MNC achieves its best reordering on the

Icomp problem, for which it �nds four diagonal blocks of nearly the same size (17168 � mi � 17393)

and the size of the interface problem is relatively small in comparison to n. The speedup observed

for PFAMP on this problem was about 2.5 on four processors. While this represents a substantial

savings in wallclock time, it still does not represent e�cient processor utilization. In this context, it

should be remembered that even a relatively small serial component in a computation can greatly

reduce the e�ciency of processor utilization [see Vegeais and Stadtherr (1992) for further discussion

of this point].

The �nal two problems arise from simulation problems solved using ASCEND (Piela et al.,

1991), and ordered using the tear drop approach (Abbott, 1996) and also using MNC. Problems

4cols.smms and 10cols.smms involve nine components with four and ten interlinked distillation

columns, respectively. With the tear drop reordering, the resulting moderate task granularity

helps spread the load over the four processors used, but the size of the interface problem tends

to be relatively large, 17-19% of n, as opposed to 1-3% when MNC is used. However, for MNC

the load balancing characteristics are less desirable, as in each case two of the four blocks are

16



signi�cantly smaller than the other the two. Thus, though both approaches provide signi�cant

reductions in wallclock time, neither achieved particularly good parallel e�ciency. MNC does have

user adjustable parameters that could possibly be modi�ed to provide a better balance between

the number of blocks and the size of the interface problem. It should be noted that reasonably

good performance was obtained with the tear drop reordering despite the relatively large size of the

interface problem because, for these systems, the use of small-grained parallelism within FAMP for

solving the interface problem provided a signi�cant speedup (about 1.7 on 10cols.smms). Overall

on 10cols.smms the use of PFAMP resulted in the reduction of the wallclock time by an order of

magnitude; however only a factor of about two of this was due to multiprocessing.

5 Concluding Remarks

The results presented above demonstrate that PFAMP can be an e�ective solver for use in pro-

cess simulation and optimization on parallel/vector supercomputers with a relatively small number

of processors. In addition to making better use of multiprocessing than the standard solver FAMP,

on most problems the single processor performance of PFAMP was better than that of FAMP. The

combination of these two e�ects led to �ve- to ten-fold performance improvements on some large

problems. Two keys to obtaining better parallel performance are improving the load balancing in

factoring the diagonal blocks and better parallelizing the solution of the interface problem.

Clearly the performance of PFAMP with regard to multiprocessing depends strongly on the

quality of the reordering into bordered block-diagonal form. In most cases considered above it is

likely that the reorderings used were far from optimal, and no systematic attempt was made to

�nd better reorderings. The graph partitioning problems underlying the reordering algorithms are

NP-complete. Thus, one can easily spend a substantial amount of computation time attempting to
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�nd improved orderings. Indeed, for the MNC reorderings of the larger problems, several hundred

seconds of CPU time was required for the ordering, which is much more than the solution time.

Thus, the cost of a good ordering must be weighed against the number of times a given simulation

or optimization problem is going to be solved. Typically, if the e�ort is made to develop a large

scale simulation or optimization model, then it is likely to be used a very large number of times,

especially if it is used in an operations environment. In this case, the investment made to �nd a

good reordering for PFAMP to exploit might have substantial long term paybacks.
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Table 1: Description of test matrices and summary of results. For each matrix, the order n, the
number of nonzeros NZ and the degree of asymmetry as are given (see text for complete de�nition
of as). For each reordering, the number of diagonal blocks N , the order of the interface problem
NI, and the orders of the largest and smallest diagonal blocks, mmax

i and mmin
i , respectively, are

given. Solution times for the FAMP and PFAMP solvers are on a CRAY C90.

FAMP PFAMP PFAMP

Name 1 proc. 1 proc. NP proc.

(Ordering) n NZ as N m
max

i
m
min

i
NI sec. sec. sec. (NP )

Ethylene 1 10673 80904 0.99

(Natural) 43 3337 1 708 0.697 0.550 0.267 (5)

(MNC) 4 3560 1637 181 0.682 0.360 (4)

Ethylene 2 10353 78004 0.99

(Natural) 43 3017 1 698 0.667 0.510 0.290 (5)

(MNC) 4 2930 2388 264 0.570 0.256 (4)

Hydr1c 5308 23752 0.99

(TPABLO) 90 500 2 3288

(MNC) 4 1449 1282 180 0.258 0.243 0.139 (4)

Icomp 69174 301465 0.99

(TPABLO) 199 8000 2 37335

(MNC) 4 17393 17168 1054 3.78 4.33 1.72 (4)

lhr 71 70304 1528092 0.99

(TPABLO) 733 8000 2 35510

(MNC) 10 9215 4063 1495 14.8 7.67 3.04 (4)

4cols.smms 11770 43668 0.99

(Tear drop) 24 1183 33 2210 1.14 1.13 0.680 (4)

(MNC) 4 4456 883 365 0.874 0.443 (4)

10cols.smms 29496 109588 0.99

(Tear drop) 66 1216 2 5143 11.3 3.69 1.81 (4)

(MNC) 4 10334 3810 293 1.53 0.905 (4)
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Figure Captions

Figure 1. Occurrence matrix for the Hydr1c problem as generated by the SPEEDUP simulator.

Figure 2. Occurrence matrix for the Hydr1c problem after ordering by TPABLO.

Figure 3. Occurrence matrix for the Hydr1c problem after ordering by MNC.
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Figure 1: Occurrence matrix for the Hydr1c problem as generated by the SPEEDUP simulator.
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Figure 2: Occurrence matrix for the Hydr1c problem after ordering by TPABLO.
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Figure 3: Occurrence matrix for the Hydr1c problem after ordering by MNC.
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