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Abstract

The determination of the existence and composition of homogeneous azeotropes is important

both from both theoretical and practical standpoints in the analysis of phase behavior and in the

synthesis and design of separation systems. We present here a new method for reliably locating any

and all homogeneous azeotropes for multicomponent mixtures. The method also veri�es the nonex-

istence of homogeneous azeotropes if none are present. The method is based on interval analysis,

in particular an interval Newton/generalized bisection algorithm that provides a mathematical and

computational guarantee that all azeotropes are located. The technique is general purpose and

can be applied in connection with any thermodynamic models. We illustrate the technique here in

several example problems using the Wilson, NRTL, and UNIQUAC activity coeÆcient models.



1 Introduction

The determination of the existence and composition of homogeneous azeotropes is important

both from theoretical and practical standpoints. An important test of thermodynamic models is

whether or not known azeotropes are predicted, and whether or not they are predicted accurately.

Model parameters can be �ne tuned by comparing the model predictions with known azeotropic

data. The determination of azeotropes strictly from experiment alone can be expensive. Predicting

azeotropes computationally is one method of reducing this cost, as the computational results can

be used to narrow the experimental search space. Of course, knowledge of azeotropes is important

since they often present limitations in separation operations which must be known. Furthermore,

this knowledge can be used in the construction of residue curve maps for the synthesis and design

of separation operations.

The problem of computing homogeneous azeotropes frommodels of phase behavior has attracted

signi�cant attention (e.g., Aristovich and Stepanova, 1970; Teja and Rowlinson, 1973; Wang and

Whiting, 1986; Chapman and Goodwin, 1993), and has been reviewed recently by Widagdo and

Seider (1996). The highly nonlinear form of the thermodynamic equations for phase equilibrium

makes the computation of azeotropes a particularly diÆcult problem. In order to be most useful, a

computational method for locating azeotropes must be completely reliable, capable of �nding (or,

more precisely, enclosing within a very narrow interval) all azeotropes when one or more exists, and

capable of verifying (within limits of machine precision) when none exist. Because of the diÆculties

in providing such guarantees, there has been considerable recent interest in developing more reliable

techniques for the computation of homogeneous azeotropes. For example, Fidkowski et al. (1993)

and Westerberg and Wahnscha�t (1996) have presented continuation methods for this purpose,
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and Okasinski and Doherty (1997) have used a similar approach for �nding reactive azeotropes.

While these methods are very reliable, a drawback is that they can not completely guarantee that

all azeotropes have been enclosed. More recently, Maranas et al. (1996) and Harding et al. (1997)

have used a powerful global optimization procedure; it is based on branch and bound with convex

underestimating functions that are continuously re�ned as the domain in which azeotropes may

occur is narrowed. This technique does provide a mathematical guarantee that all azeotropes

have been enclosed. Harding et al. (1997) have developed appropriate convex underestimating

functions for several speci�c thermodynamic models. While global optimization methods based

on branch and bound can provide mathematical guarantees, in principle this guarantee can be

lost computationally if the technique is implemented in oating point arithmetic, due to rounding

error. In practice, however, if variables are well scaled, as is the case here, this is unlikely to cause

problems.

We describe here a new approach for reliably enclosing all homogeneous azeotropes of mul-

ticomponent mixtures, and for verifying when none exist. The technique is based on interval

analysis, in particular the use of an interval Newton/generalized bisection algorithm. The method

is mathematically and computationally guaranteed to enclose any and all homogeneous azeotropes,

automatically dealing with rounding error, and requiring no initial starting point. It does not re-

quire the construction of model-speci�c convex underestimating functions, is general purpose, and

can be applied in connection with any thermodynamic model. In the work presented here, the

vapor phase is modeled as ideal, and the Wilson, NRTL, and UNIQUAC activity coeÆcient models

are used to describe the liquid phase.

In the next section, we present the mathematical formulation of the problem. In Section 3, we

describe the interval Newton/generalized bisection method used. Finally, in Section 4 we present
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the results for several test problems, and in Section 5 give concluding remarks concerning this

study.

2 Mathematical Formulation

At a homogeneous azeotrope, vapor and liquid phases of the same composition are in equilib-

rium. For a mixture of N components, the equilibrium condition can be written in terms of the

equality of fugacities,

f̂Vi = f̂Li ; 8i 2 C

where f̂Vi refers to the fugacity of component i in the vapor phase, f̂Li refers to the fugacity of

component i in the liquid solution, and C is the set of components in question. These solution

fugacities can in turn be written as

yi�̂
V
i P = xi

L
i f

L
i ; 8i 2 C

where P is the system pressure, �̂Vi is the mixture fugacity coeÆcient of component i in the vapor

phase, Li is the activity coeÆcient of component i in the liquid phase, fLi is the pure component

fugacity of component i in the liquid phase, yi is the mole fraction of component i in the vapor

phase, and xi is the mole fraction of component i in the liquid phase. Assuming ideal vapor behavior

and Poynting correction factors of one, this becomes

yiP = xi
L
i P

sat
i ; 8i 2 C

where P sat
i is the vapor pressure of component i. Using the homogeneous azeotropy condition

xi = yi, 8i 2 C, now yields

xi(P � Li P
sat
i ) = 0; 8i 2 C : (1)
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This has the solution xi = 0 or P = Li P
sat
i . It is convenient to rewrite the latter as lnP � lnP sat

i �

lnLi = 0, since the vapor pressure and activity coeÆcient relationships are typically expressed in

terms of their logarithms. Equation (1) can now be expressed as

xi (lnP � lnP sat
i (T )� lnLi (T )) = 0; 8i 2 C (2)

where we have emphasized the temperature dependence of P sat
i and Li . This equation, and the

constraint that the mole fractions sum to one

NX
i=1

xi � 1 = 0 (3)

constitute an (N + 1) � (N + 1) set of nonlinear equations that can be solved for the azeotropic

composition(s) and temperature(s). We refer to equations (2) and (3) as the simultaneous formu-

lation. This is the formulation used by Fidkowski et al. (1993), and is one of the formulations used

by Harding et al. (1997). Solving (2) and (3) we will simultaneously obtain all k-ary azeotropes

(k � N) in the system, as well as trivial roots representing the pure components. Clearly, this

equation system may have many roots, and a solution method guaranteed to enclose all the roots

is required.

If we assume that there is a set of k components Cnz for which xi 6= 0, then for this set of k

nonzero components, equation (2) can be rewritten

lnP � lnP sat
i (T )� lnLi (T ) = 0; 8i 2 Cnz: (4)

We refer to equations (3) and (4) as the sequential formulation. This is one of the formulations used

by Harding et al. (1997), and is similar to the approach used byWesterberg andWahnscha�t (1996).

Solving this (k+1)�(k+1) system, we will obtain all k-ary azeotropes for the chosen component set

Cnz. To �nd all the azeotropes in the original N component system, a sequence (unordered) of such
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systems must be solved, one for each combination of k components, k = 2; : : : ; N . These equation

systems may have multiple roots or no roots at all. A solution method is required that is guaranteed

to enclose all roots and that is also capable of verifying when none exist. Both the simultaneous

and sequential formulations are considered here, and their relative eÆciency compared.

To model the temperature dependence of P sat
i (T ) we use the Antoine equation

log10 P
sat
i = Ai �

Bi

T + Ci

:

This is a dimensional equation with P sat
i in mmHg and T in ÆC. Values used for the constants Ai,

Bi and Ci in the example problems below were taken from Gmehling et al. (1977-1990), and are

listed in Table A1 in the Appendix.

In many cases, the temperature dependence of P sat
i (T ) is signi�cantly stronger than the tem-

perature dependence of Li (T ), which arises only in the temperature dependence of the binary

interaction parameters in the activity coeÆcient model used. Thus, as done by Harding et al.

(1997), it is not unreasonable to evaluate Li (T ) at some reference temperature TREF and then

treat it as independent of temperature, instead of using a fully temperature dependent Li (T )

model. Assuming a good guess of TREF is made, this approach may provide good estimates for the

azeotropes in the fully temperature dependent model. However, there is no guarantee of this, and

it is possible that the number of azeotropes found in the TREF -based model will not be the same as

the number of azeotropes that exist in the fully temperature dependent model, even if a relatively

good guess of TREF has been made. This is demonstrated in Problem 5 below.

The method described here is model independent and can be applied in connection with any

models of phase behavior. For the �rst �ve example problems below, one of the activity coeÆcient

models used is the Wilson equation. In this model, the nonsymmetric binary interaction parameters
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�ij = (Vj=Vi) exp(�Aij=RT ) are based on energy parameters Aij , values of which are reported as

constants or as linear functions of temperature. For the problems below, we use the constants

reported in Gmehling et al. (1977-1990), as listed in Table A2. For the saturated liquid molar

volumes Vi, Gmehling et al. (1977-1990) use temperature independent constants. However, to be

consistent with Harding et al. (1997), we use a modi�ed Rackett equation (Yamada and Gunn,

1973),

Vi = VscriZ
(1�TRi)

2

7

cri ;

where TRi
is the reduced temperature of component i. The other quantities are Vscri , the scaling

volume for component i, and Zcri , the critical compressibility of component i for the Rackett

equation, and are given by

Vscri = V 0

i Z
�

�
1�T 0

Ri

�2

7

cri ;

and

Zcri = 0:29056 � 0:08775!i;

where V 0

i is the molar volume for component i at T 0

Ri
, a reference reduced temperature for which

the molar volume of component i is accurately known, and !i is the acentric factor for component

i. The values used for these three parameters are given in Table A3, and were taken from Reid et

al. (1987) and Lide (1995).

For the �rst �ve example problems below, a second activity coeÆcient model used is the NRTL

equation. In this model, the binary interaction parameters �ij = Aij=RT and Gij = exp(��ij�ij)

are based on constants �ij = �ji and energy parameters Aij , values of which are reported as

constants or functions of temperature. For the problems below, we use the constant Aij and �ij

values reported in Gmehling et al. (1977-1990), as listed in Table A4.
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In the last three example problems, the activity coeÆcient model used is the UNIQUAC equation

as modi�ed by Anderson and Prausnitz (1978), with coordination number z = 10. The binary

interaction parameters �ij = exp(�Aij=RT ) are computed from energy parameters Aij, values of

which are reported as constants or as functions of temperature. For the problems below, we use

the Aij constants, as well as the pure component ri, qi and q0i constants, reported in Gmehling et

al. (1977-1990) and Prausnitz et al. (1986), as listed in Tables A5 and A6.

Finally, it should be noted that because solutions of the equifugacity equations may not be stable

phases (the liquid may split), any solutions enclosed using either of the formulations described

above should next be checked for phase stability. This can be reliably done using either an interval

approach (Stadtherr et al., 1995) or a branch and bound global optimization approach (McDonald

and Floudas, 1995).

3 Solution Method

We apply here interval mathematics, in particular an interval Newton/generalized bisection

(IN/GB) technique, to �nd enclosures for all homogeneous azeotropes. Recent monographs which

introduce interval computations include those of Neumaier (1990), Hansen (1992) and Kearfott

(1996). The IN/GB algorithm used here has been summarized by Hua et al. (1998) and given in

more detail by Schnepper and Stadtherr (1996). Properly implemented, this technique provides

the power to �nd, with mathematical and computational certainty, enclosures of all solutions of

a system of nonlinear equations (Neumaier, 1990; Kearfott and Novoa, 1990), provided only that

initial upper and lower bounds are available for all variables. This is made possible through the use

of the existence and uniqueness test provided by the interval Newton method. Our implementation

of the IN/GB method for the homogeneous azeotrope problem is based on appropriately modi-
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�ed FORTRAN-77 routines from the packages INTBIS (Kearfott and Novoa, 1990) and INTLIB

(Kearfott et al., 1994).

In the past, interval techniques were not widely used. One reason for this was that the theoretical

guarantees on solution enclosures often came at a very large cost in additional time relative to faster,

but not guaranteed, local methods. However, with continuing improvements in methodology (e.g.,

Kearfott, 1996), and continuing advances in computation speed and parallel computing, both the

premium paid to obtain the guarantee, as well as the absolute execution time required, have shrunk

dramatically.

One method for improving the computational eÆciency of the interval approach is to develop

interval extensions that are computationally inexpensive and that more tightly enclose the range

of a function than the natural interval extension. For an arbitrary function f(x) over an interval

X = (X1;X2; :::;Xn)
T , with n real interval components Xi, the interval extension F(X) encloses

all values of f(x) for x 2 X; that is, it encloses the range of f(x) over X. Often, the natural interval

extension, that is the enclosure F(X) computed using interval arithmetic, is wider than the actual

range of f(x) overX. Because of the complexity of the functions to be solved here, the use of interval

arithmetic may lead to signi�cant overestimation of the true range of the functions. One simple way

to alleviate this diÆculty in solving the azeotrope problem is to focus on tightening the enclosure

when computing interval extensions of mole fraction weighted averages, such as �s =
Pn

i=1 xisi,

where the si are constants, since such expressions occur frequently in activity coeÆcient models.

The natural interval extension of �s will yield the true range of the expression in the space in

which all the mole fraction variables xi are independent. However, the range can be tightened by

considering the constraint that the mole fractions must sum to one. Thus we use a constrained

space interval extension of �s. One approach for doing this is simply to eliminate one of the mole
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fraction variables, say xn. Then an enclosure for the range of �s in the constrained space can be

determined by computing the natural interval extension of sn+
Pn�1

i=1 (si�sn)xi. However, as noted

by Hua et al. (1998) and Tessier (1997), this may not yield the sharpest possible bounds on �s in

the constrained space. For determining the exact (within roundout) bounds on �s in the constrained

space, Tessier (1997) and Hua et al. (1998) have presented a very simple method, and that method

was used in obtaining the results presented here. A comparison of computation times with and

without use of these constrained space interval extensions for mole fraction weighted averages is

given below using Problems 6{8.

4 Results

The computational results for several example problems are given below. In Problems 1{5,

both the Wilson and NRTL equations are used to model the liquid phase activity coeÆcients,

and in Problems 6{8 the UNIQUAC equation is used. For each problem solved we present the

azeotrope(s) found, as well as the CPU time required. The CPU times are given in seconds on a

Sun Ultra 1/140 workstation. Each problem was solved using a fully temperature dependent activity

coeÆcient model, and also solved using the approach in which the activity coeÆcients are evaluated

at some reference temperature TREF and then treated as temperature independent (e.g., Harding

et al., 1997). Unless otherwise noted, the reference temperatures used are those used by Harding

et al. (1997). Since these reference temperatures are very close approximations to the actual

azeotropic temperatures, the azeotropic compostions and temperatures found using the TREF -

based approach are not signi�cantly di�erent from the results of the fully temperature dependent

approach. Thus, in the tables of results, only the latter results are given, though computation times

for both approaches are provided. However, there are dangers in using the TREF -based approach,
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even when the reference temperature is quite close to the azeotropic temperature, as emphasized

in Problem 5.

The values of the energy parameters Aij used in each model were taken from Gmehling et al.

(1977-1990) and are listed in Tables A2, A4 and A6. For many binaries, Gmehling et al. (1977-

1990) present multiple data sets and thus a choice of parameter values. In some cases, as noted

below, our computed results do not match those of Harding et al. (1997). This is presumably due

to their use of a di�erent set of parameter values.

It should be noted that, while point approximations of the azeotropic compositions and tem-

perature are reported in the tables here, we have actually determined veri�ed enclosures of each

root. Each such enclosure is a very narrow interval known to contain a unique root, based on the

interval-Newton uniqueness test. The initial interval used for all mole fraction variables was [0, 1].

The initial interval used for temperature was [10, 100] ÆC, except for Problem 4, in which it is [100,

200] ÆC. These are the same initial temperature ranges used by Harding et al. (1997). Note that no

initial starting points are required. Unless noted otherwise, the ranges of all mole fraction weighted

averages were determined using the constrained space interval extension discussed above. Detailed

results for each problem are given in Tables 2{11 for the Wilson and NRTL equation problems

and in Tables 14{16 for the UNIQUAC equation problems. Table 17 gives a summary of the total

computation time required for each problem.

In addition to presenting the azeotropes and computation times, we also will consider in this

section: 1. the relative computational expense of the sequential and simultaneous formulations; 2.

the diÆculties that may arise in using the TREF -based approach for the temperature dependence of

the activity coeÆcients; and 3. the e�ect on computation time of using constrained space interval

extensions to tighten the evaluation of function ranges involving mole fraction weighted averages.
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4.1 Wilson and NRTL Equations

The �rst �ve example problems were solved using both the Wilson equation and the NRTL

equation as liquid phase activity coeÆcient models. These problems were previously solved by

Fidkowski et al. (1993) using the Wilson equation, and by Harding et al. (1997) using both the

Wilson and NRTL equations. Harding et al. (1997) used the reference temperature approach in

their calculations; Fidkowski et al. (1993) do not state whether or not they considered the binary

interaction parameters to be constants at a reference temperature or functions of temperature.

Before proceeding to the detailed results on individual problems, we �rst consider the relative

computational eÆciency of the sequential [equations (3) and (4)] and simultaneous [equations (2)

and (3)] problem formulations. For this comparison we used the Wilson equation with reference

temperature case for each of these �ve examples. Results of this comparison are summarized in

Table 1, which gives the total time required for each problem and formulation, as well as the

number of leaves that occur in the binary tree generated in the bisection process. The results

clearly indicate that use of the sequential formulation is much more eÆcient. This same conclusion

was also reached by Harding et al. (1997) when they performed a similar comparison using their

solution method. As suggested by Harding et al. (1997), one reason for this may be the increased

complexity introduced by the additional factor of xi in equation (2) in comparison to equation (4).

It is also likely that another reason for this is that, when the simultaneous formulation is used,

there are also trivial roots, corresponding to each pure component at its boiling temperature, that

are found using the interval approach, since it �nds enclosures of all roots of the equation system.

In obtaining all of the results presented below (Tables 2{17), the sequential approach was used.

However, in all cases, the same azeotropic compositions and temperatures were also found using

the simultaneous approach. In reporting the results for the sequential approach, the CPU time
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required to solve each problem in the sequence is reported, along with the total time.

4.1.1 Problem 1

The �rst example problem is a four component system consisting of methanol, benzene, i-

propanol, and n-propanol at 1 atmosphere. Table 2 shows the computational results for this system

when the Wilson equation is used, and Table 3 when the NRTL equation is used. In all cases, three

binary azeotropes were found, corresponding to each of the binary pairs that include benzene, and

no higher order azeotropes were located. These results correspond closely to experimental data

(Gmehling et al., 1994). While comparisons to experimental results are interesting, it should be

emphasized that such comparisons serve only as a measure of the accuracy of the model solved,

and not of the e�ectiveness of the solution method used. The results also are in agreement with

both Fidkowski et al. (1993) and Harding et al. (1997) for the Wilson equation cases. For the

NRTL equation, the computed methanol/benzene binary azeotrope di�ers signi�cantly from the

result obtained by Harding et al. (1997), presumably due to the use of a di�erent set of model

parameters. As might be expected, the use of a fully temperature dependent activity coeÆcient

model increased computation times, most dramatically in the case of the Wilson equation. In

general, the use of the NRTL equation was more expensive than the Wilson equation, especially

in the reference temperature case. The computation times for �nding the binary azeotropes in the

reference temperature cases are signi�cantly less than those reported by Harding et al. (1997),

even after adjusting for di�erence in the machines used. However, no meaningful comparisons

along these lines can be made, since Harding et al. (1997) implemented their solution technique

using GAMS, which adds signi�cant computational overhead. Furthermore, Harding et al. (1997)

do not report the computation time required to con�rm that there are no ternary or quaternary
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azeotropes, or binary azeotropes for three of the binary pairs. As can clearly be seen, the expense

of verifying the nonexistence of azeotropes comprises the bulk of computation time for solving this

problem.

4.1.2 Problem 2

The second problem is the binary system of benzene and hexauorobenzene at 0.2 atmospheres.

Table 4 shows the computational results for this system when the Wilson equation is used, and

Table 5 when the NRTL equation is used. Although only a two component system, it contains two

distinct azeotropes. The results shown here for the Wilson equation are in good agreement with

those of Fidkowski et al. (1993) and Harding et al. (1997). Neither group reported results for

the NRTL equation. This example demonstrates the ability of the interval method to easily �nd

multiple azeotropes when they exist for a given set of nonzero components.

4.1.3 Problem 3

The third example problem is the ternary system consisting of ethanol, methyl ethyl ketone, and

water at 1 atmosphere. Table 6 shows the computational results for this system when the Wilson

equation is used, and Table 7 when the NRTL equation is used. Experimentally, this system

contains one binary azeotrope for each pair of components and one ternary azeotrope (Gmehling et

al., 1994). The results for the binary azeotropes are fairly consistent with experimental data, while

the results for the ternary azeotrope are less accurate in this regard, indicating some shortcomings in

the models solved. Our computed results are consistent in all respects with the results of Fidkowski

et al. (1993) and Harding et al. (1997).
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4.1.4 Problem 4

The fourth problem is a ternary system of acetone, chloroform, and methanol at 15.8 atmo-

spheres. Tables 8 and 9 show the computational results for this system for the Wilson and NRTL

models, respectively. This ternary system was found to contain one azeotrope for each of the binary

pairs, and no ternary azeotropes. These results are consistent with those obtained by Harding et

al. (1997) using their branch and bound technique, and also to the results obtained by Fidkowski et

al. (1993) for the Wilson equation. In the temperature dependent case, this was the only example

problem in which use of the NRTL model was faster than use of the Wilson model.

4.1.5 Problem 5

The �fth problem is a quinary system consisting of acetone, chloroform, methanol, ethanol,

and benzene at 1 atmosphere. Tables 10 and 11 show the computational results for this example

for the Wilson and NRTL models, respectively. Experimentally, this quinary system is reported

to have 6 binary azeotropes, 3 ternary azeotropes, and 1 quaternary azeotrope (Gmehling et al.,

1994). In each set of computed results, all of these azeotropes were found except for a ternary

azeotrope involving chloroform, methanol, and benzene. Thus neither model appears to provide a

completely accurate picture of this system. The computed results given here again match closely

those of Fidkowski et al. (1993) and Harding et al. (1997). It is well worth noting again here that

the bulk of the computation time is spent in verifying the nonexistence of azeotropes.

In the results presented so far, there has been little signi�cant di�erence in azeotrope locations

obtained using the reference temperature approach and using the fully temperature dependent

approach, and thus only the latter were given in Tables 2{11. Essentially, the TREF values used

proved to be good approximations of the azeotropic temperatures. However, as noted above, even
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with a relatively good guess of the TREF value to use, there is no guarantee that that the number

of azeotropes found in the TREF -based model will be the same as the number of azeotropes that

exist in the fully temperature dependent model. This can be seen in the case of the quaternary

azeotrope (acetone/chloroform/methanol/benzene) in this problem. Table 12 shows the e�ect of

using di�erent values of TREF on the location of this azeotrope when the NRTL equation is used.

For this problem, the azeotrope in the fully temperature dependent model is found to be at 57.05 ÆC.

As expected, setting TREF = 57:05 ÆC and using the reference temperature approach to compute

the azeotrope yields the same result, as shown in the �rst row of Table 12. However, as TREF

is increased beyond 57.05 ÆC, the mole fraction of benzene decreases to zero, at which point no

quaternary azeotrope is found. This shows that, although the use of a reference temperature is

faster, it is possible to miss azeotropes when this approach is used. In this case, just a 20 ÆC

change in the reference temperature results in loss of an azeotrope. In attempting to use the

reference temperature approach, one can imagine using an algorithm in which an initial value of

TREF is chosen to compute an azeotrope, after which the computed azeotropic temperature is then

used as TREF and the azeotrope computed again, etc. However, such an approach will fail if at the

initial reference temperature the azeotrope sought does not exist. One cannot tell how close TREF

must be to the azeotrope in order to ensure that it will be found. Therefore, there is no guarantee

using the reference temperature approach that the azeotropes existing in the fully temperature

dependent model will be found.

4.2 UNIQUAC Equation

The �nal three example problems were solved using the UNIQUAC equation as the activity

coeÆcient model, with both the reference temperature and temperature dependent approaches.
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These problems were also considered by Harding et al. (1997), who use the reference temperature

approach.

Before proceeding to the detailed results on individual problems, we �rst consider the e�ect of

using constrained space interval extensions instead of natural interval extensions for determining the

range of the mole fraction weighted averages occurring the model. As noted above, this appears

to be a simple way to improve the computational eÆciency of the method used here. For this

comparison we used the reference temperature case for each of the three UNIQUAC examples.

Results of this comparison are summarized in Table 13, which gives the total time required for

each problem and interval extension, as well as the number of leaves that occur in the binary

tree generated in the bisection process. The results clearly indicate that use of the constrained

space interval extensions for mole fraction weighted averages results in a dramatic increase in

computational eÆciency. The results in all other tables are for the case in which the constrained

space interval extensions are used.

4.2.1 Problem 6

The �rst UNIQUAC problem is a ternary system consisting of benzene, ethanol, and water at

1 atmosphere. Table 14 shows the computational results for this example. Experimentally, this

ternary system is known to have one binary azeotrope for each binary pair, but no homogeneous

ternary azeotrope (Gmehling et al., 1994). The computed results for this system match the exper-

imental data well in all respects. However, our computed results di�er signi�cantly from those of

Harding et al. (1997), in that they compute a ternary azeotrope, while we do not. Presumably,

this is due to some di�erence in the model parameters used. As in the previous examples, use of

the temperature dependent approach is more expensive computationally than the reference tem-
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perature approach. As in the case of the NRTL equation, the increased expense is less dramatic

(about a factor of two) than in the problems using the Wilson equation.

4.2.2 Problem 7

This problem is a quaternary system consisting of ethanol, methylcyclopentane, benzene, and

hexane at 1 atmosphere. Table 15 shows the computational results for this problem. Experimen-

tally, this quaternary system is reported to have 5 binary azeotropes, and none of higher order

(Gmehling et al., 1994). The computed results for this system match these experimental results

quite well. Again, however, there are signi�cant deviations between our computed results and those

of Harding et al. (1997), as they compute azeotropes for all of the six cases in which we �nd none,

presumably due to di�erences in model parameters used.

4.2.3 Problem 8

The �nal example is a ternary system containing acetone, methyl acetate, and ethyl formate

at 1 atmosphere. Table 16 shows the computational results for this problem. Experimentally, this

ternary system is known to have one binary azeotrope (acetone/methyl acetate) and one ternary

azeotrope (Gmehling et al., 1994). The computed results for this system match the experimental

data closely in all respects. As in the previous problems using the UNIQUAC model, our results

and those of Harding et al. (1997) di�er, as they compute an azeotrope for the acetone/ethyl

formate pair and we do not. Again, this is presumably due to di�erences in model parameters

used.
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5 Concluding Remarks

We have described here a new method for reliably locating all homogeneous azeotropes in

multicomponent mixtures, and for verifying their nonexistence if none are present. The method

is based on interval analysis, in particular an interval Newton/generalized bisection algorithm,

which provides a mathematical and computational guarantee that all azeotropes are enclosed.

We applied the technique here to several problems in which the Wilson, NRTL, and UNIQUAC

activity coeÆcient models were used. However, the technique is general purpose and can be applied

in connection with any thermodynamic models.

Both a sequential and simultaneous formulation of the problem were considered, with the se-

quential proving to be the most eÆcient computationally (Table 1), as also noted by Harding et

al. (1997). The use of a constrained space interval extension for �nding exact (within roundout)

bounds on mole fraction weighted averages greatly improves the computational eÆciency of the

method, as shown is on Problems 6{8 (Table 13). We also considered two approaches for handling

the temperature dependence of the activity coeÆcients, one in which the activity coeÆcient is eval-

uated at a reference temperature and then treated as independent of temperature, and the other

in which a fully temperature dependent activity coeÆcient model is used. A summary of the total

computation times for each problem, given in Table 17, shows that use of the fully temperature

dependent model increases computation times moderately when the NRTL or UNIQUAC equations

are used, but dramatically when the Wilson equation is used. The strong e�ect on the Wilson equa-

tion problems is probably due to the increased complexity of the temperature dependence arising

from the use of the modi�ed Rackett equation. This additional layer of complexity does not occur

in the other models. The reason for use of the temperature dependent approach was demonstrated
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in Problem 5, in which it was seen how, even using a reference temperature that is within 20 ÆC of

the azeotropic temperature, the use of the reference temperature approach could lead to the failure

to �nd an azeotrope predicted by the fully temperature dependent model. Thus, if a reference

temperature approach is used, one cannot guarantee that all azeotropes have been located. The

ability of the solution method described here to easily handle the fully temperature dependent case

shows the exibility and generality of the approach.
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Table 1: Comparison of sequential and simultaneous problem formulations using the Wilson equa-
tion with reference temperatures.

CPU Time (s) Number of Leaves

Problem Sequential Simultaneous Sequential Simultaneous

1 0.71 3.72 371 1600

2 0.029 0.10 23 99

3 0.25 1.05 164 642

4 0.084 0.73 41 465

5 14.1 157.3 3991 39805
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Table 2: Problem 1: Methanol(M)/Benzene(B)/i-Propanol(I)/n-Propanol(N); 1 atm; Wilson Equa-
tion.

T -dependent TREF = 71:05ÆC

Components Mole Fraction (M B I N) T (ÆC) CPU Time (s) CPU Time (s)

MB 0.615 0.385 0.000 0.000 58.16 0.067 0.011

MI no azeotrope 0.043 0.006

MN no azeotrope 0.028 0.004

BI 0.000 0.590 0.410 0.000 71.98 0.054 0.009

BN 0.000 0.773 0.000 0.227 76.75 0.056 0.009

IN no azeotrope 0.049 0.009

MBI no azeotrope 0.66 0.077

MBN no azeotrope 0.50 0.047

MIN no azeotrope 0.44 0.032

BIN no azeotrope 0.73 0.077

MBIN no azeotrope 4.67 0.43

total 7.30 0.71
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Table 3: Problem 1: Methanol(M)/Benzene(B)/i-Propanol(I)/n-Propanol(N); 1 atm; NRTL Equa-
tion.

T -dependent TREF = 89:91ÆC

Components Mole Fraction (M B I N) T (ÆC) CPU Time (s) CPU Time (s)

MB 0.611 0.389 0.000 0.000 58.13 0.048 0.033

MI no azeotrope 0.037 0.031

MN no azeotrope 0.037 0.031

BI 0.000 0.588 0.412 0.000 71.83 0.045 0.034

BN 0.000 0.764 0.000 0.236 76.83 0.044 0.036

IN no azeotrope 0.064 0.047

MBI no azeotrope 0.73 0.46

MBN no azeotrope 0.65 0.43

MIN no azeotrope 1.05 0.82

BIN no azeotrope 1.18 0.76

MBIN no azeotrope 10.4 6.12

total 14.3 8.80
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Table 4: Problem 2: Benzene(B)/Hexauorobenzene(H); 0.2 atm; Wilson Equation.

T -dependent TREF = 36:00ÆC

Components Mole Fraction (B H) T (ÆC) CPU Time (s) CPU Time (s)

BH 0.955 0.045 35.50 0.145 0.029

0.034 0.966 37.65

total 0.145 0.029
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Table 5: Problem 2: Benzene(B)/Hexauorobenzene(H): 0.2 atm; NRTL Equation.

T -dependent TREF = 36:56ÆC

Components Mole Fraction (B H) T (ÆC) CPU Time (s) CPU Time (s)

BH 0.975 0.025 35.56 0.215 0.134

0.169 0.831 37.82

total 0.215 0.134
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Table 6: Problem 3: Ethanol(E)/Methyl Ethyl Ketone(M)/Water(W); 1.0 atm; Wilson equation.

T -dependent TREF = 73:65ÆC

Components Mole Fraction (E M W) T (ÆC) CPU Time (s) CPU Time (s)

EM 0.485 0.515 0.000 74.10 0.061 0.009

EW 0.910 0.000 0.090 78.17 0.058 0.010

MW 0.000 0.681 0.319 73.70 0.14 0.033

EMW 0.231 0.544 0.225 72.75 1.42 0.20

total 1.68 0.25
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Table 7: Problem 3: Ethanol(E)/Methyl Ethyl Ketone(M)/Water(W); 1.0 atm; NRTL equation.

T -dependent TREF = 73:39ÆC

Components Mole Fraction (E M W) T (ÆC) CPU Time (s) CPU Time (s)

EM 0.486 0.514 0.000 74.08 0.051 0.037

EW 0.952 0.000 0.048 78.28 0.085 0.055

MW 0.000 0.657 0.343 73.39 0.053 0.034

EMW 0.187 0.560 0.252 72.96 2.53 1.52

total 2.72 1.65
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Table 8: Problem 4: Acetone(A)/Chloroform(C)/Methanol(M); 15.8 atm; Wilson equation.

T -dependent TREF = 150:80ÆC

Components Mole Fraction (A C M) T (ÆC) CPU Time (s) CPU Time (s)

AC 0.324 0.676 0.000 181.46 0.25 0.008

AM 0.275 0.000 0.725 155.32 0.21 0.009

CM 0.000 0.392 0.608 151.44 0.17 0.010

ACM no azeotrope 3.09 0.057

total 3.72 0.084
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Table 9: Problem 4: Acetone(A)/Chloroform(C)/Methanol(M); 15.8 atm; NRTL equation.

T -dependent TREF = 150:40ÆC

Components Mole Fraction (A C M) T (ÆC) CPU Time (s) CPU Time (s)

AC 0.318 0.682 0.000 181.16 0.062 0.038

AM 0.286 0.000 0.714 155.37 0.039 0.031

CM 0.000 0.406 0.594 151.57 0.095 0.055

ACM no azeotrope 2.59 1.49

total 2.79 1.61
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Table 10: Problem 5: Acetone(A)/Chloroform(C)/Methanol(M)/Ethanol(E)/Benzene(B); 1 atm
Wilson equation.

T -dependent TREF = 65:09ÆC

Components Mole Fraction (A C M E B) T (ÆC) CPU Time (s) CPU Time (s)

AC 0.365 0.635 0.000 0.000 0.000 65.27 0.068 0.008

AM 0.785 0.000 0.215 0.000 0.000 55.56 0.068 0.009

AE no azeotrope 0.041 0.004

AB no azeotrope 0.042 0.005

CM 0.000 0.659 0.341 0.000 0.000 53.52 0.088 0.012

CE 0.000 0.862 0.000 0.138 0.000 59.41 0.076 0.010

CB no azeotrope 0.038 0.004

ME no azeotrope 0.048 0.006

MB 0.000 0.000 0.615 0.000 0.385 58.16 0.072 0.012

EB 0.000 0.000 0.000 0.450 0.550 67.87 0.069 0.010

ACM 0.341 0.212 0.447 0.000 0.000 57.56 1.08 0.082

ACE 0.358 0.451 0.000 0.191 0.000 63.80 0.97 0.091

ACB no azeotrope 0.59 0.037

AME no azeotrope 0.60 0.037

AMB no azeotrope 1.30 0.18

AEB no azeotrope 0.83 0.082

CME no azeotrope 0.87 0.077

CMB no azeotrope 0.95 0.078

CEB no azeotrope 0.89 0.071

MEB no azeotrope 0.87 0.093

ACME no azeotrope 6.82 0.68

ACMB 0.251 0.154 0.477 0.000 0.117 57.48 12.6 2.12

ACEB no azeotrope 9.95 1.16

AMEB no azeotrope 7.12 0.87

CMEB no azeotrope 8.17 1.12

ACMEB no azeotrope 51.5 7.28

total 105.7 14.1
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Table 11: Problem 5: Acetone(A)/Chloroform(C)/Methanol(M)/Ethanol(E)/Benzene(B); 1 atm;
NRTL equation.

T -dependent TREF = 67:79ÆC

Components Mole Fraction (A C M E B) T (ÆC) CPU Time (s) CPU Time (s)

AC 0.361 0.639 0.000 0.000 0.000 65.26 0.059 0.038

AM 0.784 0.000 0.216 0.000 0.000 55.56 0.038 0.025

AE no azeotrope 0.039 0.028

AB no azeotrope 0.036 0.026

CM 0.000 0.656 0.344 0.000 0.000 53.29 0.10 0.045

CE 0.000 0.847 0.000 0.153 0.000 59.26 0.060 0.034

CB no azeotrope 0.040 0.028

ME no azeotrope 0.037 0.027

MB 0.000 0.000 0.611 0.000 0.389 58.13 0.049 0.029

EB 0.000 0.000 0.000 0.447 0.553 67.79 0.046 0.029

ACM 0.377 0.202 0.421 0.000 0.000 57.07 2.23 1.07

ACE 0.360 0.445 0.000 0.195 0.000 63.63 1.68 0.95

ACB no azeotrope 1.20 0.72

AME no azeotrope 0.58 0.38

AMB no azeotrope 2.02 1.05

AEB no azeotrope 1.33 0.72

CME no azeotrope 1.31 0.57

CMB no azeotrope 2.14 0.87

CEB no azeotrope 1.24 0.61

MEB no azeotrope 0.91 0.47

ACME no azeotrope 19.7 9.05

ACMB 0.357 0.166 0.427 0.000 0.050 57.05 98.9 52.2

ACEB no azeotrope 40.8 21.1

AMEB no azeotrope 16.5 8.33

CMEB no azeotrope 28.2 10.9

ACMEB no azeotrope 389.5 163.7

total 608.7 273.0
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Table 12: Problem 5: E�ect of TREF value used in �nding the Ace-
tone(A)/Chloroform(C)/Methanol(M)/Benzene(B) azeotrope, using NRTL equation. See
text for discussion.

TREF (
ÆC) Mole Fraction (A C M B) T

57.05 0.357 0.166 0.427 0.050 57.05

67.79 0.373 0.183 0.420 0.024 57.12

72.75 0.380 0.191 0.417 0.011 57.14

77.75 no azeotrope

87.75 no azeotrope

107.75 no azeotrope
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Table 13: E�ect of using constrained space interval extensions instead of natural interval extensions
to determine ranges of mole fraction weighted averages in using the UNIQUAC equation with
reference temperature.

CPU Time (s) Number of Leaves

Problem Constrained Space Natural Constrained Space Natural

6 0.73 4.23 373 4023

7 37.5 579.0 10210 294752

8 1.81 40.7 692 32896
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Table 14: Problem 6: Benzene(B)/Ethanol(E)/Water(W); 1.0 atm; UNIQUAC equation.

T -dependent TREF = 60:00ÆC

Components Mole Fraction (B E W) T (ÆC) CPU Time (s) CPU Time (s)

BE 0.552 0.448 0.000 67.66 0.036 0.023

BW 0.572 0.000 0.428 61.98 0.037 0.022

EW 0.000 0.886 0.115 78.11 0.041 0.029

BEW no azeotrope 1.21 0.66

total 1.32 0.73
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Table 15: Problem 7: Ethanol(E)/Methylcyclopentane(M)/Benzene(B)/Hexane(H); 1 atm; UNI-
QUAC Equation.

T -dependent TREF = 60:00ÆC

Components Mole Fraction (E M B H) T (ÆC) CPU Time (s) CPU Time (s)

EM 0.355 0.645 0.000 0.000 60.70 0.062 0.034

EB 0.446 0.000 0.554 0.000 67.82 0.051 0.023

EH 0.339 0.000 0.000 0.661 58.58 0.074 0.038

MB 0.000 0.902 0.098 0.000 71.72 0.076 0.041

MH no azeotrope 0.10 0.049

BH 0.000 0.000 0.077 0.923 68.88 0.092 0.054

EMB no azeotrope 1.60 0.75

EMH no azeotrope 3.78 1.88

EBH no azeotrope 2.01 1.01

MBH no azeotrope 4.40 2.07

EMBH no azeotrope 64.9 31.6

total 77.1 37.5
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Table 16: Problem 8: Acetone(A)/Methyl Acetate(M)/Ethyl Formate(E); 1.0 atm; UNIQUAC
equation. (Harding et al. (1997) used TREF = 55ÆC on this problem.)

T -dependent TREF = 60:00ÆC

Components Mole Fraction (A M E) T (ÆC) CPU Time (s) CPU Time (s)

AM 0.661 0.339 0.000 55.55 0.081 0.054

AE no azeotrope 0.047 0.031

ME no azeotrope 0.017 0.013

AME 0.591 0.284 0.125 55.60 2.57 1.71

total 2.72 1.81
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Table 17: Summary of total CPU time required to solve each problem.

Total CPU Time (s)

Wilson Equation NRTL Equation UNIQUAC Equation

Problem TREF T -Dependent TREF T -Dependent TREF T -Dependent

1 0.71 7.30 8.80 14.3

2 0.029 0.145 0.134 0.215

3 0.25 1.68 1.65 2.72

4 0.084 3.72 1.61 2.79

5 14.1 105.7 273.0 608.7

6 0.73 1.32

7 37.5 77.1

8 1.81 2.72
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Appendix A. Problem Data

Table A1. Antoine Equation Parameters. Data is from Gmehling et al. (1977-1990).

Component i Ai Bi (
ÆC) Ci (

ÆC)

Acetone (Problems 4 and 5) 7.63130 1566.690 273.419

Acetone (Problem 8) 7.11714 1210.595 229.664

Benzene 6.87987 1196.760 219.161

Chloroform 7.44777 1488.990 264.915

Ethanol 8.11220 1592.864 226.184

Ethyl Formate 7.00902 1123.943 218.247

Hexauorobenzene 7.03295 1227.984 215.491

Hexane 6.91058 1189.640 226.280

Methanol (Problems 1 and 5) 8.08097 1582.271 239.726

Methanol (Problem 4) 7.97010 1521.230 233.970

Methyl Acetate 7.06524 1157.630 219.726

Methylcyclopentane 6.86640 1188.050 226.276

Methyl Ethyl Ketone 7.06356 1261.340 221.969

i-Propanol 8.87829 2010.330 252.636

n-Propanol 7.74416 1437.686 198.463

Water 8.07131 1730.630 233.426
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Table A2. Wilson Equation Parameters. Data is from Gmehling et al. (1977-1990).

Component 1 Component 2 A12 (cal/mol) A21 (cal/mol)

Acetone Benzene 543.9352 -182.5230

Acetone Chloroform 28.8819 -484.3856

Acetone Ethanol 180.4365 252.2864

Acetone Methanol -161.8813 583.1054

Benzene Hexauorobenzene -406.6544 922.6229

Benzene i-Propanol 392.7020 813.9198

Benzene n-Propanol 312.1615 996.2753

Chloroform Benzene -161.8065 49.6010

Chloroform Ethanol -315.6205 1434.1695

Chloroform Methanol -351.1964 1760.6741

Ethanol Benzene 1399.9279 207.3433

Ethanol Methyl Ethyl Ketone 694.0825 -149.7978

Ethanol Water 393.1971 926.2630

Methanol Benzene 1734.4181 183.0383

Methanol Ethanol -65.7022 143.6658

Methanol i-Propanol -38.4124 176.3185

Methanol n-Propanol 150.2057 -33.8819

Methyl Ethyl Ketone Water 6811.3433 1888.8509

i-Propanol n-Propanol 818.3291 -481.0590
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Table A3. Rackett Equation Parameters. Data is from Reid et al. (1987), except V 0

i and T 0

i values
for hexauorobenzene are from Lide (1995).

Component i !i V 0

i (cm
3/mol) T 0

i (K)

Acetone 0.304 73.52 293.0

Benzene 0.212 88.26 289.0

Chloroform 0.218 80.17 293.0

Ethanol 0.644 58.39 293.0

Hexauorobenzene 0.396 114.96 293.2

Methanol 0.556 40.51 293.0

Methyl Ethyl Ketone 0.320 89.57 293.0

i-Propanol 0.665 76.46 293.0

n-Propanol 0.665 74.75 293.0

Water 0.344 18.05 293.0
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Table A4. NRTL Equation Parameters. Data is from Gmehling et al. (1977-1990).

Component 1 Component 2 A12 (cal/mol) A21 (cal/mol) �12 = �21

Acetone Benzene -193.3405 569.9314 0.3007

Acetone Chloroform -643.2770 228.4574 0.3043

Acetone Ethanol 45.3706 375.3497 0.3006

Acetone Methanol 184.7013 222.6450 0.3084

Benzene Hexauorobenzene 1251.4578 -794.4003 0.2978

Benzene i-Propanol 728.6353 366.6632 0.2910

Benzene n-Propanol 874.2419 285.7774 0.2899

Chloroform Benzene 176.8791 -288.2136 0.3061

Chloroform Ethanol 1438.3602 -327.5518 0.3023

Chloroform Methanol 2736.8604 -1244.0315 0.0950

Ethanol Benzene 516.1410 1065.9086 0.4774

Ethanol Methyl Ethyl Ketone 64.4957 463.1931 0.3010

Ethanol Water -175.0164 1440.3479 0.2959

Methanol Benzene 730.0904 1175.4126 0.4743

Methanol Ethanol -25.9969 12.7341 0.3356

Methanol i-Propanol -137.8776 66.8301 0.3028

Methanol n-Propanol 24.9003 9.5349 0.3011

Methyl Ethyl Ketone Water 674.4614 1809.8868 0.3536

i-Propanol n-Propanol -673.7647 991.7833 0.2978
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Table A5. UNIQUAC Equation Unary Parameters. Data is from Gmehling et al. (1977-1990),
except for the q0i value for ethanol (problem 7) which is from Prausnitz et al. (1986).

Component i ri qi q0i

Acetone 2.5735 2.3360 2.3360

Benzene 3.1878 2.4000 2.4000

Ethanol (Problem 6) 2.1055 1.9720 1.9720

Ethanol (Problem 7) 2.1055 1.9720 0.9200

Ethyl Formate 2.8042 2.5760 2.5760

Hexane 4.4998 3.8560 3.8560

Methyl Acetate 2.8042 2.5760 2.5760

Methylcyclopentane 4.0456 3.2360 3.2360

Water 0.9200 1.4000 1.4000
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Table A6. UNIQUAC Equation Energy Parameters. Data is from Gmehling et al. (1977-1990).

Component 1 Component 2 A12 (cal/mol) A21 (cal/mol)

Acetone Ethyl Formate -130.2025 137.5744

Acetone Methyl Acetate 188.9707 -135.3474

Benzene Ethanol (Problem 6) 766.4564 -105.3291

Benzene Hexane -26.1184 125.3113

Benzene Water 1072.790 428.452

Ethanol Benzene(Problem 7) -276.02347 1882.2853

Ethanol Hexane -216.46679 2864.7023

Ethanol Methylcyclopentane -235.02733 2750.1595

Ethanol Water 9.5115 307.7309

Methyl Acetate Ethyl Formate -63.2528 65.5118

Methylcyclopentane Benzene 160.3455 -65.2945

Methylcyclopentane Hexane -221.7560 272.9120
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