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Abstract 

A new approach for modeling liquid-liquid equilibrium in electrolyte/mixed-solvent 

systems is presented, with particular focus on systems involving a dilute aqueous solution of an 

ionic liquid (IL).  This new approach involves an asymmetric framework in which different 

phases have different degrees of electrolyte dissociation, and are thus represented by different 

Gibbs free energy models.  As a first case, we consider the situation in which the electrolyte is 

either completely dissociated or completely paired (molecular), with its state depending on the 

dielectric constant of the mixed solvent and on the concentration of the salt in the phase in 

question.  The theory underlying this asymmetric framework is developed, and a rigorous 

approach for phase stability analysis is presented.  It is explained how to formulate and solve the 

parameter estimation problem for determining model parameters from binary data, and this 

process is demonstrated using examples.  An immediate goal is to use this approach to predict 

liquid-liquid equilibrium for ternary IL/solvent/water systems, using parameters obtained from 

binary and pure component data only.   
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1. Introduction 

Ionic liquids (ILs) are essentially nonvolatile at normal operating conditions.  Thus, ILs 

have been widely discussed in the literature as possible “green” replacements for volatile organic 

compounds (VOCs) used as solvents and in other applications, with a number of research groups 

focusing on the replacement of volatile extraction and separation solvents with ILs.  For 

example, ILs have been shown in some cases to be apt solvents for the selective extraction of 

alcohols from fermentation broths and for the recovery of amino acids from aqueous media.
1-4

  

The preliminary analysis and design of such separation processes require experimental 

multicomponent liquid-liquid equilibrium (LLE) data, or models capable of predicting the 

multicomponent LLE behavior.  Since experimental LLE observations of all multicomponent IL 

systems of interest are infeasible, due in part to the sheer number of ILs one can potentially tailor 

and synthesize,
5
 it is important that progress be made on predictive models for LLE in such 

systems.   

 The macroscopic modeling of LLE in multicomponent mixtures involving ILs has, to 

date, been done mostly through the correlation of multicomponent (ternary) LLE data with 

conventional excess Gibbs free energy models such as NRTL.
6-14

 Previously, we have studied
15

 

the capability of such models, specifically NRTL, UNIQUAC and electrolyte-NRTL (eNRTL),
16

 

to predict ternary LLE from parameters fit only to binary LLE data.  This showed that, when 

used in a symmetric framework (same model used to represent all phases), these models could 

predict some Type 1 and Type 2 ternary LLE systems reasonably well from parameters fit to 

binary data, but that there remained much potential for improvement.  Other more purely 

predictive approaches have also been investigated for systems containing ILs.  For example, 

COSMO-RS has been applied to predictions of binary LLE upper critical solution temperature 

(UCST) behavior and of a ternary LLE system, though not with satisfactory results.
17-19

  More 

recently, COSMO-RS has been modified for LLE (COSMO_LL), yielding better ternary 

predictions involving ILs, but still with much room for improvement.
20

  Another more purely 

predictive approach is the NRTL-SAC (NRTL Segment Activity Coefficient) model.
21

  While 

this also shows promise for ternary LLE systems involving ILs, there are still cases in which its 

predictions are not qualitatively correct.
22

  A very different approach is to not use 

thermodynamic models at all, but to use input/output models such as neural networks.  Such an 
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approach has been used
23

 to correlate data for ternary LLE with ILs, and to predict (interpolate) 

tie lines not used in the training set. 

ILs, like all electrolytes, ionize (dissociate) to varying degrees depending on the solution 

or phase in which they are dissolved.  The degree of dissociation depends on the ability of the 

phase’s components (mixed solvent) to screen the electrostatic forces of the ions.
24

  This implies 

that the molecular state of the electrolyte depends on its concentration and on the dielectric 

constant of the mixed solvent.  Thus, we introduce here a new framework for modeling LLE in 

which different phases are treated differently with regard to degree of dissociation.  Since this 

may result in different models being used for different phases, this is an asymmetric framework.  

Although there is evidence that ILs in solution at high concentration may aggregate into 

clusters
25,26

 and most likely only ionize partially,
27-29

 as a first approximation we assume here 

that the IL is either completely dissociated or completely paired (molecular), with the state of the 

IL depending on the dielectric constant of the mixed solvent and on the concentration of IL in the 

phase in question.  The assumption of complete dissociation is appropriate primarily in the case 

of an aqueous phase that is dilute in IL, as has been suggested in other studies.
30,31

  Systems 

containing dilute aqueous phases arise in several applications of interest.
1-4

   

In this first part of a two-part contribution, the asymmetric modeling framework is 

introduced, with different Gibbs free energy models used to represent different phases in 

modeling LLE in electrolyte (IL)/mixed-solvent systems.  Since a particular phase is assumed to 

be either completely dissociated or not dissociated at all, there are two types of phases, each 

represented by a different model.  While such an asymmetric approach has not been widely used, 

if at all, in modeling LLE, it is a common approach in modeling vapor-liquid equilibrium (VLE), 

when, for example, the liquid phase is modeled using an excess Gibbs free energy model and the 

vapor phase is modeled by the ideal gas law or other equation of state.  The approach described 

here appears to be the first instance of an asymmetric framework for modeling LLE in mixed-

salt/mixed-solvent systems.  In Part I of this work, we concentrate first on the development of the 

underlying theory, including the form of the equal activity conditions for phase equilibrium and 

an approach for rigorous phase stability analysis in this context.  We then show how to formulate 

and solve the parameter estimation problem for determining model parameters from binary data, 

and demonstrate this process using examples.  In Part II, we then proceed to study the extent to 

which this approach is able to predict ternary LLE, using parameters obtained from binary and 
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pure component data only.  This will be done by making comparisons to experimental data 

representing various types of ternary LLE behavior. 

 

2.  Model Formulation 

 Consider the general case of a mixture of multiple salts (ILs) and multiple solvents, all of 

which are liquids as pure components at the system temperature T and pressure P.  We formulate 

here a new asymmetric framework for modeling LLE in such systems.  The basic idea in this 

framework is that there are different degrees of ionic dissociation in each phase, and that this can 

be accounted for by using different Gibbs free energy models in different phases.  As discussed 

above, we will assume here, as a first approximation, that there are two types of phases:  1.  A 

type in which the electrolytes are completely dissociated, generally a dilute aqueous phase or one 

in which the mixed solvent has a high average dielectric constant;  2.  A type in which the 

electrolytes are completely associated as ion pairs (molecular), generally a liquid salt-rich phase 

or one in which the mixed solvent has a low average dielectric constant.  In this section, we 

develop Gibbs free energy expressions for each of these two types of phases.  For this purpose, 

the references states chosen are:  1.  For solvent species, pure liquid at the system T and P;  2.  

For the electrolyte species, pure dissociated liquid at the system T and P.  To distinguish Gibbs 

free energy expressions (and the corresponding chemical potentials and activity coefficients) of a 

phase in which electrolytes are completely dissociated (a “dissociated phase”), we will use a 

tilde; thus gɶ  will indicate the molar Gibbs free energy of a dissociated phase and g the molar 

Gibbs free energy of a phase in which all components are molecular species (a “molecular 

phase”). 

2.1  Dissociated Phase 

In a dissociated phase, the salt species are completely dissociated.  Assume a mixture of 

ni, i ∈S , moles of solvent species and ni, i ∈E , moles of electrolyte species, where S indicates 

the set of all solvent component indices and E represents the set of all electrolyte (salt) 

component indices.  Since there is complete dissociation of electrolytes, we have , ,i i in nν+ +=  

moles of cations and , ,i i in nν− −=  moles of anions for each salt i ∈E , where ν+,i and ν-,i are the 

stoichiometric coefficients on the ions of salt i in the dissociation reaction 
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, ,

, ,Salt (Cation ) (Anion ) , .i iz z

i i i i i iν ν+ −

+ −→ + ∈E  (1) 

Here z+,i and z−,i are the ionic valencies.  The total number of moles is then 

, ,( )i i ii i
N n n n+ −∈ ∈

= + +∑ ∑E S
.  The actual mole fractions of the species are indicated by 

/i iy n N= , i ∈S , , , /i iy n N+ += , i ∈E , and , , /i iy n N− −= , i ∈E .  Thus, 

, ,( ) 1i i ii i
y y y+ −∈ ∈

+ + =∑ ∑E S
.  Note that, for a ternary system containing a single IL, this 

means it is treated as involving four components, solvent, cosolvent, cation and anion.  The 

observable mole fractions are indicated by obs/i ix n N= , { , }i ∈ E S , where obs { , } ii
N n

∈
=∑ E S

.   

Conventionally, excess Gibbs free energy models for electrolytes have used an 

unsymmetric reference state consisting of pure liquid solvent components and infinitely-dilute 

salt components.  However, if a salt is an IL, it is liquid in its pure state, making it more 

appropriate to use a symmetric reference state in which all components are pure liquids.  This 

explains the choice of reference states given above.  For this case, and for any ionic valencies, 

the total molar Gibbs free energy gɶ  (relative to the actual number of moles N) is given
15

 by the 

Gibbs free energy of mixing function 

, ,M id E E

, ,

ln ln .
i i i i

i i

i ii i

y y
g g g g RT RT y y g

ν ν

ν ν
± ±

∈ ∈± ±

= = + = + +∑ ∑ɶ ɶ ɶ ɶ ɶ

E S

 (2) 

Here, id
gɶ  is the ideal molar Gibbs free energy of mixing, gΕ

ɶ  is the excess molar Gibbs free 

energy relative to the symmetric reference state used, R is the gas constant, and ± indicates a 

mean-ionic quantity.  For salt i, and any generic quantity iζ  associated with the salt, the 

corresponding mean-ionic quantity
24

 is given by , , 1/
, , ,( )i i i

i i i

ν ν νζ ζ ζ+ −

± + −= , with νi = ν+,i + ν−,i.  The 

actual mole fractions are related to the mean-ionic and observable mole fractions by   

, ,

,

,

,
i i

i

i

y
y i

ν

ν
+ ±

+

±

= ∈E , (3) 

, ,

,

,

,
i i

i

i

y
y i

ν

ν
− ±

−

±

= ∈E , (4) 

,

, ,
i i

i

i i i

i i

v x
y i

v x x

±
±

∈ ∈

= ∈
+∑ ∑

E S

E  
(5) 
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and 

,i
i

i i i

i i

x
y i

v x x
∈ ∈

= ∈
+∑ ∑

E S

S . 
(6) 

Note that in the case of an IL(1)/solvent(2)/co-solvent(3) system, with the IL a 1:1 electrolyte (ν1 

= 2 and ν±,1 = 1), eq 2 reduces to 

( )
E

,1 ,1 2 2 3 32 ln 2 ln ln
gg

y y y y y y
RT RT

± ±= + + +
ɶɶ

. (7) 

For the excess molar Gibbs free energy gΕ
ɶ  in eqs 2 and 7, any suitable electrolyte model based 

on complete dissociation may be considered.  We will use the electrolyte-NRTL (eNRTL) model 

of Chen and Song,
32

 as recently renormalized for the symmetric reference state by Simoni et 

al.
15,33

  The renormalized model is given in Appendix A. 

 From electrical conductivity data of inorganic electrolytes in alcohols, it has been 

suggested that significant ionic dissociation exists only in solvents with large dielectric 

constants.
34

  Furthermore, we would expect significant dissociation only in relatively dilute salt 

solutions.
31

  Thus, a phase is considered dissociated if the total observable salt mole fraction 

ii
x

∈∑ E
 is less than some specified cut-off value cx , and if the average mixed-solvent dielectric 

constant ε  is greater than some specified cut-off value cε .  For this purpose, we approximate the 

average mixed-solvent dielectric constant by
32

  

i i
i

i i i

i

M y

M y
ε ε

∈ ′ ′
′∈

  
  

=   
    

∑
∑S

S

, (8) 

where Mi is the molecular weight of solvent component i.  If either of these two criteria are not 

met, then the phase is treated as molecular.  For the dielectric constant cut-off, we have 

arbitrarily chosen a value of roughly one-half the dielectric constant of water at room 

temperature, i.e., cε = 40, and, for the salt mole fraction cut-off, we have arbitrarily chosen cx = 

0.10. 
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2.2  Molecular Phase 

In a molecular phase, the salt species are completely associated as ion pairs, and so can 

be treated as molecular species.  Now the actual and observed mole fractions are the same for all 

species, and will be denoted by xi, { , }i ∈ E S .  For this case, the total molar Gibbs free energy g 

is given by the usual Gibbs free energy of mixing function 

{ }

M id E Eln ,i i i i i i

i i i

g g g g x g RT x x g x g
∈ ∈ ∈

= = + + = + +∑ ∑ ∑� �

E E,S E

 (9) 

where ig�  is the molar Gibbs free energy of pure liquid associated salt i relative to its standard 

(dissociated) state.  To determine ig� , we use the Coulombic potential energy between a mole of 

ion pairs of generic valence.  Then we assume that the pairs of ions are brought from infinite 

separation (dissociation) to contact with a center-to-center distance of σi for a salt i.  This 

obviously requires the coarse assumption that the cations and anions are spheres of equal size.  

With these assumptions, ig�  is given by
35

  

2

, ,

0 B

,
8

i ii

i i

z z eg
i

RT k Tπε ε σ

+ −
≡ − ∈

�

E , (10) 

where kB is the Boltzmann constant, e is the elementary charge, εi is the dielectric constant of 

pure liquid salt i, and ε0 is the permittivity of free space.  For the excess molar Gibbs free energy 

gΕ
 in eq 9, any appropriate molecular model may be considered.  We will use the NRTL 

model,
36

 details of which are stated in Appendix A. 

 

3.  Phase Equilibrium Conditions 

In this section, we discuss the equipotential relationships for the asymmetric framework.  

These are necessary (but not sufficient) conditions for phase equilibrium at constant T and P, and 

are also used in the parameter estimation procedure described below.   

In a molecular phase, the chemical potential (partial molar Gibbs free energy) is given by 

ln( )i i i iRT xµ µ γ= +� , where 0iµ =�  for solvent species i ∈S  and i igµ =� �
 for electrolyte 

species i ∈E .  In both cases, the activity coefficient iγ is obtained from the molecular gΕ
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model used (NRTL).  In a dissociated phase, 0iµ =�  for all species.  Thus, for solvent species 

i ∈S , the chemical potential is given by ln( )i i iRT yµ γ= ɶɶ , and, for electrolyte species i ∈E , 

the definition of chemical potential, with gɶ  from eq 2, gives 

( )
, ,

, ,

 ln( )

j i

i i i i i

i n T P

Ng
RT y

n
µ ν ν γ

≠

± ±

 ∂
= = 

∂ 

ɶ
ɶɶ , (11) 

where iγɶ , i ∈S , and the mean ionic activity coefficient ,iγ ±
ɶ , i ∈E , are obtained from the 

electrolyte gΕ
ɶ  model used (eNRTL). 

 For a biphasic situation with one molecular phase, denoted by α, and one dissociated 

phase, denoted by β, the resulting equipotential conditions for phase equilibrium are  

2

, ,

, ,

B 0

ln( ) ln( ) , ,
8

ln( ) ln( ), .

i i

i i i i i i

i i

i i i i

z z e
y x i

k T

y x i

ν ν γ γ
π ε ε σ

γ γ

+ −(β) (β) (α) (α)
± ±

(β) (β) (α) (α)

−
= + ∈

= ∈

ɶ

ɶ

E

S

 (12) 

For ILs that are 1:1 electrolytes, this becomes, for a mixed-IL, mixed-solvent system, 

2

, ,

B 0

2ln(2 ) ln( )  , ,
8

ln( ) ln( ), .

i i i i

i i

i i i i

e
y x i

k T

y x i

γ γ
π ε ε σ

γ γ

(β) (β) (α) (α)

± ±

(β) (β) (α) (α)

−
= + ∈

= ∈

ɶ

ɶ

E

S

 (13) 

 

4.  Stability Analysis 

For LLE at constant T and P, the total Gibbs free energy must be at a global minimum 

with respect to the number of phases present and their amounts and composition.  The 

equipotential relationships are a necessary but not sufficient condition for this minimum.  To 

verify that a global minimum in the total Gibbs free energy has been found, global phase stability 

analysis is needed.  For this purpose, we use the tangent plane analysis originally formulated by 

Baker et al.
37

 and Michelsen
38

 for the case of a symmetric thermodynamic framework with no 

dissociation, and extend it to the case of an asymmetric framework with dissociation, as 

described above.  The basic idea in tangent plane analysis is to consider a test or “feed” phase 

and then to determine whether the Gibbs free energy of the system can be lowered by allowing 

this phase to split.  For our asymmetric framework, details of the analysis depend on whether the 
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test phase is molecular or dissociated, and on whether the new phase that appears in the split is 

molecular or dissociated.  We will begin by considering the case of a molecular test phase. 

4.1  Molecular Test Phase 

Consider a test phase described by the component mole number vector n0 = (n0i, i ∈ E, 

S) and corresponding mole fraction vector z = (zi, i ∈ E, S), with zi = n0i / N0 and 

0 0{ , } ii
N n

∈
=∑ E S

.  Assuming that cii
z x

∈
≥∑ E

 and/or c( )ε ε≤z , then this is a molecular phase.  

The total Gibbs free energy of the test phase is 0 0( )G G= n .  Now assume that there is a split of 

the test phase into:  1.  A molecular incipient phase containing an infinitesimal number of moles 

δ with an arbitrary composition (mole fraction) vector x consistent with a molecular phase.  This 

phase has a component mole number vector δx and total Gibbs free energy G(δx).  2.  A 

molecular residual phase now containing N0 – δ moles and mole number vector n0 – δx.  This 

phase has a total Gibbs free energy G(n0 – δx), which can be obtained from the first-order Taylor 

expansion 

{ } { }
0 0 0 0

0

( ) ( ) ( ) ( )
i i i

i ii

G
G G x G x

n
δ δ δ µ

∈ ∈

 ∂
− = + − = − 

∂ 
∑ ∑
E,S E,S

n x n n  (14) 

where µi0 = µi(z) is the chemical potential of species i evaluated at the feed phase composition.  

The change in total Gibbs free energy due to the phase split is then 

[ ]
{ }

{ } { } { }

0 0( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) ( )) .

i i

i

i i i i i i i

i i i

G G G G G x

x x x

δ δ δ δ µ

δ µ δ µ δ µ µ

∈

∈ ∈ ∈

∆ = + − − = −

 
= − = − 

  

∑

∑ ∑ ∑

E,S

E,S E,S E,S

x n x n x z

x z x z

 (15) 

For the test phase to be at a stable equilibrium, G must be at a global minimum, so ∆G must not 

be negative.  Thus, a necessary condition for phase stability is that  

{ }

( , ) ( ( ) ( )) 0i i i

i

D x µ µ
∈

= − ≥∑x z x z

E,S

 (16) 

for all incipient phase mole fraction vectors x satisfying the logical constraint 

( ) ( )c c( ) ' true 'ii
x x ε ε

∈
≥ ∨ ≤ =∑ x

E
 (17) 
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and with the chemical potentials µi determined as described in Section 3.  The first term in eq 16 

is the molar Gibbs free energy function 

{ } { }

( ) 1
( ) ( ) ( )i i i i

i i

G
g n x

N N
µ µ

∈ ∈

= = =∑ ∑
n

x x x

E,S E,S

 (18) 

Also noting that the chemical potential can be written
39

 in terms of mole fractions by 

( ) ( )
{ }, , , ,

( ) ( ) / /
j i j k

i i k kT P x T P xk
g g x x g xµ

≠ ≠∈
= + ∂ ∂ − ∂ ∂∑x x

E,S
, the second term in eq 16 can be 

expressed as  

{ } { }
tan( ) ( ) ( ) ( , ),

i i i i

i i i

g
x g x z g

x
µ

∈ ∈

∂
= + − =

∂
∑ ∑

z

z z x z

E,S E,S

 (19) 

a (hyper)plane tangent to the molar Gibbs free energy function g(x) at the test (feed) composition 

z.  Thus, tan( , ) ( ) ( , )D g g= −x z x x z , and we have the familiar tangent plane criterion for phase 

stability, stating that a phase of composition (mole fraction) z is stable if a plane tangent to the 

molar Gibbs free energy surface g(x) at x = z never crosses (goes above) g(x).  That is, for phase 

stability, the tangent plane distance function ( , )D x z , as given in this case by eq 16, must have a 

global minimum of zero with respect to x, subject to the logical constraint given by eq 17.   

Now consider the case in which the incipient phase is dissociated, not molecular as in the 

discussion above.  Assume that the incipient dissociated phase contains an infinitesimal 

observable number of moles δ, with an arbitrary composition (observable mole fraction) vector x 

consistent with a dissociated phase.  This phase has a component mole number vector δx and 

total Gibbs free energy 
{ }

( ) ( )i ii
G xδ δ µ

∈
= ∑x x

ɶ ɶ
E,S

.  Proceeding as above, it can be seen that, in 

this case, a necessary condition for phase stability is 

{ }

( , ) ( ( ) ( )) 0,i i i

i

D x µ µ
∈

= − ≥∑x z x zɶ

E,S

 (20) 

for all incipient phase mole fraction vectors x satisfying the logical constraint 

( ) ( )c c( ) ' true 'ii
x x ε ε

∈
< ∧ > =∑ x

E
 (21) 

and with the chemical potentials
i

µɶ  and µi determined as described in Section 3.  The first term in 

eq 20 is related to the molar Gibbs free energy function ( )g xɶ  of the dissociated phase by  

{ } { }

obs obs

obs

( ) 1
( ) ( ) ( ),

i i i i

i i

N NG
g n x

N N N N
µ µ

∈ ∈

= = =∑ ∑
n

x x x

ɶ

ɶ ɶ ɶ

E,S E,S

 (22) 
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where the ratio of observable to actual moles in the dissociated phase Nobs / N is given by (see 

Appendix B) 

obs 1
.

1 ( 1)
i i

i

N

N x ν
∈

=
+ −∑

E

 
(23) 

Thus, the first term in eq 20 is 

{ }
a ( ) ( ) 1 ( 1) ( )

i i i i

i i

g x x gµ ν
∈ ∈

 
= = + − 

 
∑ ∑x x xɶ ɶ ɶ

E,S E

 (24) 

an adjusted molar Gibbs free energy function for the dissociated phase that accounts for the 

difference between actual and observable moles.  The second term in eq 20 is again given by the 

tangent plane specified by eq 19.  Thus, a tan( , ) ( ) ( , )D g g= −x z x x zɶ .  So now the tangent plane 

criterion is that a molecular phase of composition z is stable, with respect to a dissociated phase, 

if a plane tangent to the molecular-phase molar Gibbs free energy surface g(x) at x = z never 

crosses (goes above) a ( )g xɶ , the adjusted dissociated-phase molar Gibbs free energy surface, 

subject to the logical constraint on x given by eq 21. 

 The results of the foregoing analysis are depicted graphically in Figs. 1 and 2 for a 

hypothetical binary IL(1)/solvent(2) system.  Due to the assumption that only solvent species 

contribute to the dielectric continuum, the logical constraint (eq 21) for a dissociated phase 

requires that c 0.1x x1 < =  and c 40ε ε2 > = .  Assuming the latter solvent property to be true, the 

composition constraint leads to the partition of the composition space into two domains, one 

dissociated ( 0.1x1 < ) and one molecular ( 0.1x1 ≥ ).  These are depicted in Figs. 1 and 2 by the 

white (dissociated) and shaded (molecular) areas.  In the molecular domain, only the molecular 

Gibbs free energy curve (g) is relevant, and the curve for the dissociated state ( agɶ ) can be 

ignored.  This is indicated by using a bolder curve for g in this domain.  Conversely, in the 

dissociated domain, only the curve for the dissociated state ( agɶ ) is relevant, and the molecular 

curve (g) can be ignored, as indicated by a bolder agɶ  curve in this domain.   

 Fig. 1 shows the case of a feed composition in the molecular domain of z1 = 0.75.  In the 

molecular domain, the tangent plane distance D is the directed distance from gtan to g and is 

always nonnegative.  In the dissociated domain, D is the directed distance from gtan to agɶ  and is 

also always nonnegative.  Thus, since D is always nonnegative, the test phase is stable.  Fig. 2 
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shows the case of a feed composition in the molecular domain of z1 = 0.5.  Now, D is always 

nonnegative in the molecular domain (note that the agɶ  curve is not relevant in this domain), but 

is negative in the dissociated domain (note that the g curve is not relevant in this domain).  Thus, 

since D can be negative for an incipient dissociated phase, this test phase is not stable.  For phase 

stability, the tangent line must lie on or below the relevant curves for all compositions in each 

domain.  This is true for the case of z1 = 0.75 in Fig. 1, but not for the case of z1 = 0.5 in Fig. 2. 

4.2  Dissociated Test Phase 

 Now consider the case of a dissociated test phase with component mole number vector n0 

and corresponding observable mole fraction vector z.  This will be the case when cii
z x

∈
<∑ E

 

and c( )ε ε>z .  The total Gibbs free energy of the test phase is then 0 0( )G G= n
ɶ .  Assume a split 

of the test phase into:  1.  A molecular incipient phase containing an infinitesimal observable 

number of moles δ with an arbitrary composition (observable mole fraction) vector x consistent 

with a molecular phase.  This phase has an observable component mole number vector δx and 

total Gibbs free energy ( )G δ x .  2.  A dissociated residual phase now with mole number vector 

n0 – δx.  This phase has a total Gibbs free energy 0( )G δ−n x
ɶ .  Proceeding as in the previous 

section, with 0( )G δ−n x
ɶ  obtained from a first-order Taylor expansion, and determination of the 

G∆  of the phase split, it is easily shown that a necessary condition for phase stability is that 

{ }

( , ) ( ( ) ( )) 0i i i

i

D x µ µ
∈

= − ≥∑x z x zɶ

E,S

 (25) 

for all incipient phase mole fraction vectors x satisfying the logical constraint given by eq. 17.  

The first term in eq 25 is the molar Gibbs free energy function g(x) for the molecular phase (see 

eq 18).  Also noting that
39

 ( ) ( )
{ }a a a, , , ,

( ) ( ) / /
j i j k

i i k kT P x T P xk
g g x x g xµ

≠ ≠∈
= + ∂ ∂ − ∂ ∂∑x xɶ ɶ ɶ ɶ

E,S
, the 

second term in eq 25 can be expressed as  

{ } { }

a
a a,tan( ) ( ) ( ) ( , ),

i i i i

i i i

g
x g x z g

x
µ

∈ ∈

∂
= + − =

∂
∑ ∑

z

z z x z

ɶ
ɶ ɶ ɶ

E,S E,S

 (26) 

a (hyper)plane tangent to the adjusted molar Gibbs free energy function a ( )g xɶ  for the 

dissociated test phase at observable composition z.  Thus, a ,tan( , ) ( ) ( , )D g g= −x z x x zɶ , indicating 

that a dissociated phase of observable composition z is stable, with respect to a molecular phase, 
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if a plane tangent to the adjusted dissociated-phase molar Gibbs free energy surface a ( )g xɶ  at x = 

z never crosses (goes above) the molecular-phase Gibbs free energy surface ( )g x , subject to the 

logical constraint on x given by eq 17.   

 This analysis can be repeated for a dissociated incipient phase, showing that for this case, 

a necessary condition for phase stability is that 

{ }

( , ) ( ( ) ( )) 0i i i

i

D x µ µ
∈

= − ≥∑x z x zɶ ɶ

E,S

 (27) 

for all incipient phase mole fraction vectors x satisfying the logical constraint given by eq 21.  

From eqs 24 and 26, this is equivalent to a a,tan( , ) ( ) ( , ).D g g= −x z x x zɶ ɶ   So, for this case, the 

tangent plane criterion is that a dissociated phase of observable composition z is stable, with 

respect to a dissociated phase, if a plane tangent to the adjusted dissociated-phase molar Gibbs 

free energy surface a ( )g xɶ  at x = z never crosses (goes above) a ( )g xɶ , subject to the logical 

constraint on x given by eq 21. 

Consider again the same hypothetical binary IL(1)/solvent(2) system featured in Figs. 1 

and 2, now considering test phases in the dissociated domain.  Fig. 3 shows the case of a feed 

composition (observable mole fraction) z1 = 0.04.  Here the tangent line a,tangɶ  lies on or below 

the relevant Gibbs free energy curves for all compositions in each domain.  Thus, this test phase 

is stable.  Fig. 4 shows the case of a feed composition (observable mole fraction) z1 = 0.06.  Now 

a,tangɶ  lies above the relevant curve (g) in the molecular domain, indicating that this test phase is 

not stable with respect to formation of a molecular phase.  Finally, Fig. 5 represents the case of a 

stable, biphasic system at equilibrium, with one molecular phase (α phase) of composition α

1x  

and one dissociated phase (β phase) of composition β

1x .  Note that the equilibrium compositions 

correspond to the points of tangency and that a,tangɶ  and tang  coincide. 

4.3  Summary 

We have extended the tangent plane analysis originally formulated by Baker et al.
37

 and 

Michelsen
38

 for the case of a symmetric thermodynamic framework with no dissociation to the 

new case of an asymmetric framework with dissociation.  For a molecular test (feed) phase of 

composition (observable mole fraction) z, phase stability must be determined relative to both 

molecular and dissociated phases.  Thus, the global optimization problem that must be solved is 
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{ }
( ) ( )

{ }
( ) ( )

{ }

tan c c

a tan c c

( ( ) ( )) ( ) ( , ), ( ) ' true '

min ( , )
( ( ) ( )) ( ) ( , ), ( ) ' true '

subject to 1 0.

i i i ii
i

i i i ii
i

i

i

x g g x x

D
x g g x x

x

µ µ ε ε

µ µ ε ε

∈
∈

∈
∈

∈

 − = − ≥ ∨ ≤ =


= 
− = − < ∧ > =



− =

∑ ∑

∑ ∑

∑

ɶ ɶ
x

x z x x z x

x z

x z x x z x

E
E,S

E
E,S

E,S

 (28) 

If the global minimum value of D is zero, then the test phase is stable.  If the global minimum 

value of D is negative, then the test phase is not stable.  Similarly, for a dissociated test (feed) 

phase of composition (observable mole fraction) z, phase stability must be determined relative to 

both molecular and dissociated phases.  Thus, the global optimization problem that must be 

solved is 

{ }
( ) ( )

{ }
( ) ( )

{ }

,tan c c

a ,tan c c

( ( ) ( )) ( ) ( , ), ( ) ' true '

min ( , )
( ( ) ( )) ( ) ( , ), ( ) ' true '

subject to 1 0.

i i i a ii
i

i i i a ii
i

i

i

x g g x x

D
x g g x x

x

µ µ ε ε

µ µ ε ε

∈
∈

∈
∈

∈

 − = − ≥ ∨ ≤ =


= 
− = − < ∧ > =



− =

∑ ∑

∑ ∑

∑

ɶ ɶ

ɶ ɶ ɶ ɶ
x

x z x x z x

x z

x z x x z x

E
E,S

E
E,S

E,S

 (29) 

Again, if the global minimum value of D is zero, then the test phase is stable, and if the global 

minimum value of D is negative, then the test phase is not stable. 

 

5. Binary Parameter Estimation  

 In this section, we show how to formulate and solve the parameter estimation problem for 

determining model parameters from binary LLE data (mutual solubility).  We assume that the 

Gibbs free energy models g (molecular phase) and gɶ  (dissociated phase) each contain two 

energetic binary interaction parameters 
ij

θ  and 
ji

θ  (see Appendix A) for each pair of 

components { , }i ∈ E S  and { , }j ∈ E S , and that these are the only fully adjustable model 

parameters.  Furthermore, we make the key assumption that these parameters are the same in g as 

in gɶ .  This follows from the assumption of Chen et al.,
16

 based on local electroneutrality and the 

symmetry of interaction energies, that short-range cation-solvent and anion-solvent interaction 

energies are the same.  We extend this assumption to make these cation-solvent and anion-

solvent interaction energies the same as the short-range interaction energy for the corresponding 
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molecular salt and solvent.  With this assumption, we can maintain in the asymmetric framework 

the use of two fully adjustable parameters per binary. 

For symmetric thermodynamic frameworks of LLE with molecular phases, it is well 

known
36,40,41

 that values of the binary parameters can be determined directly from mutual 

solubility data at a given temperature.  This is done using the equal activity conditions for LLE, 

which provide two equations that, given the experimental LLE phase compositions, can be 

solved simultaneously for the two binary parameter values needed, thereby providing an exact fit 

to the experimental results.  Recently, Simoni et al.
33

 extended this approach to the case of 

electrolyte models in a symmetric LLE framework with dissociated phases.  Here we show that 

this approach can be further extended to the asymmetric modeling framework described here. 

For a binary salt (1)/solvent (2) system, and assuming a 1:1 electrolyte, the equal activity 

conditions are (from eq 13) 

2

,1 ,1 1 1

B 0 1 1

2 2 2 2

2ln(2 ) ln( )  
8

ln( ) ln( ),

e
y x

k T

y x

γ γ
π ε ε σ

γ γ

(β) (β) (α) (α)

± ±

(β) (β) (α) (α)

−
= +

=

ɶ

ɶ

 (30) 

where α denotes a molecular phase and β denotes a dissociated phase.  Here the activity 

coefficients depend on the phase compositions and on the values of the binary interaction 

parameters 12θ  and 21θ .  Thus, if experimental values of 1x
(α) , 2x

(α) , ,1y
(β)
± , and 2y

(β)  are substituted 

into eq 30, the result is a system of two nonlinear equations that can be solved for the two 

unknowns, 12θ  and 21θ .  A difficulty with this process, whether involving symmetric or 

asymmetric frameworks, is that the number of solutions (each a pair of parameter values) to this 

nonlinear equation system is unknown.  There may be one solution, no solution or, for some 

models, multiple solutions.  In the context of models used in symmetric frameworks, Simoni et 

al.
33

 have shown that this difficulty can be resolved by using an interval-Newton technique,
42,43

 

which provides a mathematically and computationally rigorous approach, guaranteeing that all 

solutions to the equation system are found, or showing with certainty that there are none.  We 

will use the same interval-Newton approach here for the case of the asymmetric framework.  The 

initial search interval used for each parameter is [−1×10
6
, 1×10

6
] J/mol. 

 Once parameter solution(s) are found, they must be tested for their suitability in 

subsequent phase equilibrium calculations.  The key criteria are:
33
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1. Parameters must correspond to a stable solution of the equal activity condition.  We use 

the methods introduced in Section 4 to test each solution for phase stability. 

2. Parameters should not have excessive negative magnitude, say a value not below −20,000 

J/mol.  Note that since this cut-off value is arbitrary, we use a search interval that will allow 

finding parameter solutions below this value. 

3. Parameters should not result in Gibbs free energy curves that exhibit multiple miscibility 

gaps. 

If more than one parameter set satisfies the above criteria, the solution with the smallest 

parameter magnitudes is used. 

 In addition to the binary interaction parameters, the models used for g and gɶ  contain a 

number of other parameters that we do not treat as fully adjustable.  These are the NRTL 

nonrandomness parameters 
ij ji

α α= , the Pitzer-Debye-Hückel closest approach parameter ρ (see 

eq A5), and the ion diameter parameter 
i

σ  (see eq 10).  Some standard values for these 

parameters are used in the binary parameter estimation examples presented below.  In Part II of 

this contribution, we will describe a systematic method for setting these parameters in modeling 

ternary LLE. 

 

6.  Examples 

 In this section, we present two examples demonstrating the estimation of binary 

parameters in the asymmetric framework for modeling LLE.  Examples demonstrating the use of 

the asymmetric framework in predicting ternary LLE, with comparison to experimental data and 

results obtained from other models, will be presented in detail in Part II of this contribution.   

 Each of the parameter estimation examples considered here is a system consisting of a 

strongly hydrophobic IL (component 1) and water (component 2) for which LLE data (mutual 

solubility) is available at T = 297 K.  In all cases, the solvent-rich (aqueous) phase (denoted by β) 

meets the criteria ( c 0.1x x1 < =  and c 40ε ε2 > = ) for a phase in which complete salt dissociation 

is assumed, and the salt-rich (IL) phase (denoted by α) is assumed to be molecular.  Fixed 

parameter values used for all of the example problems are 12 21 0.2α α= =  (NRTL and eNRTL) 
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and ρ = 14.9 (eNRTL).  For water,
44

 ε2 = 78.4 and calculation of the Debye-Hückel parameter 

(eq A9) gives Aφ = 0.55.  Other problem-specific parameters are given below. 

6.1  [hmim][Tf2N] and Water 

 The binary system 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([hmim][Tf2N]) (component 1) and water (component 2) at T = 297 K exhibits a miscibility gap 

of
45

 1 0.7889x(α) =  and 
5

1 9.445 10x(β) −= × .  Here we will use the asymmetric framework 

described above, with NRTL representing the molecular IL-rich phase (α) and eNRTL the 

aqueous, dissociated-IL phase (β).  For this system, we assume σ1 = 1×10
−8

 m and use ε1 = 11.4.  

The latter value (dielectric constant of the IL) was obtained by extrapolating the IL dielectric 

constant data of Daguenet et al.
46

 as a function of alkyl chain length.  To determine the binary 

interaction parameters, the experimental phase compositions were substituted into eq 30, which 

was then solved for the binary interaction parameters 12θ  and 21θ , using an interval-Newton 

method to obtain all parameter solutions.  The results obtained are presented in Table 1.  This 

shows that there are four possible parameter solutions, but that only one of them corresponds to 

stable phase equilibrium. 

When parameter solution 1 is used, the resulting model curves are those shown in Fig. 6 

(showing the entire composition range) and Fig. 7 (enlarging the range 0 ≤ x1 ≤ 0.001).  Note the 

bitangent line gtan, with points of tangency corresponding to the experimental equilibrium phase 

compositions.  Since this line lies below the molecular Gibbs free energy curve g in the 

molecular domain 1 0.1x ≥ , and below the adjusted electrolyte Gibbs free energy curve agɶ  in the 

electrolyte domain 1 0.1x < , this represents stable phase equilibrium.  In Fig. 7, gtan goes above 

the molecular curve g; however, this is in the electrolyte domain, where the molecular curve is 

not relevant.  In practice, phase stability would be determined by choosing either 1 0.7889x(α) =  

or 
5

1 9.445 10x(β) −= ×  as the test phase composition (z1), and then solving the global optimization 

problem of eq 28 or eq 29 (depending on whether the test phase chosen is the molecular one or 

the dissociated one).  In either case, it is clear that D will be nonnegative for all compositions, 

and will have a global minimum value of zero, demonstrating phase stability. 

For the purpose of comparison, we have also plotted the Gibbs free energy curves and 

bitangent line for parameter solution 4, which does not correspond to a stable system.  This is 
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shown in Fig. 8 (entire composition range) and Fig. 9 (enlargement of the range 0.995 ≤  x1 ≤ 1).  

Again the bitangent line has points of tangency that correspond to the experimental equilibrium 

phase compositions.  However, as emphasized in Fig. 9, in this case the molecular Gibbs free 

energy curve drops below the bitangent line in the molecular domain.  Thus, the tangent plane 

distance function becomes negative, demonstrating that this parameter solution does not 

correspond to stable phase equilibrium. 

6.2  [bmpy][Tf2N] and Water 

The binary system 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide 

([bmpy][Tf2N]) (component 1) and water (component 2) at 297 K has a miscibility gap of
45

 

1 0.8138x(α) =  and 1 0.0023x(β) = .  Again we will use NRTL to represent the molecular IL-rich 

phase (α) and eNRTL to represent the aqueous, dissociated-IL phase (β).  For this system, we 

assume σ1 = 5×10
−9

 m and use ε1 = 11.9 (Weingärtner
47

).  Solving eq 30 with an interval-Newton 

method for the binary parameter values yields the four solutions given in Table 2.  Of these, 

solutions 1, 2 and 3 do not represent stable phase equilibrium, but solution 4 does.  The model 

curves corresponding to solution 4 are illustrated in Fig. 10, which also shows that this yields a 

stable biphasic equilibrium, since we observe that the directed distance from the tangent line to 

the relevant curve is never negative. 

 

7.  Concluding Remarks 

We have described here a new asymmetric framework for modeling liquid-liquid 

equilibrium in electrolyte/mixed-solvent systems.  In this approach, different phases may have 

different degrees of electrolyte dissociation and thus are characterized by different Gibbs free 

energy models.  As an initial example of how this framework can be used, we have developed 

the case in which the electrolytes are either completely dissociated or completely paired 

(molecular), depending on the dielectric constant of the mixed solvent and on the total 

concentration of the electrolytes.  However, this framework can also be used in cases involving 

partial dissociation, and we are currently developing and evaluating asymmetric frameworks of 

this type. 

For the assumptions made here of either complete dissociation or no dissociation, the 

applications of interest are systems involving an aqueous phase that is dilute in IL.  Examples
1-4
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of such systems include the extraction of biofuels and biofeedstocks from fermentation broths 

and the recovery of amino acids from aqueous media.  In Part II of this contribution, we 

demonstrate and evaluate the use of the asymmetric modeling framework described here to 

predict LLE for ternary IL/solvent/water systems, using parameters obtained from binary and 

pure component data only.   
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Appendix A 

 In this Appendix, we present details of the excess Gibbs free energy models used for Egɶ  

in eq 2 (dissociated phase) and Eg  in eq 9 (molecular phase).  For Eg  we will use the NRTL 

model
36

 and for Egɶ  we will use the electrolyte-NRTL (eNRTL) model.
32

   

For the NRTL model, 

E
1

1

1

n

ji ji jn
j

i n
i

ki k

k

G x
g

x
RT

G x

τ
=

=

=

=

∑
∑

∑
, (A1) 

exp( )ij ij ijG α τ= −  (A2) 

and 

∆
.

ij jj ij

ij

g g g

RT RT
τ

−
= =  (A3) 

Here gij is an energy parameter characterizing the interaction of species i and j, and the parameter 

αij = αji  is related to the nonrandomness in the mixture.  The binary interaction parameters θij = 

∆gij are estimated from binary experimental data, as described in Section 5.    

The eNRTL model
16

 is an excess Gibbs free energy model for multiple electrolytes in 

mixed solvents, and is based on the assumption of complete dissociation.  It consists of two 

terms, a Pitzer extended Debye-Hückel expression, 
E
PDHg , for the long-range electrostatic 

contribution
48

 and an NRTL-type local composition contribution, 
E
LCg , for the short-range 

interactions, so that E E E
PDH LCg g g= +ɶ .  Since the reference state used here is symmetric (pure 

liquids of all components at system temperature and pressure), we need to use a symmetrically-

referenced form of this model.   

From Chen and Song,
32

 the symmetrically-referenced expression for the local 

composition (LC) contribution is 



 

 26 

{ }
{ }{ }

{ }

, ,E
{ , , } { , , }LC

,

{ , , } { , , }

,

l l li li l l li ji li ji

l j l

i i i

i i jk k ki j k k ki ji

k j k

l l li ji

j

i i

j

j

z y G z y G
yg

y z y
RT z y G y z y G

z y G
y

z y
y

τ τ
∈ + − ∈ + −

′∈ ∈ + ∈ −
′∈ + − ∈ − ∈ + −

′
′∈ +

    
      

= +     
    

       

 
 

+  
 
 

∑ ∑
∑ ∑ ∑

∑ ∑ ∑

∑

S S

S

S S

{ }{ }

,

{ , , }

,

{ , , }

 .

li ji

l

i j k k ki ji

k

z y G

τ
∈ + −

∈ − ∈ +
∈ + −

  
   

  
  
    

∑
∑ ∑

∑
S

S

 (A4) 

Here G and τ  refer to local binary parameters related by exp( )G ατ= −  where α is the NRTL 

nonrandomness parameter.  These binary parameters are discussed further below.  The index sets 

{+} and {−} refer to the cation and anion indices, respectively.  That is { } {( , ) | }i i+ = + ∈E  and 

{ } {( , ) | }i i− = − ∈E .  Also note that, in eq A4, zi = 1 for i ∈ S. 

To obtain the symmetrically-referenced expression for the PDH contribution, Simoni et 

al.
15,33

 renormalized Pitzer’s expression
48

 to be relative to the symmetric reference state, resulting 
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where Iy is the ionic strength 

( )2 2

, , , ,

1
,  

2
y i i i i

i

I z y z y i+ + − −= + ∈∑ E , (A6) 

with 

0

1
lim ,  

i

i y
x

I I i
→

= ∈E , (A7) 

and 

2 0 0 3/ 2

,0

,
0

2( )
,  ,

1

j i i i

j i

i

z I I
j

I
Γ

ρ

−
= = + −

+
. (A8) 



 

 27 

Aφ is the Debye-Hückel parameter,
48

 which depends on temperature and on the density and 

dielectric constant of the mixed solvent and is given by 

3 / 2
2

A

0

21

3 1000

N d e
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π

ε ε
φ

 
=  

 
, (A9) 

where NA is Avogadro’s number, d is the density of the mixed solvent in kg/m
3
, e is the 

elementary charge, ε0  is the permittivity of free space, ε is the dielectric constant (relative 

permittivity) of the mixed solvent, k is Boltzmann’s constant, and T is the absolute temperature.  

The closest approach parameter ρ is a constant, whose value is discussed in Section 5.  Mixing 

rules for the mixed solvent molecular weight M, density d, and dielectric constant ε are
32
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Here, eq A10 is exact and eqs A11 and A12 are approximations.   

For the case of primary interest here, namely ternary IL(1)/solvent(2)/cosolvent(3) 

systems, application of eq A4 for the LC contribution generates the following binary interaction 

parameters:  τc2, τa2, τ32, τc3, τa3, τ23, τ2c,ac, τ3c,ac, τ2a,ca, τ3a,ca, with the indices c = (+,1) and a = 

(−,1).  Using the electroneutrality condition, together with the symmetry of the underlying 

interaction energies, it can be shown
16,32

 that τc2 = τa2 = τ12, τ2c,ac = τ2a,ca = τ21, τc3 = τa3 = τ13, and 

τ3c,ac = τ3a,ca = τ31.  Note also that τcc,ac = τac,ac = τca,ca = τaa,ca = τ11 = 0 and τ22 = τ33 = 0.  Thus we 

have the usual six binary interaction parameters for the ternary system, two for each of the three 

observable binary subsystems.  The binary interaction parameters θij = ∆gij = RTτij are estimated 

from binary data, as discussed in Section 5.  
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Appendix B 

 In this Appendix, we develop the relationship (eq 23) between the number of actual 

moles N and number of observable moles Nobs in a generic dissociated phase.  For this case, in a 

mixed-salt/mixed-solvent system, 

obs i i

i i

N n n
∈ ∈

= +∑ ∑
E S .

 (B1) 

and 

( ) ( ), , , ,i i i i i i i i i i

i i i i i i
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∈ ∈ ∈ ∈ ∈ ∈

= + + = + + = +∑ ∑ ∑ ∑ ∑ ∑
E S E S E S .

 (B2) 

Subtracting eq B1 from eq B2 yields 

( )obs 1 .
i i

i
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E

 (B3) 

Dividing by Nobs, noting that obsi i
x n N=  and rearranging, results in 

obs 1
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1 ( 1)
i i
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N x ν
∈

=
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E

 
(B4) 

which is eq 23. 
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Table 1:  NRTL/eNRTL parameter solutions for [hmim][Tf2N]/water at 297 K. 

 

 

Solution θ12 (J/mol) θ21 (J/mol) Stable? 

1 155.58 17420 Yes 

2 9630.8 123160 No 

3 18441 122730 No 

4 55640 17239 No 
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Table 2:  NRTL/eNRTL parameter solutions for [bmpy][Tf2N]/ water at 297 K. 

 

 

Solution θ12 (J/mol) θ21 (J/mol) Stable? 

1 44028 9576.5 No 

2 20954 86692 No 

3 9025.6 87935 No 

4 824.23 9578.1 Yes 
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List of Figures 

Figure 1:  Phase stability analysis for a test (feed) phase of composition z1 = 0.75 in a 

hypothetical binary salt(1)/solvent(2) system.  This test phase is stable. 

 

Figure 2:  Phase stability analysis for a test (feed) phase of composition z1 = 0.5 in a 

hypothetical binary salt(1)/solvent(2) system.  This test phase is not stable. 

 

Figure 3:  Phase stability analysis for a test (feed) phase of composition (observable mole 

fraction) z1 = 0.04 in a hypothetical binary salt(1)/solvent(2) system.  This test phase is stable. 

 

Figure 4:  Phase stability analysis for a test (feed) phase of composition (observable mole 

fraction) z1 = 0.06 in a hypothetical binary salt(1)/solvent(2) system.  This test phase is not 

stable. 

 

Figure 5:  Stable, biphasic LLE, with one molecular phase (α phase) of composition 
( )α
1x  and 

one dissociated phase (β phase) of composition 
( )β
1x . 

 

Figure 6:  Model curves with parameter solution 1 for [hmim][Tf2N]/water at 297 K over the 

entire composition range.  See also Fig. 7. 

 

Figure 7:  Model curves with parameter solution 1 for [hmim][Tf2N]/water at 297 K over 0 < x1 

< 0.001.   

 

Figure 8:  Model curves for parameter solution 4 for [hmim][Tf2N]/water at 297 K.  The tangent 

line also has a point of tangency with the agɶ  (eNRTL) curve at 
5

1 9.445 10x
(β) −= × .  See also Fig. 

9. 

 

Figure 9:  Model curves for parameter solution 4 for [hmim][Tf2N]/water at 297 K over 0.995 ≤ 

x1 ≤ 1. 
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Figure 10:  Model curves with parameter solution 4 for [bmpy][Tf2N]/water at 297 K.  The 

tangent line also has a point of tangency with the agɶ  (eNRTL) curve at 1 0.0023x(β) = . 
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Figure 1:  Phase stability analysis for a test (feed) phase of composition z1 = 0.75 in a hypothetical binary salt(1)/solvent(2) system.  

This test phase is stable. 
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Figure 2:  Phase stability analysis for a test (feed) phase of composition z1 = 0.5 in a hypothetical binary salt(1)/solvent(2) system.  

This test phase is not stable. 
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Figure 3:  Phase stability analysis for a test (feed) phase of composition (observable mole fraction) z1 = 0.04 in a hypothetical binary 

salt(1)/solvent(2) system.  This test phase is stable. 
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Figure 4:  Phase stability analysis for a test (feed) phase of composition (observable mole fraction) z1 = 0.06 in a hypothetical binary 

salt(1)/solvent(2) system.  This test phase is not stable. 
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Figure 5:  Stable, biphasic LLE, with one molecular phase (α phase) of composition 
( )α
1x  and one dissociated phase (β phase) of 

composition 
( )β
1x . 
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Figure 6:  Model curves with parameter solution 1 for [hmim][Tf2N]/water at 297 K over the entire composition range.  See also Fig. 

7. 
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Figure 7:  Model curves with parameter solution 1 for [hmim][Tf2N]/water at 297 K over 0 ≤ x1 ≤ 0.001.  
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Figure 8:  Model curves for parameter solution 4 for [hmim][Tf2N]/water at 297 K.  The tangent line also has a point of tangency with 

the agɶ  (eNRTL) curve at 
5

1 9.445 10x
(β) −= × .  See also Fig. 9. 
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Figure 9:  Model curves for parameter solution 4 for [hmim][Tf2N]/water at 297 K over 0.995 ≤ x1 ≤ 1. 
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Figure 10:  Model curves with parameter solution 4 for [bmpy][Tf2N]/water at 297 K.  The tangent line also has a point of tangency 

with the agɶ  (eNRTL) curve at 1 0.0023x(β) = . 


