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- ABSTRACT

The performance of the simultaneous-modular approach for process
flowsheeting and optimization is studied using several process
stmulation and process optimization problenms, Results of numerica)
experiments involving techniques for computing a flowsheet-leve]
Jacobian, for performing the 1ine search in the Han-Powel1 method, and
for scaling the optimization problem are presented., The simultaneous-
modular approach, as implemented in our new program SIMMOD, is found to
be very effective on both simulation and optimization problems.

SCOPE

The Timitations of the traditional sequential-modular approach for
process flowsheeting and optimization are today increasingly being
recognized. For instance, the sequential -modular approach does not
efficiently handle problems in which a number of design constraints are
imposed (“"controlled" stmulations), nor is it at all well-suited to the
solution of optimization problems. Thus there has been considerable
recent interest in developing alternatives to the sequential-modular
approach, Two promising alternatives are the equation-based approach
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and the simultaneous-modular approach., Here we concentrate on the
latter,

While the simultaneous-modular approach is not a new concept, it
has attracted significant attention recently. Several recent studies,
including those by Mahalec et al. (1979), Perkins (1979), Jirapongphan
(1980), and Biegler and "ughes (1981,1982a,1983) have demonstrated the
promise of the simultaneous-modular approach, especially for controlled
simulation and optimization problems. We have recently developed (Chen
and Stadtherr, 1983b) a general-purpose simulator, SIMMOD, based on the
simultaneous-modular approach, to provide a critical evaluation of the
simultancous-modular approach for simulation, controlled simulation, and
optimization problems, and to provide a means for testing different
computational strategies for implementing the simultaneous-modular
approach,

For simulation and controlled simulation problems we employ a
recently developed modification of Powell's dogleg method (Chen and
Stadtherr, 1981) for solving the nonlinear equations on the flowsheet
level. Three options for providing an initial flowsheet-level Jacobian
are considered, namely full-block perturbation, dﬁagonal-block
perturbation (e.g., Mahalec et al., 1979), and direct difference
approximation (e.g., Perkins, 1979).

For optimization problems, we follow an infeasible path approach,
using the popular Han-Powell method to solve the nonlinear programming
problem by successive quadratic programming. However, SOPHP (Chen and
Stadtherr, 1983a}, the nonlinear programming routine used by SIMMOD,
contains several enhancements of the algorithm to make it more efficient
and reliable in the context of the simultaneous-modular approach., Here
we concentrate on the performance of two such enhancements, the use of
the basic watchdog technique (Chamberlain et al,, 1979) in the line
search, and the use of an automatic scaling procedure for the variahles
and the objective function,

CONCLUSIONS AND SIGNIFICANCE

Numerical experiments using SIMMOD show that: 1. For performing
derivative calculations, the full-block perturbation approach provides a



Simultancous-Modular Flowsheeting, 805

good combination of efficiency and reliability, and is preferable to the
more commonly used direct difference approximation technique. 2. The
basic watchdog technique (Chamberlain et al,, 1979) for the line search
procedure in the llan-Powel]l method is very effective. 3., The automatic
scaling procedure used in SIMMOD for optimization problems improves its
reliability and usually its efficiency,

The simultaneous-modular approach is an attractive approach for
flowsheeting and optimization problems, at least when the computational
strategies incorporated in SIMMOD are used. For simulation problems,
SIMMOD is competitive with and somet imes significantly better than the
sequential-modular approach in terms of computational efficiency, and it
is at least as reliable as well. For optimization problems SIMMOD is
much better than the sequential-modular approach, and in fact provides a
very significant improvement over other versions of the simultaneous-
mwodular approach when it comes to computational speed,

BACKGROUND

Many of the theoretical aspects involved in implementing the
simultaneous-modular approach have recently been discussed in detail by
Chen and Stadtherr (1983b). Some of these aspects are briefly

summarized here,

In solving a process flowsheeting problem there are basically three
types of equations to be considered: 1, model equations, including
process unit models and physical property models; 2, flowsheet
connection equations that indicate how the units are connected together
in the flowsheet; 3. specifications. As in the equation-based approach
(e.g., Shacham et al., 1982; Stadtherr and Hilton, 1982), in the
simultaneous-modular approach equations describing the entire process
are solved simultaneously. In this sense the equation-based approach
and the simultaneous-modular approach can be thought of as two extremes
of the same basic idea. In the equation-based approach all process
variables, internal and external, are treated as independent, and the
actual rigorous model equations for each unit are used. Generally one
can think of the computation as occurring on two levels, one in which

the equations are linearized, and another in which the Tinearized
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equations are solved simultaneously and a correction step determined,
On the other hand, in the simultaneous-modular approach only the
external variables, or an appropriate subset thereof, are treated as
independent, and simple, usually linear, models of the units are used,
the coefficients in which are generated using the same unit modules use
in the conventional sequential-modular approach, Thus there are again
two levels of computation, a module-level in which the modules are used
perhaps together with some connection equations, to generate an
approximate Jacobian for the process, and a flowsheet-level in which
these equations are solved simultaneously together with the specifica-
tion equations and some or all of the connection equations. The variou
techniques proposed for the simultaneous-modular approach differ in how
the approximate Jacobian required on the flowsheet-level is generated,
in which numerical method is used to solve the nonlinear equations on
the flowsheet-level, and in whether all connecting streams are iterated

on or only an appropriate set of tear streams.

Formulation of Problem

There are a number of possible problem formulations for the
simultaneous-modular approach, In general these formulations can be pu
into one of three catagories, which we denote as formulations I, II, a;
III.

In formulation I, all connecting streams are torn and treated as
two separate streams, one input and one output stream. The formulatio
of Mahelec et al. (1979) falls into this category, as Hoes the
formulation used by Jirapongphan (1980) for process optimization
probtems. In this formulation, each connecting stream is treated as t:
separate streams, which results in an unnecessarily large system of
equations. In formulation II, each connecting stream is treated as on
input stream and the model equations are substituted into the stream
connection equations. Using this formulation the number of flowsheet-
level equations is reduced by almost 50%, compared to formulation I.

For typical applications, the number of equations generated using
formulation II can be still on the order of 1,000. Such systems are
still too large to be solved by full matrix techniques, To further
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reduce the number of nonlinear equations that must be solved
simultaneously, an appropriate subset of connecting streams can be torn
instead of all connecting streams. Streams that are not torn can be
eliminated using corresponding stream connection equations. Various
techniques employing a flowsheet-level Jacobian involving only tear
stream variables have been suggested (e.g., Mahalec et al., 1979; Sood
et al., 1979; Mclane et al., 1979; Perkins, 1979; Metcalfe and Perkins,
1978). The IPOSEQ, RFV, and CFV optimization methods of Biegler and
Hughes (1982a,1983) can also be thought of as using this formulation,
One may also put in this category the methods sometimes referred to as
sequential-modular with a "different" convergence block, different in
the sense that something other than the usual accelerated direct
substitution is used, typically a Newton or quasi-Newton approach.
Since in most applications, the number of tear stream variables is
relatively small, the Jacobian for formulation III is usually a full
matrix, and the flowsheet-level problem can be solved by full matrix
techniques,

Since for formulation III, the storage requirements are relatively
small and full matrix methods can be used, the computational
requirements for this formulation are much more closely in Tine with the
usual sequential-modular approach than either of the other two basic
formulations. This is desirable because one of the attractions of the
simultancous-modular approach is that it js possible to implement it in
connection with an existing sequential-modular simulator. SIMMOD, our
implementation of the simultaneous-modular approach, is based on
formulation III,

g The most fundamental problems with the simultaneous-modular
approaéh involve the solution of the flowsheet-level equations, As in
the equation-based approach, this requires a general-purpose nonlinear
equation solver, typically the Newton-Raphson method or some variation
thereof, and hence reliability can become a problem, especially in
comparison to the usually very robust, though slow, performance of the
direct substitution approach. Thus there is a need for good
initialization procedures and a nonlinear equation solver with excellent
global convergence properties. An additional problem is that the
expense associated with computing the approximate Jacobian for the
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flowsheet-level may be large, and could offset the gain in computational
speed due to faster convergence. Thus there is a temptation to use very
simple approximation methods; these however may provide a poor estimate
of the Jacobian for some problems, which may exacerbate the problem of
reliability. Concerns such as these appear to have prevented the
widespread adoption of the simultaneous-modular approach, particularly
for simulation problems. These same concerns also apply in the case of
controlled simulation problems; however, since by using a simultaneous-
modular approach it is possible to eliminate costly “control" loops, the
tradeoffs tend to swing more clearly in favor of the simultaneous-
modular approach. It should be noted that, in part for this reason,
some form of the simultaneous-modular approach, such as the use of
quasi-Newton convergence blocks, is available, at least optionaily, in
some industrially used simulation programs.

At this point it should be emphasized that for simulation and
controlled simulation problems we assume that the flowsheet has been
partitioned into irreducible blocks of units, and that the blocks are
solved one at a time in the appropriate precedence order. Acyclic parts
of the flowsheet, corresponding to irreducible blocks containing only
one unit, are handled in the usual sequential fashion. The
simultancous-modular formulation is applied only within the cyclic parts
of the flowsheet (irreducible hlocks containing more than one unit).

Jacobian Evaluation

The modified dogleg algorithm used by SIMMOD to solve the
flowsheet-level equations uses Broyden's method to update the Jacobian;
thus it requires a Jacobian calculation initially, but thereafter only
when necessary to maintain a good rate of convergence. The efficiency
of the simultaneous-modular approach depends to a considerable extent on
how the Jacobian that is required, or an approximation of it, is
calculated. If the computation involved is excessive, the simultaneous-
modular approach may be inefficient and not competitive with the
sequential-modular approach., Also, if a poor approximation of the
Jacobian is used, the simultaneous-modular approach may fail or at least
require many iterations to solve the problem, thus again becoming
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inefficient and perhaps not competitive,

Figure 1 shows the information flow for an arbitrary module. For
formulations I and II, a block of partial derviatives corresponding to
each module must be calculated. The partial derivatives, or
approximations of them, that are needed to solve the flowsheet-level
equations are the partial derivatives of the connecting output streams
of each module and some variables in the retention vector with respect
to the connecting input streams and free equipment parameters, There
are many ways to calculate or approximate these partial derivatives for
formulations I and II. Here, we consider two of them,

The most straightforward way to obtain the block of partial
derivatives for each module is to use a standard difference
approximation. This requires a module calculation after each unknown
input variable is perturbed by a small amount. There are (c+2)nc1 + Nyy
unknown input variables for module i, where ¢ is the number of
components, n.; is the number of connecting input streams to module i,
and ng4; is the number of free equipment parameters to module i, Thus,
to calculate a Jacobian, the module j calculation must be performed
(c+2)nc1 tngi + 1 times., We refer to this approach as full-block
perturbation.

The full-block perturbation technique requires many module
calculations to determine the partial derivatives, To reduce the number
of module calculations one may use a diagonal approximation of the
dacobian (e.g., Mahelec et al., 1979). This assumes that the mth
elements of output stream vectors are only affected by the mth elements
of input stream vectors. Note that this assumption is made only for
iterations in which a Jacobian must be evaluated, i.e. the first
iteration and perhaps some subsequent ones if necessary to maintain a
900d rate of convergence. To evaluate a Jacobian using this technique,
the module i catculation must be performed Nei + ngy + 1 times, We
refer to this approach as diagonal-hlock perturbation., Since this will
often provide a very poor approximation for reactor units, we follow
Mahalec et al. and use full-block perturbation for reactor units,

We now turn our attention to Jacobian evaluation methods for
formulation III. As we mentioned earlier, using formulation III, a
chemical process is represented by a relatively small system of
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nonlinear equations on the flowsheet level, and the Jacobian of these
equations usually has very few zeros in it. Again the most
straightforward approach for obtaining the Jacobian is to compute it
directly by difference approximation (e.g., Perkins, 1979). In this
case one does not perform perturbation on each module individually, but
instead performs perturbation on a sequence of modules. To evaluate a
Jacobian using this approach, it is necessary to perform each module
calculation at most (c+2)ny + ny + 1 times, where ng and ny are
respectively the number of tear streams and the total number of free
equipment parameters associated with the current irreducible block. The
actual number of module calculations required may be somewhat less than
this figure depending on where in the loop the free variables occur.
Alternatively one could instead perform perturbation on each module
individually using either full-block or diagonal-block perturbation, and
then simply use Euler's chain relation to obtain the flowsheet-level
Jacobian required for formulation III. Thus the Jacobian for
formulation III could be obtained by direct difference approximation,
full-block perturbation, or diagonal-block perturbation. Results of
studies comparing these three approaches are presented below. It should
be noted that the use of Fuler's rule in this context appears not to
have been studied extensively until this study and one by Shivaram and
Biegler (1983), The results of Shivaram and Biegler differ from those
obtained here however, as discussed below.

SIMMOD--A Simultaneous-Modular Flowsheeting and Optimization Program

To perform a critical evaluation of the simultaneous-modular
approach, a simultaneous-modular flowsheeting and optimization system,
SIMMOD, has been developed. From the user's point of view, the system
is similar to the conventional sequential-modular systems. However, the
system can handle controlled simulation problems as efficiently as
ordinary simutation problems, and it can also solve process optimization
problems very efficiently. The basic structure of SIMMOD has been
described in detail elsewhere (Chen and Stadtherr, 1983b). Some of its
more important features are listed briefly below:

1. User input is entered using a problem oriented language (pPOL)
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in a logical order.

2. For simulation and controlled simulation problems, partitioning
and tearing are performed using an algorithm (Chen and Stadtherr, 1983h)
designed specifically for the simultaneous-modular approach.

3. For simulation or controlled simulation problems, the
flowsheet-level system of equations is solved using NEQLU, a very
efficient and reliable nonlinear equation solver that implements a
modification of Powell's dogleg method (Chen and Stadtherr, 1981).

4. For optimization problems, the nonlinear programming problem is
solved using SQPHP, a very efficient NLP routine, that implements an
enhancement of the Ilan-Powell method (Chen and Stadtherr, 1983a}, An
infeasible path approach is used.

5. A small number of direct substitution iterations are performed
to initialize the tear stream variables. While the numerical routines
used have generally very good global convergence properties, we find
this initialization procedure to provide an extra margin of safety that
is needed on some problems.

6. The modules in SIMMOD are similar to those in sequential-
modular systems. However, a flag is used to indicate that the system is
performing block perturbation to calculate the Jacobian, so that in this
case the module can use internal variable values generated from previous
calculations and saved for subsequent calculations of the same module,
Also a flag is used to prevent the system from performing some
unnecessary adiabatic flash calculations on module output streams. The
user may write his own modules to perform special calculations.

7. Cost modules are included that perform sizing and costing to
determine base costs, fixed investment costs, and utility costs.

8. SIMMOD is designed so that the physical property routines can
be easily replaced. In the current implementation, all the
thermodynamic properties are calculated using the Peng-Robinson (1976)
equation of state,

9. For simulation and controlled simulation problems, the
equations and variables are automatically scaled. For optimization
problems, the objective function and the variables are automatically
scaled,

The performance of SIMMOD on several simulation and optimization
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problems is discussed in detail elsewhere (Chen and Stadtherr,
1983c,d). We present here the results of three numerical experiments
that compare different computational strategies for the simultaneous-

modular approach,

COMPARISON OF JACOBIAN EVALUATION METHODS FOR SIMULATION PROBLEMS

In this section we use a number of simulation test problems to
compare the three approaches considered for computing the Jacobian., We
also compare the overall efficiency and reliability of the simultaneous-
modular approach as implemented in SIMMOD with that of the sequential-
modular approach.

Test Problems

Five benchmark problems and variations thereof are used in this
study, Detailed descriptions of these problems are given elsewhere
(Chen and Stadtherr, 1983c). The five basic problems and their
variations are:

1. Problems la, 1b, and 1lc all involve the well-known four flash-
unit system studied by Cavett (1963). The difference between the three
problem variations is the tear set used. 1In Problems la and 1b there
are two tear streams; in Problem lc there are three,

2. Problems 2a and 2b involve the cyclopentadiene recovery process
used as Example 2 in the CHESS User's Guide (Motard and Lee, 1971). The
computation time for this problem is dominated by a rigorous
distillation module. The difference between the two problem variations
is that in Problem 2b approximate physical property models are used in
connection with the rigorous distillation module for evaluating the
flowsheet-level Jacobian, while in Problem 2a rigorous models are
used. The approximate models are two-constant, composition independent
models for K values and enthalpy departures.

3. Problem 3 is the simple ethylene process used as Example 3 in
the CHESS User's Guide.

4, Problems 4a and 4b involve the raw product recovery section of
a natural gasoline plant, as taken from Example 4 in the CHESS User's
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Guide. The difference between Problems 4a and 4b is the same as that
between Problems 2a and 2b,

5. Problem 5 is a light hydrocarbons recovery process. This is
exercise 25 in the FLOWTRAN exercise book (Clark, 1977).

Of the five problems studied, Problem 3 is a very easy problem for
the sequential-moduiar approach, Problem 2 is slightly harder, whiie the
remaining three problems are fairly difficult.

In solving these test problems, the following procedures are used
in SIMMOD unless specified otherwise: 1. A1l thermodynamic properties
are calculated using the Peng-Robinson equation of state with all binary
parameters set equal to zero. 2. Before performing simultaneous-modular
iterations on each irreducible block, we set all tear stream variables
equal to zero, ignore free variables and design specifications, and
perform three sequential-modular iterations. 3. The relative
convergence tolerance in the module calculations is 10‘5, the relative
convergence tolerance in the flowsheet-level calculation is 10-4, and
the perturbation factor in the Jacobian evaluation is 10-3, 4. The
computer used was a CDC Cyber 175,

Results

Some results comparing the performance of the three Jacobian
evaluation techniques on these test problems are shown in Tables 1 and
2, which show the number of simultaneous-modular iterations required and
the Jacobian evaluation time. We can make the following observations:

1. Calculating the Jacobian by diagonal-block perturbation is
clearly faster than the other two é]ternatives, however it is not as
reliable. Because it does not provide a particularly good approximation
of the Jacobian it may take more iterations to converge (Problem 2), or
it may fail (Problems 1 and 4). Sometimes, however, it works
surprisingly well (Problems 3 and 5). Diagonal-block perturbation
cannot be recommended for use in a general -purpose implementation of the
simultaneous-modular approach,

2. Calculating the Jacobian either by direct difference
approximation or by full-block perturbation gives reliable convergence,
but the Jacobian evaluation time for the former is excessive. This is
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different than the result obtained by Shivaram and Biegler (1983), who
find that the full-block perturbation approach requires somewhat more
CPU time. It appears however that this result was obtained because
their implementation of full-block perturbation was not a particularly
efficient one, Our recommendation is that the Jacobian be calculated by
full-block perturbation. It is reliable and the Jacobian evaluation
time is moderate.

3. In looking at the relative efficiency of full-block
perturbation and direct difference approximation, two factors are
primarily responsible for the difference: the number of perturbations
required and the efficiency with which the perturbations can be
performed. For the direct difference approximation case the number of
perturbations required is roughly proportional to the number of tear
streams in the current irreducible block, while for full-block
perturbation the number of perturbations required is roughly
proportional to the number of unknown connecting input streams per
unit. This can be seen clearly in the results for Problem la. Here the
computation time is dominated by the flash units, each of which has one
connecting input stream; however there are two tear streams, so direct
difference approximation requires twice as many perturbations of the
flash units as full-block perturbation. This accounts for most of the
difference in CPU time between the two approaches; the remaining
difference is due to the better perturbation efficiency of the full-
block perturbation approach, as discussed below. Also note that in
Problem 1lc there are three tear streams, while in Problems la and 1b
there are only two, so when direct difference approximation is used the
Jacobian evaluation time increases by roughly 50% on Problem 1c. When a
chemical process to be simulated becomes larger or becomes more
complicated, the number of tear streams will generally increase., On the
other hand, since most flowsheets will comprise predominantly the same
types of units, the number of connecting input streams is less likely to
increase significantly, though there may be exceptions, Thus increasing
problem size and complexity will generally degrade the performance of
the direct difference approximation approach, while having a lesser
effect on the full-block perturbation approach,

4, Even on problems for which full-block perturbation requires
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more perturbations than direct difference approximation, full-block
perturbation may be preferred hecause it can be implemented more
efficiently. When block perturbation techniques are used to calculate
the Jacobian, all the calculations for a given module are performed
consecutively, This means that the internal variables of the module can
be temporarily retained and easily utilized to reduce the CPU time for
subsequent calculations of the given module. When direct difference
approximation is used, calculations of the same module are not performed
consecutively, and thus savings of this type cannot be fully realized;
internal variables can be saved from one pass through the loop to the
next (this was done here only on Problems 2a and 2b), but for complex
units with large numbers of internal variables the I/0 expense involved
may be significant. This can be seen clearly on Problem 2a. Here the
CPU time is dominated by the rigorous distillation module. When full-
block perturbation is used 21 perturbations of the distillation module
are required, while for direct difference approximation only 14 are
required. Nevertheless, Ffull-block perturbation still requires less Ccpy
time, because the perturbation calculations can be made more
efficiently. Even though in applying direct difference approximation on
this problem, the internal variables for the rigorous distillation were
saved from one perturbation to the next, the savings this made possible
were largely offset by the 1/0 expense involved, Thus better
perturbation efficiency is another advantage of the full-block
perturbation approach, and accounts in part for the good performance
shown in Table 2,

5. The use of simple physical property models for Jacobian
evaluation in Problems 2b and 4b significantly decrease the Jacobian
evaluation time, and has little or no effect on reliability, It is
interesting to note that when direct difference approximation is used on
Problem 4b the yJacobian is apparently somewhat less accurate than when
full-block perturbation is used, This appears to be due to the fact
that when direct difference approximation is used, results from the
approximate models are passed downstream to other units, thus
propagating some inconsistencies. Concerning the accuracy of the
Jacobian, it is also worth noting that the use of full-block
perturbation gives one control over the size and direction of the
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perturbations to each unit, while in using direct difference
approximation there is no such control over the perturbations entering
the downstream units. 1In principle one might thus expect direct
difference approximation to sometimes give a poor estimate of the
Jacobian for this reason; however we have not observed this problem with
direct difference approximation to date.

When the Jacobian is calculated by full-block perturbation, the
simultaneous-modular approach as implemented in SIMMOD is competitive to
or sometimes better than the usual sequential-modular approach in terms
of reliability and computational efficiency, This can be seen in the
results presented in Table 3. In preparing this table, the total
computational time required for the simultaneous-modular approach,
including initialization time, function evaluation time, Jacobian
evaluation time, and MEQLU overhead time, was converted to an equivalent
number of sequential-modular iterations by dividing by the average time
for a sequential-modular iteration for each problem, as measured by the
average time required by SIMMOD to make one pass through all the
modules, The overhead time for NEQLU on these problems and for SQPHP on
the optimization problems ranges from about 1 to 15 percent of the total
time. The FLOWTRAN and CIHESS results are taken from Rosen and Pauls
(1978), Motard and Lee (1971), and Clark (1977), and are for the case in
which a Wegstein acceleration procedure is used,

For Problem 1, Rosen and Pauls (1978) find that when the
sequential-modular approach is used the convergence behavior of this
problem can be very strongly affected by the tear set used, and also by
the acceleration frequency used in the direct substitution solution
scheme., For some combinations of tear set and acceleration frequency
FLOWTRAN fails to solve the problem. As shown in the results for
Problems 1la, 1b, and Ic, all of which use different tear sets, the
simultaneous-modular approach is not sensitive to the tear set used, at
least when block perturbation derivatives are used, Insensitivity to
the tear set used is an advantage of the simultaneous-modular approach,
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PERFORMANCE OF BASIC WATCHDOG TECHNIOUE ON PROCESS OPTIMIZATION PROBLEMS

In the usual implementation of the Han-Powell method, a single
penalty function is used as the objective in the line search. As noted
by Powell (1980), on some problems this approach may lead to a very slow
rate of convergence. Many teéhniques (Mayne, 1980; Fletcher, 1981;
Yamashita, 1982; Schittkowski, 1981: Chamberlain et al., 1979,1982) have
been proposed for overcoming this problem. In SQPHP (Chen and
Stadtherr, 1983a), the MLP routine used in SIMMOD, we use the basic
watchdog technique of Chamberlain et al. (1979). In this method the
primary line search objective is still the penalty function, but a
secondary line search function, namely the Lagrangian, is added and used
if necessary to maintain a good convergence rate. A generalized version
of this technique has been described more recently (Chamberlain et at.,
1982). In order to study the effect of using the basic watchdog
technique we disable it for some runs with the following two

optimization test problems,
Test Problems

Two optimization problems and variations thereof are used in this
study. Detailed descriptions of these problems are given elsewhere
(Chen and Stadtherr, 1983d). The test problems used are:

1. Problems 6a and 6b involve the two flash-unit system studied by
Jirapongphan (1980). 1In Problem 6a the design variables are the flash
temperatures and the common pressure of the two flash units, In Problem
6b the design variables are the pressure and the fractions vaporized in

each flash.
2. Problems 7a and 7b involve the three flash-unit system studied

by Jirapongphan (1980). The difference between the two problem
variations is the choice of design variables, just as in the case of
Problems 6a and &b,

In solving these test problems, the following procedures are used
in SIMMOD unless specified otherwise: 1. All thermodynamic properties
are calculated using the Peng-Robinson equation of state with all binary
parameters set equal to zero. 2. Before performing simultaneous-modular
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iterations on each irreducible block, we set all tear stream variables
equal to zero, ignore free variables and design specifications, and
perform three sequential-modular iterations., 3. The relative
convergence tolerance in the flash module calculations is 10‘10, the
relative convergence tolerance in the flowsheet-level calculation is
10‘4, and the perturbation factor in the Jacobian and gradient
evaluation is 10-5, 4, The Jacobian and gradient are generated by fulil-
block perturbation. 5. The computer used was a CDC Cyber 175.

Results

Some results comparing the performance of SIMMOD with and without
the use of the watchdog technique are shown in Table 4, which shows the
number of simultaneous-modular iterations and number of line searches
required, as well as the equivalent number of sequential-modular
iterations, determined as described above. We can make the following
observations:

1. By following the progression of the objective function toward
it optimal value, it can be determined that the poor performance of
SIMMOD without the basic watchdog technique is indeed due to the 1in
search technique used. Most of the progress of the objective function
toward its optimum occurs in the first several iterations, while very
little improvement is made in the many iterations that follow. Although
good correction steps are found in the quadratic programming subproblems
for these latter iterations, full correction steps are not accepted due
to the line search technique used.

2. The watchdog technigque appears to be very effective. It is
very easily and cheaply implemented and Teads. to a dramatic improvement
in the rate of convergence on these problems.

3. On other process optimization problems, such as the Problems 8
and 9 described below, the use of the watchdog technique has little
effect. However, since the use of the watchdog technique is very
beneficial in some problems, and causes no loss of computational
efficiency when it is not needed, we recommend its use in any general-
purpose process optimization program using the Han-Powell method.
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PERFORMANCE OF AUTOMATIC SCALING ON PROCESS OPTIMIZATION PROBLEMS

One advantage of the Han-Powell method is that constraints need not
be scaled. However, the scaling of the objective function and of the
variables will still affect the performance of the method, perhaps
significantly (Chen and Stadtherr, 1983a). 1In SIMMOD we scale the
objective function and variables by setting the initial Hessian
approximation to be a non-identity diagonal matrix, the elements in
which are found using simple heuristic techniques described in detai]
elsewhere (Chen and Stadtherr, 1983a,b). In order to study the
effectiveness of the automatic scaling scheme used in SIMMOD, we disable
the scaling procedure for some runs on three optimization test problems

and variations thereof,

Test Problems

Problems 6a, 6b, 7a, and 7b are again used. Two additional
problems, detailed specifications for which are given elsewhere (Chen
and Stadtherr, 1983d), are also used. These two problems are:

1. Problem 8 is the ammonia synthesis optimization problem studied
recently by by Parker and Hughes (1981) using a quadratic approximation
programning (QAP) approach, and by Biegler and Hughes (1981) and
Jirapongphan (1980) using the simultaneous-modular approach,

2. Problem 9 is the gasoline polymerization process studied by
Friedman and Pinder (1972) and Gaines and Gaddy (1976), using the
sequential-modular approach, This problem is not used in the scaling
study but is included in a summary of the overall performance of SIMMOD,

The procedures used in SIMMOD on these two additional problems are
the same as for Problems g and 7, except that the relative convergence
tolerance for the module calculations is 10‘6, the perturbation factor
in the Jacobian and gradient evaluations is 10‘3, and the relative
convergence tolerance for the flowsheet-level calculation is 10-3,

Also, for Problem 8, ten sequential iterations are used to initialize

the tear variables.
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Results

Some results comparing the performance of SIMMOD with and without
the use of the automatic scaling procedure are shown in Table 5. We can
make the following observations:

1. The scaling procedure generally leads to an improvement in
computational efficiency, but the improvements are quite moderate, and
in one case there is actually a loss of computational efficiency.

2. The scaling procedure improves the reliability of SIMMOD, as
can be seen by considering Problem 8. Without scaling the true optimum
for Probiem 8 was not found, As a further check, we ran the problem
again using the solution from the unscaled run as the initial guess.
Without scaling, the NLP rountine terminated in one iteration and
claimed the solution. With scaling, the NLP routine performed four more
iterations and converged to a solution representing roughly a 1%
improvement in the objective function. This indicates that the solution
found without scaling is not even a local minimum.

Finally, in order to consider the overall performance of SIMMOD on
optimization problems, using both the watchdog technique and the
automatic scaling procedure, we present Table 6, which compares the
performance of SIMMOD with the reported performance of some other
optimization programs used in other studies. Regarding these results we
make the following observations:

1. To compare the CPU times given, we note that the speed of the
ChC Cyber 175 used in this study is about three times that of a ()]
6600, and is about the same as an IBM 370/168. After taking these
factors into account, the CPU time used by SIMMOD is still an order of
magnitude less than that used in all the previous studies. One reason
for the very short execution time is that the NLP routine SQPHP uses an
enhanced version (Chen and Stadtherr, 1983a) of the Han-Powell method,
and is significantly more efficient than the NLP routines used in other
studies. Another factor is that SIMMOD does not perform any unnecessary
adiabatic flash calculations on the output streams of modules. Also the
different studies use different modules, different physical property
routines, and different executive routines, making direct quantitative
comparisons of CPU time difficult. What is clear is that using the
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strategies incorporated in SIMMOD it is possible to implement the
simultaneous-modular approach very efficiently on optimization problems.

2. As mentioned by Jirapongphan (1980), for Problem 8 a process
simulation at optimal conditions using the sequential-modular simulator
FLOWTRAN requires 63 sequential iterations. SIMMOD requires the
equivalent of only about 60 sequential iterations to optimize the
process, It should be noted that the results of Jirapongphan quoted
here are for the case in which rigorous models were used in making
derivative evaluations, Jirapongphan also quotes results indicating
that efficiency can be improved by making use of simple, nonlinear,
approximate models in this context.

3. A recent comparison (Biegler and Hughes, 1982b) of the 1POSEQ,
CFV, and RFV methods on a propylene chlorination process indicates that
the feasible path methods CFV and RFV are significantly more efficient
than the infeasible path method IPOSEQ. As implemented in SIMMOD, the
infeasible path approach appears to be very efficient. It is difficult
to imagine that the performance of SIMMOD could be improved by using a
feasible path approach., In our experience, however, it is possible that
on some problems the overall performance may be improved by doing a few
more sequential iterations during initialization., For instance, on
Problem 8 the program fails if only three sequential iterations are used
initially, but is successful if five sequential iterations are used. As
the number of initial sequential iterations is increased from 5 to 15,
the number of simultaneous-modular iterations needed to solve the
problem is reduced from 6 to 4. It is also worth noting that
Jirapongphan's solution of Problem 8 requires 18 simultaneous-modular
iterations; this relatively large number indicates that the one-
sequential-iteration initialization scheme he recommends is not suitable
for this problem,
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Figure 1. Information Flow in an Arbitrary Module.
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Table 1,

Number of Simultaneous-Modular Tterations Required
for Three Jacobian Evaluation Techniques

Direct
Full-Block Difference Diagonal-Block
Problem Perturbation Approximation Perturbation
la 4 4 Fail
1b 5 5 -
1c 4 4 G
2a 2 2 10}
2b 2 2 10
3 2 2 ok
4a 13 12 Fail
ab 8 14 Fail
5 3 3 3

*Full-block perturbation was used in reactor units instead of
diagonal-block perturbation,

Table 2,

Jacobian Evaluation Time (Seconds) Required
for Three Jacobian Evaluation Techniques

Direct
Full-Block Difference Diagonal-Block

Problem Perturbation Approximation Perturbation

la 0,819 2.006 Fail

1b 0.898 2.034 -

lc 0.867 3.104 -

2a 0.829 1.441 0.284>

2b 0.419 1.052 0.209

3 0.490 0.830 0.201%

4a 8,855 11.939 Fall

4b 3.272 5.516 Fail

5 3.530 7.568 0.719

*Full-block perturbation was used in reactor units instead of
diagonal-hlock perturbation,
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Table 3.

Comparsion of Simultaneous-Modular Approach
and Sequential-Modular Approach on Process Simulation Problems

Equivalent Number of

Sequential-Modular Number of Sequential-
Iterations Using Modular Iterations
SIMMOD with Full- Using a Sequential-
Problem Block Perturbation Modular Simulator

la 25 23 (FLOWTRAN)

1b 27 48 (FLOWTRAN)

lc 28

2a 13 22 (CHESS)

2b 9

3 17 6 (CHESS)

4a 31 >40 (CHESS)

4b 18

5 24 “many" (FLOWTRAN)

Table 4.

Effect of Using the Watchdog Technique on
the Performance of the Simultaneous-Modular Approach
for Process Optimization

No Watchdog Watchdog

Problem SLosE SIS Er

6a 30 70 297 25 30 147

6b 46 92 414 15 21 129

7a 42 91 395 2L 37 194

7b 50 122 462 15 30 140

Notes: SI = number of simultaneous-modular iterations required.
LS = number of line searches required,

El = equivalent number of sequential-modular iterations,

,JAutomatic scaling was not performed,
SQPHP terminated abnormally but returned a good solution,
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Effect of Using an Automatic Scaling Technique on

Table 5.

the Performance of the Simultaneous-Modutar Approach

LS
£l

No Scaling

LS

30
21

37
30

5

El

147
129

194
140

60

for Process Optimization

SI

11
14

25
16

5

Scaling

LS

14
21

53
22

5

El

100
121

248
133

60

number of simultaneous-modular iterations required,
number of line searches required,

equivalent number of sequential-modular iterations.
The watchdog technique was used in the line search,

*SQPHP terminated abnormally but returned a good solution.
True optimum was not found (objective function value was
1% from the true optimum objective function value).
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Table 6.

Comparison of SIMMOD and Other Optimization Studies

S IMMOD
Number of
Equivalent
Sequential-Modular CPU Time Results of
Problem Iterations (CDC Cyber 175) Other Studies
6a 100 1.7 sec. 13.3 sec.!
6b 121 2.3 sec.,
7a 248 5.7 sec. 108 sec.l
7b 133 3.7 sec.
8 60 6.5 sec. 5.1 min. !
14.4 min,?2
34.88 min.3
9 51 17.4 sec. 50 complete

simulations

Notes: The waktchdog technique was used in the line search.
Automatic scaling of variables and objective function was used,
lResults of Jirapongphan (1980) on an IBM 370/168.
Results of Biegler and Hughes (1981) using 0/LAP on an CDC 6600.
3Results of Parker and Hughes (1981) on an IBM 370/168,
fResults of Friedman and Pinder (1972).



