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1 INTRODUCTION

In computing phase equilibrium, the goals are to correctly
determine the number and type of phases present, and
the distribution of components amongst the phases, at the
equilibrium state. The reliable calculation of phase equi-
librium for multicomponent mixtures is a critical issue in
the simulation, optimization and design of a wide variety
of industrial processes, especially those involving separa-
tion operations such as distillation and extraction. It is
also important in the simulation of enhanced oil recovery
processes such as miscible or immiscible gas flooding. How-
ever, even when accurate models of the necessary thermo-

dynamic properties are available, it is often very difficult
to actually solve the phase equilibrium problem reliably,
an issue that may have significant implications. For ex-
ample, distillation operations are typically designed with
the expectation that there be exactly two phases (vapor
and liquid) on each tray. The unexpected and unpredicted
appearance of a second liquid phase on one or more trays
could substantially change the operating characteristics of
the distillation column, resulting in failure to achieve the
desired separation performance, or even resulting in safety
issues.

For the case of fixed temperature and pressure, which
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will be the focus here, the fundamental thermodynamic
condition that must be achieved at phase equilibrium is
the global minimization of the total Gibbs energy. Though
easily stated in principle, in practice the computation of
phase equilibrium is a very challenging problem. As a re-
sult, there is a very large and still growing body of litera-
ture devoted to the solution of this problem. As reviewed
by Seider and Widagdo (1996), there have been proposed
a wide variety of problem formulations and numerical solu-
tion procedures, involving both direct optimization and the
solution of equivalent nonlinear equation systems. Some
methods use local optimization and/or equation-solving
methods, perhaps in connection with some multistart ap-
proach, or the use of homotopy-continuation. Stochastic
global optimization methods (e.g., simulated annealing, ge-
netic algorithms, etc.) have also been frequently proposed
in this context. However, none of these techniques is actu-
ally guaranteed to produce the correct results, and, with
very few exceptions, these methods may fail to solve the
phase equilibrium problem correctly in some cases. In this
paper, we will discuss a deterministic method, based on
interval analysis, that provides a mathematical and com-

putational guarantee that the phase equilibrium problem
has been correctly solved, and will highlight recent results
using such an approach. Cases are considered in which
published computational results are shown to be incorrect
(not stable phase equilibria).

2 BACKGROUND

For determining phase equilibrium at constant tempera-
ture and pressure, the total Gibbs energy of the system
is minimized. This computation is commonly done in
two (possibly alternating) stages, as outlined by Michelsen
(1982a,b). The first involves the phase stability problem;
that is, to determine whether a given mixture (test phase)
will split into multiple phases. The second involves the
phase split problem; that is, to determine the amounts and
compositions of the phases assumed to be present. Phase
stability analysis may be interpreted as a global optimality
test that determines whether the phase being tested corre-
sponds to a global minimum in the total Gibbs energy of
the system. If it is determined that a phase will split, then
a phase split problem is solved, which can be interpreted
as finding a local minimum in the total Gibbs energy. This
local minimum can then be tested for global optimality us-
ing phase stability analysis. If necessary, the phase split
calculation must then be repeated, perhaps changing the
number of phases assumed to be present, until a solution
is found that meets the global optimality test. Clearly
the correct solution of the phase stability problem, itself a
global optimization problem, is the key in this two-stage
global optimization procedure for phase equilibrium. How-
ever, in solving the phase stability problem, conventional
solution methods are initialization dependent, and may fail
by converging to trivial or nonphysical solutions or to a
point that is a local but not a global minimum. Thus, there

has been significant interest in the development of deter-

ministic techniques that guarantee the correct solution of
the phase stability problem, as reviewed briefly below.

Accurate predictions of phase equilibrium also require a
good model of the Gibbs energy of the system, in terms of
the system temperature, pressure and composition. This
is usually based on an excess Gibbs energy model (activ-
ity coefficient model) and/or an equation-of-state (EOS)
model. When the same model is used to represent all
phases, the overall model is referred to as symmetric.
When different models are used to represent different types
of phases, the overall model is referred to as asymmetric.

One approach for deterministic phase stability analy-
sis, as demonstrated by McDonald and Floudas (1995a,b,c,
1997) for symmetric cases in which various excess Gibbs
energy models were used, is the use of deterministic
global optimization techniques, such as GOP (Floudas and
Visweswaran, 1990, 1993) and branch-and-bound (Falk
and Soland, 1969). McDonald and Floudas (1995a,b,c,
1997) also considered the asymmetric case in which an ex-
cess Gibbs energy model was used for liquid phases, and
the vapor was an ideal gas. A more general branch-and-
bound strategy, the α-BB method, was applied by Hard-
ing and Floudas (2000) to symmetric cases in which cubic
EOS models were used. The α-BB approach relies on the
use of convex underestimating functions to obtain lower
bounds on the objective function. However, whether these
are rigorously valid bounds depends on the proper choice
of a parameter (α). Methods exist (Adjiman et al., 1998),
based on an interval representation of the Hessian matrix,
that can be used to guarantee a proper value of α, and this
approach was applied by Harding and Floudas (2000).

An alternative deterministic procedure for phase sta-
bility analysis is the use of an interval-Newton approach
(Schnepper and Stadtherr, 1996). This approach was first
demonstrated for symmetric cases using excess Gibbs en-
ergy models by Stadtherr et al. (1995), and later by McK-
innon et al. (1996) and Tessier et al. (2000), and was first
demonstrated for symmetric cases using cubic EOS models
by Hua et al. (1996a,b, 1998). Xu et al. (2002) also applied
this approach to the symmetric case in which a statisti-
cal associating fluid theory (SAFT) model is used. The
interval-Newton procedure provides a mathematical guar-

antee that the phase stability problem is correctly solved.
Moreover, since it uses interval arithmetic throughout, and
thus bounds rounding error, the interval-Newton method
also provides a rigorous computational guarantee of global
optimality (Hansen and Walster, 2004). We highlight here
new and recent results using this approach, on both sym-
metric and asymmetric models, focusing on cases in which
published computational results are shown to be incorrect.

3 PHASE STABILITY ANALYSIS

The determination of phase stability is typically done us-
ing tangent plane analysis, based on the test formulated by
Baker et al. (1982). Consider a system with n components,
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Figure 1: Example of a reduced Gibbs energy surface, here
expressed as the Gibbs energy of mixing m vs. mole frac-
tion x1

and assume that the phase to be tested has a composition
(mole fraction) vector x0 and that a constant temperature
T and pressure P have been specified. Then consider the
molar reduced Gibbs energy vs. composition (mole frac-
tion) surface g(x) and a hyperplane tangent to g(x) at
x = x0. If this tangent plane ever crosses (goes above) the
Gibbs energy surface g(x), then the phase being tested is
not stable (i.e., it is either unstable or metastable). This
condition is often stated in terms of the tangent plane dis-
tance (TPD) function D(x) that gives the distance of the
Gibbs energy surface above the tangent plane. This is
given by

D(x) = g(x) − g0 − sT
0 (x − x0), (1)

where g0 = g(x0) and s0 = ∇g(x0) are the reduced Gibbs
energy function and its gradient evaluated at the feed com-
position x0. If D(x) is negative for any value of x, then
the phase being tested is not stable.

To illustrate the use of the tangent plane criterion, con-
sider the binary (n = 2) g(x) curve given in Fig. 1. Here
g(x) is expressed relative to a reference state consisting
of the pure components at system temperature and pres-
sure and is labeled m, the reduced Gibbs energy of mixing.
For a test phase (feed) of composition x0 = (0.95, 0.05)T,
the situation is shown in Fig. 2. Here it is seen that the
tangent (mtan) to the Gibbs energy of mixing curve m at
x0,1 = 0.95 never crosses the Gibbs energy curve m. Thus,
D is never negative, and this test phase is stable. On
the other hand, Fig. 3 shows the situation for a feed of
composition x0 = (0.65, 0.35)T. Here it is seen that the
tangent (mtan) to the Gibbs energy of mixing curve m at
x0,1 = 0.65 does cross the Gibbs energy curve m. Thus, D
becomes negative, and this test phase is not stable.

Computationally, to determine if D is ever negative, its
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Figure 2: Tangent plane analysis for feed composition of
x0,1 = 0.95. This feed is stable.
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Figure 3: Tangent plane analysis for feed composition of
x0,1 = 0.65. This feed is not stable.

minimum is sought by solving an optimization problem:

min
x

D(x) (2)

s.t. 1−
n∑

i=1

xi = 0.

If a stationary point (local minimum) of D is found for
which D < 0, then this indicates that the phase being
tested is not stable. Actually, to show that a phase is
not stable, it is sufficient to find any point x for which
D < 0. However, stationary points with D < 0 are com-
monly sought since they are useful in providing initial com-
position estimates for a possible new equilibrium phase or
phases, and thus are useful in solving the phase split prob-
lem. Proof that the phase being tested is stable is obtained
if the global minimum of D is zero (corresponding to the
tangent point at the feed composition x0). Obviously this
procedure may fail if the global minimum of the tangent
plane distance function is not found. For instance, if the
optimization algorithm used returns a global minimum of
zero, while the true global minimum is negative, the con-
clusion that the phase is stable will be incorrect.
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Figure 4: Example of a reduced Gibbs energy surface for
an asymmetric model.

The foregoing assumes that the overall Gibbs energy
model is symmetric, and that g depends only on the com-
position x, as in the case of excess Gibbs energy models.
If an EOS model is used, again considering only the sym-
metric case, then the optimization problem to be solved
is:

min
x,v

D(x, v) (3)

s.t. 1 −
n∑

i=1

xi = 0

f(x, v) = 0.

Here v is the molar volume, which is related to the compo-
sition x by the EOS f(x, v) = 0. EOS models may also be
written in terms of the compressibility factor Z = Pv/RT ,
instead of v. A complication that arises when an EOS
model is used is that for a given composition x, there may
be multiple solutions for v. This means that g(x, v), and
thus D(x, v), may be multivalued for some values of x.
This situation can be avoided by using a different formu-
lation of the problem, as described by Nagarajan et al.
(1991). However, when interval methods are used, as de-
scribed below, the occurrence of multiple volume roots
does not cause any difficulties.

Finally we consider the asymmetric case, focusing on
the case in which only vapor and liquid phases are possi-
ble. The Gibbs energy model for the liquid phase is de-
noted gL(x) and is assumed to be an excess Gibbs energy
model. The Gibbs energy model for the vapor phase is
denoted gV(x, v) and is assumed to be an EOS model. In
tangent plane analysis for phase stability, since the goal
in testing a phase is to detect alternate states that have a
lower Gibbs energy, the Gibbs energy surface that must be
used is given by whichever of gL(x) and gV(x, v) is low-
est. That is, in Eq. (1), g(x) = min[gV(x, v), gL(x)], as
depicted in Fig. 4, and evaluations at x0 must be done
on the lower of the Gibbs energy surfaces. It follows that
D(x) = min[DV(x, v), DL(x)], where the vapor and liquid
tangent plane distance functions, DV(x, v) = gV(x, v) −

Figure 5: Pseudo tangent place distance (PTPD) function
for feed composition x0,1 = 0.6. This phase is not stable.

g0 − sT
0 (x − x0) and DL(x) = gL(x) − g0 − sT

0 (x − x0),
respectively, are both based on the same values of g0 and
s0, as determined from whichever Gibbs energy surface
is lower at x0. The minimization problem that must be
solved is

min
x,v

{min[DV(x, v), DL(x)]} (4)

s.t. 1 −
n∑

i=1

xi = 0

f(x, v) = 0.

To avoid the difficulties associated with the nondifferen-
tiable objective function, it is convenient to reformulate the
problem, as originally described by Xu et al. (2005). This
involves use of a “pseudo tangent plane distance” (PTDP)
function

D̃(x, v, θ) = θDV(x, v) + (1 − θ)DL(x), (5)

where θ is a binary variable whose value is determined
as part of the optimization problem. For example, for the
Gibbs energy model shown in Fig. 4, with feed composition
x = (0.60, 0.40)T, the corresponding pseudo tangent plane
distance function is shown in Fig. 5. The minimization
problem that must be solved can now be expressed as:

min
x,v,θ

D̃(x, v, θ) (6)

s.t. 1 −
n∑

i=1

xi = 0

f(x, v) = 0

θ(1 − θ) = 0.

Note that the last equation is equivalent to θ ∈ {0, 1}.
While θ appears here as a continuous variable, it will be
treated explicitly as a binary variable when this system is
solved, as explained below.

We now consider a method that can be used to obtain,
with mathematical and computational certainty, the global
minimum in the optimization problem that must be solved
to determine phase stability.
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4 SOLUTION METHOD

4.1 Interval analysis

A real interval X is defined as the set of real numbers lying
between (and including) given upper and lower bounds;
that is, X =

[
X, X

]
=

{
x ∈ < | X ≤ x ≤ X

}
. Here an

underline is used to indicate the lower bound of an inter-
val, and an overline is used to indicate the upper bound.
A real interval vector X = (X1, X2, ..., Xn)T has n real
interval components and can be interpreted geometrically
as an n-dimensional rectangle or box. In this context up-
percase quantities are intervals, and lowercase quantities
or uppercase quantities with underline or overline are real
numbers.

Basic arithmetic operations with intervals are defined
by X op Y = {x op y | x ∈ X, y ∈ Y }, where op ∈
{+,−,×,÷}. Interval versions of the elementary func-
tions can be similarly defined. When machine compu-
tations with interval arithmetic operations are done, as
in the procedures outlined below, the endpoints of an in-
terval are computed with a directed (outward) rounding.
That is, the lower endpoint is rounded down to the next
machine-representable number, and the upper endpoint is
rounded up to the next machine-representable number. In
this way, through the use of interval arithmetic, as opposed
to floating-point arithmetic, any potential rounding error
problems are avoided. Several good introductions to in-
terval analysis, as well as interval arithmetic and other
aspects of computing with intervals, are available (e.g.,
Hansen and Walster, 2004; Jaulin et al., 2001; Kearfott,
1996; Moore, 1966; Neumaier, 1990). Implementations of
interval arithmetic and elementary functions are also read-
ily available, and recent compilers from Sun Microsystems
directly support interval arithmetic and an interval data
type.

For an arbitrary function f(x), the interval extension
F (X) encloses all possible values of f(x) for x ∈ X; that
is, it encloses the range of f(x) over X. It is often com-
puted by substituting the given interval X into the func-
tion f(x) and then evaluating the function using interval
arithmetic. This “natural” interval extension is often wider
than the actual range of function values, although it always
includes the actual range. For example, the natural inter-
val extension of f(x) = x/(x − 1) over the interval X =
[2, 3] is F ([2, 3]) = [2, 3]/([2, 3] − 1) = [2, 3]/[1, 2] = [1, 3],
while the true function range over this interval is [1.5, 2].
This overestimation of the function range is due to the
“dependency” problem, which may arise when a variable
occurs more than once in a function expression. While a
variable may take on any value within its interval, it must
take on the same value each time it occurs in an expression.
However, this type of dependency is not recognized when
the natural interval extension is computed. In effect, when
the natural interval extension is used, the range computed
for the function is the range that would occur if each in-
stance of a particular variable were allowed to take on a dif-
ferent value in its interval range. For the case in which f(x)

is a single-use expression, that is, an expression in which
each variable occurs only once, natural interval arithmetic
always yields the true function range. For example, re-
arrangement of the function expression used above gives
f(x) = x/(x − 1) = 1 + 1/(x − 1), and now F ([2, 3]) =
1 + 1/([2, 3]− 1) = 1 + 1/[1, 2] = 1 + [0.5, 1] = [1.5, 2], the
true range. For cases in which such rearrangements are not
possible, there are a variety of other approaches that can
be used to try to tighten interval extensions (Hansen and
Walster, 2004; Jaulin et al., 2001; Kearfott, 1996; Makino
and Berz, 1999, 2003; Neumaier, 1990, 2003).

4.2 Interval-Newton method

Of particular interest here is the interval-Newton method,
an outline of which is given here. More details are avail-
able elsewhere (e.g., Hansen and Walster, 2004; Kearfott,
1996). The interval-Newton method is an equation-solving
method. In the context of phase stability, it is used to
seek solutions of the first-order optimality conditions cor-
responding to the minimization problems described above.
The global minimum in the optimization problem will be
one of these stationary points. This technique is not equiv-
alent to simply implementing the routine “point” Newton
method in interval arithmetic.

Consider the solution of the general nonlinear equation
system f(x) = 0, which in this context represents the first-
order optimality conditions associated with minimizing an
objective function φ(x). Given some initial search inter-
val, X(0), the interval-Newton algorithm is applied to a
sequence of subintervals. For a subinterval X(k) in the se-
quence (beginning with k = 0), the first step is the function

range test. An interval extension F (X(k)) of the function
f(x) is calculated. If there is any component of the in-
terval extension F (X(k)) that does not include zero, then
no solution of f(x) = 0, can exist in this interval. This
interval can then be discarded since the global minimum
must be one of the stationary points. The next subinter-
val in the sequence may then be considered. Otherwise,
testing of X(k) continues. During this step, other interval-
based techniques (e.g., constraint propagation) may also
be applied to try to shrink X(k) before proceeding.

The next step is the objective range test. An interval
extension Φ(X(k)), containing the range of φ(x) over X(k)

is computed. If the lower bound of Φ(X(k)) is greater

than a known upper bound φ̂ on the global minimum, then
X(k) can be discarded since it cannot contain the global
minimum and need not be further tested. Frequently, in
phase stability analysis, this test will be turned off, since
it is desired to obtain all the stationary points, not just
the global minimum. The stationary points are useful to
initialize the solution of the phase split problem when a
phase is found to be not stable.

If X(k) has not been eliminated in the objective range
test, then the next step is the interval-Newton test. The
linear interval equation system

F ′(X(k))(N (k) − x̃(k)) = −f(x̃(k)), (7)
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is solved for a new interval N (k), where F ′(X(k)) is an in-
terval extension of the Jacobian of f(x), and x̃(k) is an ar-
bitrary point in X(k). It has been shown (e.g., Hansen and
Walster, 2004; Kearfott, 1996; Neumaier, 1990) that any
root of f(x) = 0 contained in X(k) is also contained in the
image N (k). This implies that if the intersection between
X(k) and N (k) is empty, then no root exists in X(k), and
also suggests the iteration scheme X(k+1) = X(k) ∩ N (k).
In addition, it has also been shown (e.g., Hansen and
Walster, 2004; Kearfott, 1996; Neumaier, 1990) that, if
N (k) ⊂ X(k), then there is a unique root contained in X(k)

and thus in N (k). Thus, after computation of N (k) from
Eq. (7), there are three possibilities: (1) X(k)∩N (k) = ∅,
meaning there is no root in the current interval X(k), and
it can be discarded; (2) N (k) ⊂ X(k), meaning that there
is exactly one root in the current interval X(k); and (3)
neither of the above, meaning that no conclusion can be
drawn. In the last case, if X(k)∩N (k) is sufficiently smaller
than X(k), then the interval-Newton test can be reapplied
to the resulting intersection, X(k+1) = X(k) ∩N (k). Oth-
erwise, the intersection X(k) ∩ N (k) is bisected, and the
resulting two subintervals are added to the sequence of
subintervals to be tested. If an interval containing a unique
root has been identified, then this root can be tightly en-
closed by continuing the interval-Newton iteration, which
will converge quadratically to a desired tolerance (on the
enclosure diameter).

Clearly, the solution of the linear interval system given
by Eq. (7) is essential to this approach. To see the
issues involved in solving such a system, consider the
general linear interval system Az = B, where the ma-
trix A and the right-hand-side vector B are interval-
valued. The solution set S of this system is defined by

S =
{

z

∣∣∣ Ãz = b, Ã ∈ A, b ∈ B
}

. However, in general this

set is not an interval and may have a very complex, polyg-
onal geometry. Thus to “solve” the linear interval sys-
tem, one instead seeks an interval Z containing S. Com-
puting the interval hull (the tightest interval containing
S) is NP-hard (Rohn and Kreinovich, 1995), but there
are several methods for determining an interval Z that
contains but overestimates S. Various interval-Newton
methods differ in how they solve Eq. (7) for N (k) and
thus in the tightness with which the solution set is en-
closed. By obtaining bounds that are as tight as possible,
the overall performance of the interval-Newton approach
can be improved, since with a smaller N (k) the volume
of X(k) ∩ N (k) is reduced, and it is also more likely that
either X(k) ∩ N (k) = ∅ or N (k) ⊂ X(k) will be satisfied.
Thus, intervals that may contain solutions of the nonlin-
ear system are more quickly contracted, and intervals that
contain no solution or that contain a unique solution may
be more quickly identified, all of which leads to a likely
reduction in the number of bisections needed.

Frequently, N (k) is computed component-wise using an
interval Gauss-Seidel approach, preconditioned with an ap-
proximate inverse-midpoint matrix. Though the inverse-
midpoint preconditioner is a good general-purpose precon-

ditioner, it is not always the most effective approach (Kear-
fott, 1996). Recently, a hybrid preconditioning approach
(HP/RP), which combines a simple pivoting precondi-
tioner (and a method for selecting the real point x̃(k)) with
the standard inverse-midpoint scheme, has been described
by Gau and Stadtherr (2002) and shown to achieve sub-
stantially more efficient computational performance than
the inverse-midpoint preconditioner alone, in some cases
by multiple orders of magnitude. However, it still can-
not yield the tightest enclosure of the solution set, which,
as noted above, is in general an NP-hard problem. Lin
and Stadtherr (2004a,b) have recently suggested a strategy
(LISS LP), based on linear programming (LP), for solving
the linear interval system, Eq. (7), arising in the con-
text of interval-Newton methods. Using this approach,
exact component-wise bounds on the solution set can be
calculated, while avoiding exponential time complexity.
In numerical experiments (Lin and Stadtherr, 2004a,b),
LISS LP has been shown to achieve further computational
performance improvements compared with HP/RP.

This approach, as outlined above, is referred to as an
interval-Newton/generalized-bisection (IN/GB) method.
An important feature of this approach is that, unlike stan-
dard methods for nonlinear equation solving and/or op-
timization that require a point initialization, the IN/GB
methodology requires only an initial interval, and this in-
terval can be sufficiently large to enclose all feasible results.
Thus, in the case of phase stability analysis, all composi-
tion variables (mole fractions) xi can be initialized to the
interval [0, 1]. For the vapor-phase molar volume v, an
initial interval corresponding to a compressibility factor
(Z = Pv/RT ) interval of [0.5, 1] is used. The lower limit of
0.5 effectively eliminates any liquid-like volume roots (the
EOS model is used to represent the vapor phase only) and
in most circumstances is reasonable for the relatively low
pressures at which asymmetric models are typically used.
If the pressure was so high that the vapor-phase compress-
ibility was less than 0.5, then a symmetric model using
an EOS for both vapor and liquid phases would probably
be used. Of course, the initial interval for v can easily be
modified as desired to fit other circumstances. Finally, for
the binary variable θ, the initial interval is set to [0, 1].
For this binary variable, a special bisection rule is used. If
θ is chosen by the IN/GB algorithm as the variable to be
bisected, then it is bisected into the degenerate (thin) in-
tervals [0, 0] and [1, 1]. Thus θ can be bisected only once.
In this way, θ is treated explicitly as a binary (rather than
continuous) variable in solving the equation system.

On completion, if the objective range test has been
turned off, the IN/GB algorithm will have determined,
with certainty, narrow enclosures of all the stationary
points of D, including local and global optima, and thus
the global minimum can be readily determined. Alter-
natively, if the objective range test has been turned on,
the IN/GB scheme will lead directly to the global mini-
mum without finding any of the other stationary points.
However, as noted above, if the tested phase is not sta-
ble, knowledge of the stationary points can be useful for
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initializing phase split computations.

5 EXAMPLES

5.1 Example 1

In this example, we consider an asymmetric model of the
binary mixture 2,3-dimethyl-2-butane (component 1) and
methanol (component 2). The liquid phase is modeled us-
ing the NRTL excess Gibbs energy model and the vapor
phase using the Soave-Redlich-Kwong (SRK) EOS model.
Thus, for the liquid phase,

gL(x) =

n∑

i=1

xi ln xi +

n∑

i=1

xi

∑n

j=1 xjτjiGji∑n

k=1 xkGki

, (8)

where Gij = exp(−αijτij) and τij = Aij/RT . Values of
the parameters α and Aij are given below. This reduced
Gibbs energy function is expressed relative to the pure
components as liquids at system temperature and pressure.
The reduced Gibbs energy for the vapor phase, relative to
the same reference state is

gV(x, v) =

n∑

i=1

xi ln xi +

n∑

i=1

xi ln φ̆i(x, v)

−
n∑

i=1

xi

[
vL

i (P − P sat
i ) + ln φsat

i + ln
P sat

i

P

]
. (9)

Here φ̆i(x, v) is the fugacity coefficient of component i in
the mixture at system T and P , vL

i is the molar volume
of pure i as a liquid at system T (assumed independent
of pressure and evaluated at saturation), P sat

i is the vapor
pressure of pure i at system T , and φsat

i is the fugacity
coefficient of pure i as a vapor at P sat

i and system T . The
SRK EOS is given by

f(x, v) = P − RT

v − b
+

a

v(v + b)
= 0. (10)

Here a and b are functions of x determined by spec-
ified mixing rules. The “standard” mixing rules are
b =

∑n

i=1 xibi and a =
∑n

i=1

∑n

j=1 xixjaij , with aij =
(1− kij)

√
aiaj . The ai and bi are pure component proper-

ties determined from the system temperature T , the criti-
cal temperatures Tci, the critical pressures Pci and acentric
factors ωi according to

bi = 0.08664
RTci

Pci

(11)

ai = 0.42748α
R2T 2

ci

Pci

(12)

α =
[
1 + (0.480 + 1.574ωi − 0.176ω2

i )(1 −
√

T/Tci)
]2

.

(13)

The binary interaction parameter kij is generally deter-
mined experimentally by fitting binary vapor-liquid equi-
librium data. Values of the model parameters are given

below. The mixture fugacity coefficients φ̆i(x, v) are deter-
mined (Prausnitz et al., 1986) from the SRK EOS model,
using the relationship

ln φ̆i(x, v) = ln
v

v − b
+

bi

v − b
−

2
∑n

j=1 xjaji

RTb
ln

v + b

v

+
abi

RTb2

[
ln

v + b

v
− b

v + b

]
− ln

Pv

RT
. (14)

The equation of state can also be used to determine φsat
i .

However, since P sat
i is likely to be relatively small, it is

often reasonable to assume that φsat
i = 1, and that is what

is done here.
The optimization problem to be solved for this asym-

metric model is given by Eq. (6). For this problem, the
first-order optimality conditions, i.e., the equations solved
using the interval-Newton approach, are

∂D̃

∂xi

− ∂D̃

∂xn

= 0, i = 1, . . . , n − 1 (15)

1 −
n∑

i=1

xi = 0 (16)

f(x, v) = 0 (17)

θ(1 − θ) = 0. (18)

Experimental vapor-liquid equilibrium measurements
were made for this system recently by Uusi-Kyyny et al.
(2004) at atmospheric pressure. The experimental pressure
varied slightly, but for most measurements was P = 101.2
kPa, and this is the value used here. The experimental
results were modeled by Uusi-Kyyny et al. (2004) using
SRK as the vapor-phase model, and using NRTL, Wilson,
and UNIQUAC as different liquid-phase models. Param-
eters in each of the liquid-phase models were estimated
by minimizing the sum of the absolute values of the rel-
ative errors between the measured activity coefficient and
the activity coefficient calculated from the model. To then
test the liquid-phase models, Uusi-Kyyny et al. (2004) used
them to perform bubble-point calculations at each of the
liquid-phase compositions x1 on the experimental vapor-
liquid envelope. Comparing the computed results for the
vapor-phase compositions y1 and temperature T to the
experimental values showed that the average errors were
∆y1 = 0.0059 and ∆T = 0.14 K for the Wilson equa-
tion, ∆y1 = 0.0124 and ∆T = 0.41 K for NRTL, and
∆y1 = 0.0194 and ∆T = 0.56 K for UNIQUAC. Hence,
the Wilson equation apparently provided the best fit, fol-
lowed by NRTL, and then UNIQUAC. We will use the
NRTL model here, with the parameters A12/R = 691.87
K and A21/R = 513.14 K (α12 = α21 = 0.4), which are the
values determined by Uusi-Kyyny et al. (2004). For SRK,
the pure component properties used are Tc1 = 524.0 K,
Pc1 = 3160 kPa, ω1 = 0.2333, Tc2 = 512.6 K, Pc2 = 8096
kPa, and ω2 = 0.5656, and the binary interaction parame-
ter used is k12 = 0. Pure component vapor pressures come
from the Antoine equation (with P sat

i in MPa and T in K),

P sat
i = exp

(
Ai −

Bi

T + Ci

)
, (19)
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with A1 = 6.574, B1 = 2500.8, C1 = −64.19, A2 = 9.5334,
B2 = 3550.3 and C2 = −37.353. The liquid molar volumes
used are vL

1 = 119.643 cm3/mol and vL
2 = 40.7 cm3/mol.

All the model parameters used here are exactly as given
by Uusi-Kyyny et al. (2004).

As a test problem for the phase stability analysis pro-
cedure described above, we first chose a feed composi-
tion on the experimental vapor-liquid envelope, namely
x0,1 = 0.6233 and T = 325.62 K. Our expectation was
that this feed would either be just slightly outside the
phase envelope predicted by NRTL/SRK, in which case
the feed would test as stable, or it would be just slightly
inside the phase envelope, in which case the feed would
test as unstable, with one stationary point near the ex-
perimental vapor-phase composition (y1 = 0.4758) show-
ing a negative value of PTPD. However, what we actually
computed for this feed composition was quite different, as
shown for the first feed listed in Table 1. This feed tested
as not stable, but in addition to a stationary point with
negative PTPD near the experimental vapor-phase com-
position, there were also two other stationary points with
negative PTPD. Using NRTL/SRK to do a bubble-point
calculation (phase split calculation) for this liquid-phase
composition (x1 = 0.6233) shows that there is a solution to
the bubble-point problem at y1 = 0.4684 and T = 325.243
K. This is very near the experimental values of 0.4758 (∆y1

= 0.0074) and 325.62 K (∆T = 0.377 K), and so this is the
solution obtained by Uusi-Kyyny et al. (2004). Now test-
ing this result for phase stability, with the results shown
as the second feed in Table 1, as well as in the PTPD plot
in Fig. 6, shows that this solution to the bubble point
problem is in fact not stable. While this may be a math-
ematically correct solution to the bubble-point problem,
it is not thermodynamically correct, and it is not a point
on the vapor-liquid envelope predicted by NRTL/SRK, as
was believed by Uusi-Kyyny et al. (2004). In fact, a phase
split calculation, followed by phase stability analysis of the
results (third feed in Table 1), shows that for a feed of x0,1

= 0.6233 at T = 325.243 K, NRTL/SRK actually predicts
liquid-liquid equilibrium, with one liquid phase of compo-
sition x1 = 0.29703 and another liquid phase with compo-
sition x1 = 0.85822 (phases in equilibrium share the same
tangent plane). For each feed tested in Table 1, the com-
putation time was less than 0.05 s (Pentium 4 3.2 GHz).

In Figure 7, we show the entire phase diagram for this
system when calculated from Uusi-Kyyny et al. (2004)’s
SRK/NRTL model, along with the experimental phase
equilibrium data. These calculations were validated by us-
ing the methodology for phase stability analysis described
above. Clearly the phase diagram calculated from the
model does not closely match the experimental data. Ex-
perimentally, a homogeneous azeotrope is observed. How-
ever, the model predicts a heterogeneous azeotrope, i.e. a
vapor-liquid-liquid equilibrium (VLLE) line. The model
predicts that there should be no liquid phases observed
with compositions in the range from roughly x1 = 0.298 to
x1 = 0.858 (end points on the VLLE line), but in fact there

Figure 6: Plot of pseudo tangent plane distance (PTPD)
function in Example 1 for vapor-liquid equilibrium com-
puted by Uusi-Kyyny et al. (2004). This is not a stable
state. See text for discussion.

Table 1: Results for selected feed compositions and tem-
peratures in Example 1.

Feed Stationary Points

x0,1 T (K) x1 θ D̃

0.6233 325.62 0.6233 0 0
0.4678 1 −0.01439
0.2923 0 −0.006359
0.8551 0 −0.004804

0.6233 325.243 0.6233 0 0
0.4684 1 0
0.2914 0 −0.006428
0.8559 0 −0.004878

0.85822 325.243 0.85822 0 0
0.29703 0 0
0.4691 1 0.005939
0.6125 0 0.005537

are many experimental liquid-phase points seen within this
range. These discrepancies between model and experiment
are plainly due to the fact that Uusi-Kyyny et al. (2004)’s
model predicts a liquid-liquid split, while experimentally
this apparently does not occur. The prediction of a liquid-
liquid split is due solely to the liquid-phase model used,
and so it is clear that the NRTL model parameters given by
Uusi-Kyyny et al. (2004) are poor. So how did Uusi-Kyyny
et al. (2004) get this problem so badly wrong? First, in
their parameter estimation procedure, they apparently fit
the experimental data to an unstable solution of the phase
split problem. Second, they then failed to realize that their
model was incorrect because they solved subsequent phase
equilibrium problems incorrectly, failing to find the stable
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Figure 7: Phase diagram computed from Uusi-Kyyny et al.
(2004)’s model in Example 1, along with their experimental
data (� = vapor; • = liquid). See text for discussion.

solution. The combination of these two mistakes caused
Uusi-Kyyny et al. (2004) to be misled into thinking they
had successfully modeled their experimental results, when
in fact they had not. Proper use of a reliable method for
phase stability analysis would prevent this situation from
occurring. Finally, note that these results do not neces-
sarily mean that NRTL is a poor choice of model for the
liquid, only that the parameters were poorly determined.

5.2 Example 2

In this example, we consider the binary mixture of
dichlorodifluoromethane (CFC-12) (component 1) and hy-
drogen fluoride (component 2) at T = 303.15 K. Again we
consider an asymmetric model. The liquid-phase model is
NRTL, as described above. The vapor-phase model is the
Peng-Robinson (PR) EOS. The PR EOS is given by

f(x, v) = P − RT

v − b
+

a

v(v + b) + b(v − b)
= 0. (20)

Here a and b are functions of x according to the mixing
rules given above, and the pure component ai and bi are
determined from

bi = 0.07780
RTci

Pci

(21)

ai = 0.45724α
R2T 2

ci

Pci

(22)

α =
[
1 + β(1 −

√
T/Tci)

]2

(23)

β = 0.37464 + 1.54226ωi − 0.26992ω2
i . (24)

Values of the model parameters are given below. The mix-
ture fugacity coefficients φ̆i(x, v) are determined (Praus-
nitz et al., 1986) from the PR EOS model, using the rela-

tionship

ln φ̆i(x, v) =
bi

b

(
Pv

RT
− 1

)
− ln

P (v − b)

RT

− a

2
√

2bRT

[
2

∑n

j=1 xjaji

a
− bi

b

]
ln

v + (1 +
√

2)b

v + (1 −
√

2)b
. (25)

For this problem, the first-order optimality conditions, i.e.,
the equations solved using the interval-Newton approach,
are again given by Eqs. (15)–(18).

Kang (1998) did measurements and modeling of the
phase equilibrium for this system. These measurements
of equilibrium pressure and average liquid-phase composi-
tion show that this system exhibits a maximum-pressure
heterogeneous azeotrope (VLLE line), and Kang (1998)
presents a model which appears to provide a good predic-
tion of the pressure and the liquid-liquid phase split at the
azeotrope. Kang (1998)’s model uses NRTL for the liquid
phase. For the vapor phase, Kang (1998)’s base model is
the PR EOS, but there is an additional contribution to the
EOS to account for the association of HF molecules. For
the computations done here, we will use the same liquid-
phase model (NRTL) as Kang (1998), but for the vapor
phase, we will use the base PR model only, without the as-
sociation terms. Thus we would expect our calculations to
match liquid-liquid phase split results computed by Kang
(1998), but not to match Kang (1998)’s results for vapor-
phase compositions or equilibrium pressures.

For the NRTL model, the parameters obtained by Kang
(1998) are A12 = 1595.631 cal/mol and A21 = 1701.751
cal/mol, with α12 = α21 = 0.425. For the PR EOS, the
pure component properties used are Tc1 = 385.0 K, Pc1

= 4129 kPa, ω1 = 0.179, Tc2 = 461.0 K, Pc2 = 6480 kPa,
and ω2 = 0.372, and the binary interaction parameter used
is k12 = 0. At the system temperature of 303.15 K, the
pure component vapor pressure values used by Kang (1998)
are P sat

1 = 742.73 kPa and P sat
2 = 144.0 kPa. Liquid

molar volumes were taken to be vL
1 = 95.804 cm3/mol and

vL
2 = 14.9 cm3/mol, from the modified Rackett equation

with parameters given by Kang (1998).
Kang (1998) computes a maximum-pressure heteroge-

neous azeotrope (VLLE line) at about 868 kPa, with the
liquid splitting into one liquid phase with composition x1 ≈
0.06 and other liquid phase with composition x1 ≈ 0.90
(values estimated from a plot). Since the liquid-phase
model (NRTL) is pressure-independent, the same liquid-
liquid split should be observed for pressures above the
maximum-pressure heterogeneous azeotrope, where there
should be liquid-liquid equilibrium only (no vapor). As an
initial test point for our phase stability analysis procedure,
we chose a pressure (905 kPa) somewhat above the hetero-
geneous azeotrope, and a composition (x0,1 = 0.54) in the
middle of the presumed two-phase (liquid-liquid) region.
Results of applying phase stability analysis for this point
are shown as the first feed in Table 2. This shows that
actually this test phase is a stable liquid (single phase),
and not in a two-phase region as Kang (1998)’s compu-
tations would indicate. Further analysis shows that there
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is a solution to the phase split problem with x1 = 0.0652
for the first liquid phase and x1 = 0.8993 for the second
liquid phase. This is clearly the phase split found by Kang
(1998) for the heterogeneous azeotrope. Phase stability
analysis shows, however, that this is not a stable liquid-
liquid phase split, as indicated in Table 2 (second feed)
and in the PTPD plot in Fig. 8. In fact, when Kang
(1998)’s model is correctly solved, by use of the reliable
phase stability analysis procedure given here, there are two
VLLE lines (one a heterogeneous azeotrope) found. At the
heterogeneous azeotrope and pressures above it, the liquid
splits into one liquid phase with x1 = 0.5566 and another
liquid phase with x1 = 0.9013. At the other VLLE line
and pressures above it, the liquid splits into one liquid
phase with x1 = 0.0647 and another liquid phase with x1

= 0.5360. Both these phase splits were validated using
phase stability analysis, as indicated in Table 2 (third and
fourth feed) for trial points (905 kPa) somewhat above the
VLLE pressures. Since this type of phase behavior is not
observed experimentally, and the prediction of a liquid-
liquid split is due solely to the liquid-phase model used,
it is apparent that the NRTL parameters determined by
Kang (1998) are not appropriate. In a situation similar
to that seen in the previous example, Kang (1998) appar-
ently fit the experimental data to an unstable solution of
the phase split problem, and then failed to recognize this
because subsequent phase split calculations were done in-
correctly (without correct phase stability analysis). This
misled Kang (1998) into thinking that his NRTL parame-
ters were reasonable.

5.3 Example 3

In this example, we focus on an approach for avoiding the
sort of difficulties seen in the previous two examples. There
are many good routines available for computing phase equi-

Figure 8: Plot of pseudo tangent plane distance (PTPD)
function in Example 2 for liquid-liquid phase equilibrium
computed by Kang (1998). This is not a stable equilibrium
state. See text for discussion.

Table 2: Results for selected feed compositions and pres-
sures in Example 2.

Feed Stationary Points

x0,1 P (kPa) x1 θ D̃

0.54 905.0 0.54 0 0
0.8151 1 0.001293
0.2247 0 0.00604
0.0649 0 0.0003998
0.7796 0 0.002569
0.8985 0 0.001201

0.0652055 905.0 0.0652 0 0
0.8993 0 0
0.8152 1 0.0001724
0.2228 0 0.005488
0.5446 0 −0.0008581
0.7762 0 0.001485

0.5566258 905.0 0.5566 0 0
0.9013 0 0
0.8156 1 0.0003807
0.2181 0 0.007156
0.0659 0 0.002048
0.7672 0 0.0018

0.0646917 905.0 0.0647 0 0
0.5360 0 0
0.8150 1 0.001527
0.2264 0 0.005776
0.7826 0 0.002775
0.8978 0 0.001505

librium. These routines are often very reliable, but offer no
guarantee of reliability and so fail on occasion to provide
the correct results. What is needed is a way to validate the
results of such routines when they are correct, and to pro-
vide feedback in the occasional case for which the results
are incorrect. We demonstrate here a strategy for doing
this, based on the use of the IN/GB approach for phase
stability analysis described above. In particular, we adopt
the standard code CHASEOS for computing chemical and
phase equilibrium from cubic EOS models (e.g., SRK and
PR), and show how its results can be validated, with cor-
rective feedback as needed, using the routine INTSTAB, an
implementation of the interval-based technique for phase
stability analysis given above. CHASEOS implements the
algorithm of Castier et al. (1989), an extension of the
techniques of Michelsen (1982a,b) and Myers and Myers
(1986). This is a well-regarded technique and is generally
very reliable.

When the code CHASEOS returns a phase equilibrium
result, there is no guarantee that it is correct. Thus, the
result needs to be validated. To do this, the composition
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of one of the phases (or of the only phase if it is a single-
phase result) is passed to INTSTAB for validation using
phase stability analysis. If INTSTAB determines that the
system is stable, then this validates that the result found
by CHASEOS is indeed correct. If INTSTAB determines
that the system is not stable, then this indicates that the
results returned by CHASEOS are incorrect. In this case,
the stationary point corresponding to the global minimum
in D will have a negative value of D. The composition
at this stationary point is then returned to CHASEOS,
where a new phase is added, and the composition at that
stationary point is used in reinitializing before performing
another phase split calculation. This process appears to
the CHASEOS code just as if it were a stationary point
with negative D value found by its own stability analysis
routine. CHASEOS is then executed until a new result is
returned for validation by INTSTAB. This type of two-
stage strategy in which phase split computations (local
minimization of the total Gibbs energy) alternates with
phase stability analysis (global optimality check) can be
shown (e.g., McKinnon et al., 1996) to converge in a fi-
nite number of steps to the equilibrium state (global mini-
mum of the total Gibbs energy) provided that a determin-
istic procedure is used to globally minimize the tangent
plane distance function in doing phase stability tests. In
fact, CHASEOS already uses such a two-stage strategy
(Michelsen, 1982a,b) internally, but the procedure used to
test phase stability is not deterministic and may fail to give
the correct result. This validated version of CHASEOS,
obtained by interfacing CHASEOS and INTSTAB, is re-
ferred to as V-CHASEOS (Burgos-Solórzano et al., 2004).
This validated computing approach could be used in con-
nection with many other codes for phase equilibrium as
well. If validation alone is desired, then the phase equilib-
rium code can be treated simply as a black box. If cor-
rective feedback is also desired, then access to the source
code is required, so that feedback can be inserted at the
proper point in the code.

To demonstrate the use of V-CHASEOS, we will con-
sider the mixture of acetic acid, ethanol, water, ethyl ac-
etate and CO2 at T = 60 C and P = 57.8 atm. This
problem arises in studying the esterification of acetic acid
with ethanol using supercritical CO2 as a solvent:

acetic acid + ethanol � ethyl acetate + water

This is a reactive system, and in solving the phase split
problem, both reaction and phase equilibrium need to be
accounted for. The phase stability problem is the same as
described above. In this example, a symmetric model is
used, with all phases (vapor or liquid) modeled using the
PR EOS, as given by Eq. (20). All model parameters for
this problem are given by Burgos-Solórzano et al. (2004);
this is the third of three models they test for this system.

When stability analysis is done, the optimization prob-
lem to be solved for this symmetric model is given by Eq.
(3). For this problem, the first-order optimality condi-
tions, i.e., the equations solved using the interval-Newton

Table 3: Summary of steps done in application of V-
CHASEOS in Example 3.

Step Result

CHASEOS Vapor + Liquid

INTSTAB Not stable

CHASEOS (repeat 1) Liquid + Liquid

INTSTAB (repeat 1) Not stable

CHASEOS (repeat 2) Vapor + Liquid + Liquid

INTSTAB (repeat 2) Stable

approach, are

∂D

∂xi

− ∂D

∂xn

= 0, i = 1, . . . , n − 1 (26)

1 −
n∑

i=1

xi = 0 (27)

f(x, v) = 0. (28)

V-CHASEOS was applied for a feed containing 3.64 mol
of ethanol, 3.64 mol of acetic acid and 2.72 mol of CO2.
A summary of the steps taken in V-CHASEOS on this
problem is shown in Table 3. The initial application of
CHASEOS to this feed resulted in the computation of a
vapor-liquid equilibrium. However, when INTSTAB at-
tempted to validate this result, it was found to be not
stable. Thus, without any validation step, the standard
code CHASEOS would have returned an incorrect result,
containing one liquid and one vapor phase. After correc-
tive feedback from INTSTAB, CHASEOS now computes
a liquid-liquid equilibrium. Again, when INTSTAB at-
tempted to validate this result, it was found to be not
stable. After another corrective feedback from INTSTAB,
CHASEOS now computes vapor-liquid-liquid equilibrium,
a result that is validated by INTSTAB. Thus, the cor-
rect validated result from V-CHASEOS is that there are
two liquid phases and one vapor phase, not a single liquid
phase as CHASEOS alone would have determined.

6 CONCLUDING REMARKS

The computation of phase equilibrium is a very challeng-
ing problem. There have been proposed a very large num-
ber and wide variety of problem formulations and numeri-
cal solution procedures, involving both direct optimization
and the solution of equivalent nonlinear equation systems.
Still, with very few exceptions, these methods may fail
to solve the phase equilibrium problem correctly in some
cases. It is, unfortunately, not difficult to find examples in
the literature of phase equilibrium problems that have been
solved incorrectly. We have described here a deterministic
method, based on interval analysis, that provides a mathe-
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matical and computational guarantee that the phase equi-
librium problem has been correctly solved, and have high-
lighted recent results using this approach.

The use of interval methods to validate results
from a standard phase equilibrium code has also been
demonstrated, in connection with the standalone code
CHASEOS. This approach to validated computing could
also be used for phase equilibrium computations in the
context of a process simulator. In this case, since the equi-
librium computation may be nested inside some other it-
erative calculation, it is probably not desirable to invoke
the validation procedure every time an equilibrium com-
putation is done. Instead, the validation step should be
applied only after the entire simulation is complete. The
validation comes at the cost of additional computing time.
Thus a modeler may need to consider the trade off between
the additional computing time and the risk of getting the
wrong answer to a phase equilibrium problem. Certainly,
for mission critical situations, the additional computing
expense is well spent.
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