IV'BJ; ~ Congress:

Glardini Naxos (Italy) 26-30 April 1987

"APPLICATIONS OF SUPERCOMPUTERS
IN CHEMICAL ENGINEERING

M.A. Stadtherr
Dept. Chem. Eng., 208 Adams Lab. Box C-3
University of llinois .
1209 West California Street, Urbana, Illinois 61801, USA

ABSTRACT

In the first part of this paper we briefly
discuss the following: 1. The basic
architectural concepts used in supercomputers and
other advanced-architecture machines; 2.

Applications of -these machines with emphasis on

those 1in chemical engineering; 3. Challenges 1in
developing algorithms and codes that take best
advantage of advanced computer architectures. In
the second part of the paper we use a specific
example, . namely sparse matrix methods for
equation~based process flowsheecfng; to
illustrate a few of the considerations that may
arise in applying advanced computer
architectures.

ADVANCED COMPUTER ARCHITECTURES

Advanced computer architectures provide the

potential for much higher computational speeds
than typical "conventional" computers, as well as
access to larger central memories. For more
detail there are two good introductions to some
aspects of advanced computer architectures by
Levine (1982) and Lerner (1985), as well as a
recent overview by Vegeais et al. (1986). A
review of various algorithms that exploit these
architectures 1s given 1In ‘Ortega and Voigt
(1985). Also, tutorial volumes compiled by Hwang
(1984) and by Kuhn and Padua (1981) comprise a
variety of papers = describing both advanced
architectures and related algorithms.

Today, the best known and most widely used
advanced-architecture machines are the so-called
supercomputers, as typified by machines such as
the Cray-1, the CDC Cyber 205, the Cray X-MP, and
the Cray-2. To relate. supercomputer speed to
that of some familiar conventional machines, we
note that the Cray-l's peak speed is more than an
order of magnitude faster than that of large
mainframe computers like the CDC Cyber 175 or the
IBM 3081, roughly three orders of magnitude
faster than the VAX . 11/780, a popular
superminicomputer, and roughly four orders of
maghitude faster than the IBM PC/AT. Depending
on the number of processors available, the Cray

X-MP and Cray=2 can 1increase computational
. throughput by yet another order of magnitude or
more relative to the Cray-l. It should be

emphasized that these figures reflect approximate
peak speeds, which may not be realized in
practice unless the program and algorithm used
are able to take advantage of the supercomputer
architecture. One very popular benchmark for
comparing computer performance is the solution of
linear equation systems using the = LINPACK
routines (Dongarra, 1986).

While supercomputers have been defined as
the fastest computers available at any specific
tipe_ gt as computers that are only one generation

behind the computing requirements of leading-edge
efforts in sclence and engineering, the
characteristic that distinguishes today's
supercomputers from other conmputers is the
extensive use of some form of narallelism. The
need for parallelism can be easily seen by noting

that since computers were first being
manufactured, most = of the increases in
computational . speed have been due simply to

increased clock speed. However, it appears that
a limit -to the «clock' speed is ~now being
approached. For computers with extremely fast
clock speeds, the dirensions of the machine
become. an important consideration. Since
electrical signals cannot travel faster than the
speed of light, a very high clock speed requires
that the maximum distance a signal aust travel be
very small. For 'example, a signal can travel
only about 30 centimeters in one nanosecond.
Therefore, a computer with a one ns clock (which
would be roughly a factor of four faster than the
clock cycle of a processor in a state~of-the~art
supercomputer such as the Cray-2) must be no more
than about a cubic foot in size. This, of
course, causes tremendous wiring and cooling
problems. Because of this, it has becone
necessary for computer manufacturers to look to
the parallel processing of instructions and data
to significantly increase the speed of their
computers. This parallelism generally manifests
itself 1in some form of vector processing or
nultiprocessing architecture, as described
below. For instance, machines such as the Cray
X-MP or Cray-2 use a vector multiprocessing
architecture.

‘Despite. all of the current interest in
supercomputers, their availability is still
limited by their high cost, typically in excess
of 55 million and perhaps much more. This may
put the supercomputer out of the price range of
all but the largest concerns. However, machines
have now become available which cost one or two
orders of magnitude less than this, and which, by
using advanced . computer architectures, offer
substantial performance improvements compared to
similarly priced conventional machines. Some of
these advanced—-architecture machines use
architectures very similar to the Cray-l, and may
even be software compatible with the Cray-l.
Others use nuch different architectural
concepts. Assuming that their architectures can
be effectively exploited by the user, all of
these machines, often called "minisupercomputers’
or even 'personal supercomputers,” appear to
offer significantly better price/performance
ratios than the conventional technology. :

As noted above, the key element in advanced
computer architectures is parallelism. There are
tany different ways in which a computer can be
made to operate in parallel. In order to easily
distinguish between these differences, several

different ‘sets of categories have been
proposed. One simple way to classify advanced
architectures is as vector processors,

~ multiprocessors, and vector nultiprocessors
(Bucher, 1983).

The . vector processing category includes
"SIMD" and 'pipelined" computers because both
facilitate the processing of identical operations
on large vectors or arrays of numbers.
Pipelining is perhaps best explained using an
assembly~line analogy. For example, a floating-
point operation ‘involves several steps. Without
pipelining, all the steps needed to complete omne
operation would be performed before starting the
first step of the next operation. Thus, - in
effect, the computer works on one operation at a
time. On the other hand, to perform a particular
operation in a highly'pipel;ned computer, there
are several "stations,”" each of which performs
only one step of the overall operation. Since,
as in an assembly line, all stations are working
concurrently, the computer can perform each step
of the operation on different data at the same

time. Examples of this type .of computer are the
Cyber 205 and the Cray-l; both are “highly
pipelined machines, although they operate

somewhat differently. For 1instance, the Cyber
205 operates most efficiently on very long
vectors, while the Cray-l can operate efficiently
even on relatively short vectors. SIMD computers
are composed of an array of separate processors,
each performing the same operation at the same
time but on different data. . Perhaps the best
known high-performance machines of this type are
the ILLTIAC 1V, now retired, and the Massively

Parallel Processor (MPP) built for NASA by
Goodyear Aerospace, primarily for image
processing. The ILLIAC IV, which had an array of

64 processors, c¢ould, for instance, add two 64-
element vectors in about the same time as a

scalar addition, since all 64 scalar additions

needed to add the vectors could be done in
parallel.

. The nultiprocessing category covers
architectures = that wuse an array of scalar
processors, each capable of executing different
instructions at the same time on different

data. Since the processors can execute different
instructions, they are not necessarily
synchronized. Two examples of commercial

multiprocessors are the BBN Butterfly and the
Intel iPSC. There are also many experimental
prototype machines of this type, as well as other
machines in various stages of commercialization.

The vector ~multiprocessing category 1is
essentially a combination of vector processing
and multiprocessing. There are a number of
processors that can run in parallel, and each of
these processors is 1itself a . powerful vector
processor, generally of the pipelined type. lost
state-of-the-art supercomputers, such as the Cray
X-MP and the Cray-2 fall into this category, and
plans for ~newer machines suggest that this
architecture will continue to dominate the high
end of the supercomputer market for at least the
short-to-medium term. Currently available state-
of-the-art machines have up to four .vector
processors in parallel, and this number is
expected to grow significantly over the next
several years.

Applications

For . the chemical engineer, most of the
opportunities provided by advanced- architecture
machines can be grouped into three overlapping

‘supercomputer

categories: 1. The opportunity to solve problems
involving the modeling and analysis of complex
physical phenomena which were previously
intractable, or at least computationally
infeasible; 2. The opportunity to greatly
increase engineering design productivity in areas
requiring large=-scale computation; = 3. The
opportunity to. use complex models in real-time
applications. We discuss each of these
categories very briefly here. More detail on
applications in chemical
engineering has been provided Trecently by
Stadtherr and Vegeais (1985a). - :

There are a number of well-established
applications in the first category, including

petroleum reservoir simulation, weather
forecasting, ' quantum chemistry, high energy
. physics, astrophysics, etc. " Some = typical
features of problems in this category are: l.

They require computationally intensive solution
methods such as finite element methods, finite
difference methods, or Monte Carlo simulation; 2.
They may be computationally intractable except on
supercomputers (for example, problems that could
take months to solve on a Vax may require only
hours on a Cray); 3. Using the supercomputer,
they can be solved with much higher resolution,
in more dimensions, and with models that more
accurately represent the true chemistry and
physics. . Some typical applications of this type
in chemical engineering include turbulent flow
phenomena, polymer rheology, combustion, chemical
vapor deposition, etc. Chemical engineering
problems in this area often involve rapid changes
in a phenomena with respect to position or time,
or an interacting combination of phenomena, e.g.,
simultaneous chemical reaction, fluid flow, heat
transfer, or mass transfer. The supercomputer,
while perhaps still not able to solve -all
problens to the resolution desired, provides the
chemical engineer the opportunity to model such
phenomena - in much wmore. detail and with greater
accuracy than previously possible.

) The second category is the use of advanced
computer architectures to increase the
productivity of design engineers. There are well
established applications of this sort in nuclear
engineering, automotive engineering, 'aerospace
engineering, and ‘electrical engineering.
Problems in this category can often be 'solved
using conventional computers, - but may require
several minutes, or much more, of computer
time. By using the speed of advanced computer
architectures, design productivity can be greatly
increased - (for ‘example problems that could
require several minutes.. on a Vax may require a

. second or less on a Cray). This means _.the

engineer can consider many more design
alternatives, and, since the engineer can get
very rapid feedback on the results of design
changes, there 1s wuch better man—-machine
interaction in the design process. In chenmical
engineering there’' have been relatively . few
applications of this sort so far. A few recently
described ones are: batch distillation (Crico,
1986) and interconnected systems of distillation
colunns (Senior, 1986). Likely areas of major
ippact in the future include both steady- and
unsteady-state process flowsheeting and
optimization.)

The third category .is currently the least
developed of the three. Real-time applications
include robotics, -avionics, speech recognition,
image processing, and process control.
Applications in this category generally require

either that data be sampled at an extremely high
rate or that a complex model or computationally
intensive procedure be used to process the data
(so that without advanced architecture speed, the
computer would fall behind real time). The most

likely chemical engineering application 1is
process control. Real time simulations of entire
plant complexes using advanced computer

architectures will provide a powerful tool for

on-line, model-based' optimization of complete
plant operations.
Algorithme and Codes

As noted above, the potential speed of

sdvanced computer architectures may not be (and
#sually is not) realized in practice unless the
nrograms. and algorithms used are able to take
#dvantage of the architecture. A factor used to
neasure the performarice of an algorithm or
program in this regard 1is '"speedup." On a
multiprocessor, speedup is defined as the time it
takes to complete a job using only one processor,
"divided by the time the job requires using P
processors. Ideally . speedup would be P,
indicating that the algorithm could be performed
in P independent parts of equal size. Often, the
speedup is divided by the number of processors
and is then called the efficiency.

It has been shown, based on a very simple
nodel of parallel processing, that if the
fraction of code that can. be performed in
parallel on P processors is f, then the maximum
speedup S is P/(P - fP + f), a relationship known
as - Amdahl's law (Amdahl, 1967).- .Speedup is a
measure that can also be used with vector
computers. In this case it is the ratio of the
time {t ‘takes for a job to execute without

vectorization to the time it takes for a job to

execute with vectorization. For vector
computers, one can obtain an equation identical
to Andahl's law. 1In this case, however, f refers
to the fraction of the code that vectorizes, and
P ‘refers ‘to ratio of peak vector speed to peak
scalar speed. It can be seen from Amdahl's law
that significant speedup requires that
substantial portions of the code be run in
parallel. Note, for instance, that with 64
processors, just 5% non-parallelized code will
result in a maximum speedup of 15,42 (or a
maximunm efficiency of only 24%Z). Even very small
amounts of non-parallelized or non-vectorized
code can cause very significant losses in overall
efficiency. = Another way of Llooking at this,
however, is to note that once a relatively high f

has been obtained; even small increases in the -

amount of parallelization or vectorization can
yield very significant rewards. On the other
hand, ‘when one is working at smaller values of f,
small increments in f will not have a significant
impact.

In a .vector processor, to obtain a high
speedup factor one must be concerned with writing
code so that as much of the code as possible
consists of vector operations. Vectorizing
compilers can now do a good job of producing code
that is vectorized; unfortunately, the compiler
does not know as much about the purpose of the
code as does the programmer. Because of this, it
is still necessary for the programmer to write
code in such a way that the compiler can
recognize as nuch - vectorizable code as
possible. Vectorization can be inhibited by many
different things. First, compilers generally
vectorize only DO loops. Loops created with IF
statements will not vectorize and should be
avoided. Vectorization may also not take place

823

if certain statements are within the loops. For
example, loops with IF statements, subroutine
calls, or statements with recursion will normally
not. vectorize nor will loops with irregular
addressing. Strategies that avoid some of these
problems vary from simply removing a statement
from a loop to splitting a loop into miltiple
loops to using special vector functions such as
gather/scatter. Even when a 1loop can. be
vectorized, it may not execute as fast as it
might 1f t*2 code were altered. For example,
loops may often be. speeded up by unrolling the
loop to reduce the number of memory references.
Nested loops may often be speeded up by changing
the order of the loops so that the longest loop
is vectorized. It should be noted that cades
that vectorize on one computer may not vectorize

‘on another vector computer, or may not show as

mich of a speed increase if they do vectorize.
For example, the Cyber 205 oJperates most
efficiently on very long vectors, while the Cray-
1 can operate efficiently on shorter vectors.

For a nultiprocessor, the goal is

‘essentially to use solution algorithms and write

code that allows a job to be s¢plit into many
separate tasks, some of which- can be executed
simultaneously. On machines where each processor
shares some global memory this often results in
some sort of task queue. The next task in the
queue is begun when a processor becomes
available. On a multiprocessor without global
menory, however, it is often necessary to specify
not only the tasks but .to determine which
processor should do each task. It is also
necessary to determine in which local memory
variables will ‘be kept.

Strategies for using multiprocessors exhibit
varying degrees of synchronization. The most
synchronized approach .would be to use a
multiprocessor as an SIMD computer by programming
so ‘that all processors are performing the same
operation at the same time. A slightly less
synchronized method would be for all processors
to start different tasks at the same time. As
processors complete their tasks they become idle
until the last processor finishes its task. They
may all begin on their next task then. This
method is often easy to program as it involves a
sequence of parallel steps.. In such an algorithn
it becomes important to keep the time for the
completion of a task about the same for all
processors in order to minimize the ‘amount of

‘time = that processors remain idle while waiting

for the other processors to finish. A more
efficient method is to decompose the problem but
not require that all tasks start -
simultaneously. This allows processors that have

completed their tasks to begin = new - tasks
immediately, if the necessary data are
available. In this case it is necessary to

synchronize only so a processor does not attempt
to use an operand that has not yet been
calculated by another processor. This
synchronization can be done by several different
methods. ~ One is by causing a processor to wait
until a certain necessary event has occurred.
Another 1s to cause a processor to wait for the
completion of a certain task. In this case, the
size of the separate tasks in the code (or
granularity) = becomes a critical factor in
obtaining maximum efficiency. In the case of
very small granularity, machines are being
developed for which this synchronization can be
done on the machine level, in what is known as a
data flow machine. For -larger granularity the
synchronization is usually done by the programmer

824

or the compiler.,

Another major concern to the multiprocessor
programmer is how to structure the data in the
multiprocessor. This is normally not a problem
for a shared-memory mnultiprocessor, but is
extremely important in machines with local
memory, such as computers with a hypercube
architecture. If not done properly, the memory
transfer time could dominate the total execution
time of the program.

To execute efficiently, vector
multiprocessors obviously require algorithms and
programs that exploit both vector operations and
parallelism. However, the need for long vectors
and the need for several independent tasks can
sometimes be competing demands. - For example, in
the implementation of a nested dissection
algorithm on a vector computer, the factorization
time can be decreased by stopping the dissection
process short of completion (George et al.,
1978). The incomplete dissection yields longer
vectors than the original scheme, but it also
yields fewer submatrices that can be factored in
parallel. :

In order to 1{llustrate a few of the
considerations that may arise in applying
advanced computer architectures, we now turn to a
specific example, sparse matrix methods for
equation-based process flowsheeting.

EQUATION-BASED FLOWSHEETING

Equation—based (EB) process flowsheeting can
provide an efficient alternative to traditional
sequential modular flowsheeting packages, and is
today attracting increasing commercial interest
and use.

The basic idea behind EB flowsheeting is
very simple. A process is modeled by a large set
of mnonlinear equations, which is then solved
simultaneously, using Newton-Raphson or some
related technique. Reviews of the EB approach
have been provided by Shacham, et al. (1982),
Perkins (1984), and Stadtherr and Vegeais
(1985¢c).

The periodic solution of such a large sparse
set of 1linear equations is a key step in the
solution of the set of nonlinear flowsheeting
equations. The sparse matrices that arise in
these problems do not have a highly regular
structure nor do they have desirable numerical
properties such as diagonal dominance or positive
definiteness. Because of this, a direct and
general-purpose sparse matrix solver is generally
required. Unfortunately the direct solution of
large sparse sets of linear equations without
regular structure is a problem that has not been
particularly amenable to advanced computer
architectures. :

The problem with conventional codes is that
in order to eliminate storage of the zeros in the
sparse matrix, extensive use is made of indirect
addressing. Experience has been (Duff and Reid,
1982) that these sparse codes do not vectorize
well due to this indirect addressing.
Furthermore, there is little recoding that can be
done to improve the situation. What is needed is
a rethinking of the algorithm involved. On
multiprocessors there has been rather litrtle
experience with these codes; but again it appears
that a rethinking of algorithms is required.
Thus we seek to develop strategies for

effectively using
multiprocessing
sparse matrix

vector processing and
architectures 1in solving the
problems that arise in EB
flowsheeting. As was shown by Stadtherr and Wood
(1984a,b), flowsheeting matrices do have a
structure that can be exploited on. sequential
computers by a sparse matrix solver. This
structure arises from the fact that a process is
composed simply of unit -operations with few
interconnections between them. - This results in a
matrix that is generally block-banded with
several off-band blocks. ' The question we ‘will
look at briefly here, and in more - detail
elsewhere (Vegeais and Stadtherr, 1987a,b) is how
this structure can be exploited on vector: or
parallel processors. It should also be pointed
out that although the solution .of the sparse

matrix problems is a key computational step in EB

flowsheeting, there are other computationally
intensive steps as well, especially the
evaluation of physical properties. From Amdahl's
law, it is clear that in order to effectively
speed- up an EB flowsheeting package, ~the
vectorization or parallelization of all parts of
the package must be considered.

Vector Processiqg Considerations

On vector computers, it 1is desirable to
operate on. data in contiguously or regularly
indexed vectors. There are at least two ways
this may be done in a sparse matrix algorithm.
The first is by the use of gather and scatter and
the second is to treat parts of the sparse matrix
as if they were full submatrices.

In the gather/scatter method, the needed
indexed data is gathered into contiguous
locations. Vector operations are then performed
on this data. Finally, the results are scattered
back into their original indexed locations. lMost
experience " has been that this takes ‘little
advantage - of the possible speedup - of vector
processors . (Petersen, 1983). However, as will be
discussed later, some recent results (Lewis and
Simon, 1986) using gather/scatter in hardware on
the Cray X-MP/24 suggest that gather/scatter
offers potentially much better results than
previously thought. :

In order to. treat parts of the sparse matrix
as. ~dense, some matrix structure must . be
located. Two forms that often occur are dense
blocks and diagonal bands. These can be taken
advantage of by block-oriented solvers (Calahan,
1979) and frontal solvers (Duff, 1984),
respectively. Both of these types of structures
can be seen in process flowsheeting matrices.

The block structure in flowsheeting matrices
arises ' from the modular nature of chemical
processes. The blocks that occur are themselves
sparse, however., Treating them as full can add
somewhat to. the - amount of storage required and
will result in performing many wasted operations
on zero elements. Another problem in applying
this. approach to process flowsheeting matrices is
that it is often necessary. to perform row or
column interchanges in order - to preserve
numerical stability. These interchanges require
the redefinition of the blocks and interrupt
vector processing.

The frontal approach originated as a band
solver for finite element problems (e.g., Irons,’
1970). In this method, operations are confined
to a relatively small submatrix, called a frontal
matrix, that can be regarded as full. This
matrix moves down the diagonal as the solution

proceeds.

As mentioned before, process flowsheeting
matrices are block-banded with some off-band
blocks. While the matrices are not strictly
banded, Stadtherr and Vegeais (1985b) found the
frontal approach to be effective in solving
flowsheeting matrices. These results and
subsequent results from Vegeais and Stadtherr
(1987a) show that, by using the frontal approach,
a percent vectorication of about 90Z can be
obtained with only about 307 wasted operations on
zeros: The performance of the frontal approach
depends strongly on the ordering of the rows in
the matrix. Vegeais and Stadtherr (1987a) have
conaidered a. number of different reordering
schemes for flowsheeting natrices. and “have found
that a cheap and effective reordering can be
found by simply reversing the row order obtained
from the BLOKS reordering algorithm of Stadtherr
and Wood (1984a).

As mentioned above, the addition of hardware
gather/scatter may -affect the performance of
direct sparse matrix .solvers . on vector
computers. Hardware gather/scatter allows vector
memory access to randomly indexed vectors, such
as .those that arise in general direct sparse
matrix solvers. This feature is now available on
new Cray computers.

Lewis and Simon (1986) have compared the
relative execution times for the factorization of

seven test sparse matrix problems on a Cray X-

MP/24 with hardware gather/scatter and without

hardware gather/scatter. The test matrices
chosen were all symmetric and positive
-definite. Six of the seven matrices were from

the finite element method while the seventh arose
from an electric power network problem. For the
six finite element problems, fairly good speedups
of 5.55~7.79 were observed. For the seventh
problem however a speedup of -only 1.34 was
observed. At least part of the reason for this
appears to be that the electric power problem is
more sparse - than the other
results 1in shorter vectors and, therefore, a
smaller speedup. Since flowsheeting matrices are
not symmetric and positive definite, it is hard
to draw any direct conclusions from these results

regarding the likely impact of hardware
" gather/scatter in solving = flowsheeting
problems. It is our observation, however, that
typical flowsheeting matrices seem ¢to more
closely resemble power network matrices than.

. those from finite element problems.

Multiprocessing Considerations

Multiprocessing involves identifying
independent tasks to be executed
simultaneously. For general sparse matrices this

has been discussed by -Calahan (1973), Conrad and
Wallach (1977), and Peters (1985). Al
essentially considered permuting the matrix to
bordered diagonal form (BoDF). Figure ! shows a
matrix in BoDF. This form has been considered
because the pivoting on elements of D, the
elimination of S, and the updating of submatrix T
can be done in parallel. There is a possibility
‘of memory conflicts when updating T, however.

‘With a matrix in BoDF, each processor can be
assigned a pivot in the diagonal submatrix D.
Each processor can divide the elements in its row
of R by the pivot -element for that row
independently. Also, the elimination of the
elements in § can proceed in parallel because
each processor can eliminate all the variables in

- still must be eliminated.

problems. This

825.

its own column. The corresponding necessary
updates in T can also be computed in parallel.

Although the updates of T can be calculated
independently, it is possible that there could be
conflicts 4involving more than one processor
attenpting to add the update to an element of T
at the same time. If R and S are sparse,
however, this will be. rare. If R and S are
rather dense, though, this conflict will cause
some loss of efficiency on many machines.
However, some machines, like the NYU
Ultracomputer (Patt, et al., 1984) are able to
handle this problem through the use of ‘a smart
switching network and a “feteh and = add"
command., The fetch and add instruction is
intended primarily for use with indices that are
1ikely to be accessed often during the execution

of 'a progranm. - With the fetch - and add
instruction, the value of the element in memory
can be incremented as the element 1s being
fetched., In addition, if more than one processor

attempts to access the same element in memory,
the requests and increments can be combined so
that no delay is required for this memory
conflict. The fetch and add instruction could be
used to add the updates to the T submatrix. The
fetch part is actually unnecessary in this case.

elements in the
the updated submatrix T
The overall solution

After pivoting on the
diagonal submatrix D,

proceeds recursively:

STEP 1
~Reorder (Vegeais and Stadtherr, 1987b)
-Do parallel pivoting on D
STEP 2
~Reorder remaining submatrix T-SD 1R
-Do parallel pivoting on diagonal part
STEP 3
~Etce.

This procedure has two drawbacks. First, it
does not take advantage of the block structure of
the flowsheeting matrices. Also, each -step
includes a reordering. This reordering is not
done in parallel which could significantly slow
down the overall computation rate. In order to
avoid these problems, a bordered block diagonal
form (BoBDF) can be used.

Figure 2 shows a matrix in BoBDF. This
matrix can be solved in a method analogous to the
solution of the BoDF. Instead of each processor
working on a diagonal element, each processor
works on a block. The blocks in flowsheeting
matrices are not of equal size, however, and this
could cause an unbalanced work load across the
processors, resulting in a low speedup. The task
granularity is too large in this case.

To reduce granularity, each of the diagonal
blocks can be reordered into BoDF (Figure 3).
This allows pivots from the diagonal parts from
all the blocks to be performed at the same
time. Also, the reordering step is able to be
done in parallel since each diagonal block can be
ordered independently.

D |R

Fig. 1

826

N\

2,

\
N

7

Fig. 2

_

Y /
2 . /
’//Vfé
_

solving flowsheeting matrices in parallel. It
can be seen that about half of the rows of the
matrix can . be used as - parallel pivots
initially. It should be pointed out that, in
obtaining these results, the block structure was
not explicitly used as. described, although it was
still exploited. Much more detailed results are
presented in Vegeais and Stadtherr (1987b).

As the pivoting proceeds, the number of
parallel pivots that can be found generally
decreases with each step. This is because the
submatrix. is smaller and generally more dense at
each succeeding step. As the lower right hand
block fills up, it is necessary at some point to
switch to a full matrix solver. It appears that
this should be done after five or six parallel
pivoting steps.

Unlike general sparse solvers on parallel
computers, efficient parallel full matrix solvers
have been developed. For example, Neta and Tai
(1985) report a speedup of 7.96 on a 20 x 20 full
matrix on - an 8 processor - multiprocessor
sinulator. Ceist (1985) reports a speedup of
about 12 in solving a 128 x 128 matrix on a 16
processor hypercube. Crowther, et al. (1985)

report a speedup of 119 in solving a 1200 x 1200
natrix on a 128 processor BBN Butterfly. SR

The speedup of the sparse portion of the
procedure is shown in Table 2. These numbers
look very encouraging. Using Amdahl's law we can
calculate that the percent parallelized code is
about 70Z to 75% after the. first five parallel
pivots have been completed. At this range of f,
a small increase in parallelization can produce a
large gain in speedup.

Table 1

Parallel Pivoting on a Matrix
with Flowsheeting Structure

(N=372)
Number of Density of

Step Parallel Pivots Remaining Matrix
1 181 .09
2 47 25
3 2 .27
4 1 . 27
5 55 .76
6-23 1 «77-.86
24 i 5 .88
25-68 1
etc.

Table 2

(N=372)

Cunulative Speedup
" Processors
Step 2 4 8 16 o
1 1.5 2.3 3.6 5.1 8.5
2 l.4 2.3 4,5 7.0 15.3
3 1.4 2,2 345 5.4 9.0
4 1.4 2.2 3.5 544 9.0
5 1.6 2.1 2.7 3.1 3.8
1 Solver

Switch to Ful

CONCLUDING REMARKS

The ever-increasing demand for ‘more
computing power has manifested itself not only in
the popularity of single. and multiple vector
processors with extremely fast clock cycles, but
in the advent of innovative configurations of
arrays of microprocessors as well. The two
predominant trends in advanced architectures are
the use of a few extremely powerful processors. in
parallel and the use of very many microprocessors
in parallel. Whether there will continue to be a
market for both classes of machines is still
unresolved. - The former type of machine has
firmly ~ established itself as a valuable
scientific tool. However, developments within
the latter class indicate that its members may be
economical alternatives to expensive machines
like the Cray-2, “ In either case, an
understanding of the parallel nature of both the
architecture and the algorithm is necessary ¢to
fully exploit the machine's capabilities. And as
computational requirements continue to grow, the
use of parallel architectures in all branches of
science and engineering seems inevitable.

References

Andahl, G. M., Validity of the Single-processor
Approach to Achieving Large Scale Computing

Capabilities, AFIPS Conf. Proc., 30, 483
(1967). :

Bucher, 1I. Y., The Computational Speed of
Supercomputers, Proce. ACM Sigmetrics

Conference on Measurement and Modeling of
Computer System, p. 151 (1983).

. Calahan, D. A., Parallel Solution of Sparse
Simultaneous Linear Equations, in Proceedings
of the 1llth Annual Allerton Conference on
Circuits and System Theory, (1973).

Calahan, D. A., A Block Oriented Sparse Equation
Solver for the Cray-l, in Proceedings of the
1979 Conference on Parallel Processing, IEEE
Computer Society Press, Silver Spring, MD
(1979).

Conrad, V. and Y. Wallach, Parallel Optimally
Ordered Factorization, in Proceedings 1977
Power Industry Applications Conference

- (1977). .

Crico, A. M., ALAMBIC--A Vectorized
Rectification Simulator
Supercomputers, Paper #55e,

Meeting, Miami Beach (1986).

Batch
Running on
AIChE Annual

Crowther, W., J. Goodhue, E. Starr, R. Thomas, W.
‘Milliken, and T. Blackadar, Performance

Measurements on a 128-node Butterfly Parallel

Processor, in Proceedings of the 1985

International Conference on Parallel
Processing, IEEE Computer - Society Silver

Spring, MD (1985).

Dongarra, J. J., Performance of Various Computers
Using Standard Linear Equations Software in a
Fortran Environment, Technical Memorandum No.
23, Argonne National Laboratory, Argonne, IL
(1986).

buff, I. S., Design Features of a Frontal Code
for Solving Sparse Unsymmetric Linear Systems
Out-of-core, SIAM J. Sci. Stat. Comput., 3,
270 (1984).

Duff, I. S. and J. K. Reid, Experience of Sparse
Matrix Codes on the Cray-l, Computer Physics

Communications, 26, 293 (1982).

Geist, G. G., Efficient Parallel LU Factorization
with Pivoting on a Hypercube Multiprocessor,
Report ORNL-6211, Engineering Physics and
Mathematics Division, Mathematical Sciences
Section, Oak Ridge National ' Laboratory
(1985).

George, - A., W. G. Poole, Jr., and R. G. Voigt,
Analysis of Dissection Algorithms for Vector
Computers, Comp. Math. Appls., 4, 287 (1978).

Hwang, K., Supercomputers: Design and

Applications, IEEE Computer Society Press,
Silver Spring, Maryland (1984).

Irons, B. M., A Frontal Solution Progran for
Finite Element Analysis, International J. for

Numer. Methods in Eng., 2, 5 (1970).

Kuhn, R. H. and D. A. Padua, Tutorial on Parallel

Processing, IEEE Computer Society Press,
Silver Spring, Maryland (1981)..

827

Lerner, E. J., Parallel Processing Gets Down to
Business, High Technology, 5(7), 20 (1985).

Levine, R. D., Supercomputers, Scientific
American, 246(1), 118 (1982).

Lewis, J. G. and H. D. Simon, The Impact of
Hardware Gather/Scatter on Sparse Gaussian
Elimination, Mathematics & Modeling Technical
Report ETA-~TR-33, Boeing Computer Services
(1986) i

Ortega, J. M. and R. G. Voigt, Solution of
Partial Differential Equations on Vector and
Parallel Computers, SIAM Review, 27, 149
(1985).

Neta, B. and H.-M Tai, LU Factorization on
Parallel Computers, Comp. & Math. with
Appls., 11(6), 573 (1985).

Patt, Y. N., R. G. Sheldon, M. Shebanow, C.
Ponder, and W.~M. Hwu, A Comparison of
Several Evolving (University) Supercomputer
Architectures, in Proceedings of the 1984 4th
Jerusalem Conference on Information (1984).

‘Perkins, J. D., Equacion—oriented Flowsheeting,

in Proceedings of the Second International
Conference on Foundations of Computer—-Aided

Process Design (eds. A. W. Westerberg and H.
H. Chiens, CACHE (1984).
Peters, F. J., Parallelism and Sparse Linear

Equations, in Sparsity & its Applications,
Cambridge University Press (1985).

Petersen, W. P., Vector FORTRAN for Numerical
Problems on Cray-l, Communications of the
ACM, 26(11), 1008 (1983).

Senior, - P. R., Simulation of
Systems, Paper #108g, presented at
Annual Meeting, Miami Beach (1986).

Large Dynamic
ALChE

Shacham, M., S. Macchietto, L. F. Stutzman, and
P. Babcock, Equation Oriented Approach to
Process Flowsheeting, Computers and Chemical

Engineering, 6, 79 (1982).

Stadtherr, M. A. and J. A. Vegeails, Advantages of
Supercomputers for Engineering Applications,
Chem. Eng. Prog., 81(9), 21 (1985a).

Stadtherr; M. A. and J. A. Vegeais, Process
Flowsheeting on Supercomputers, IChemE Symp.
Ser., 92, 67 (1985b).)

Stadtherr, M. A. and J. A. Vegeais, Recent
Progress in Equation-based Process
Flowsheeting, in Proceedings of the 19835
Summer Computer Simulation Conference,

Society for Computer Simulation (1985¢).

Stadtherr, M. A. and E. S. Wood, Sparse Matrix
Methods for Equation~based Chemical Process
Flowsheeting-~I1. Reordering Phase, Computers
and Chemical Engineering, 8, 9 (1984a).

Stadtherr, M. A. and E. S. Wood, Sparse Matrix
Methods for Equation-based Chemical Process
Flowsheeting--1I. Numerical Phase, Computers
and Chemical Engineering, 8, 19 (1984b).

Vegeais, J«. A., A. B. Coon, and M. A. Stadtherr,
Advanced Computer Architectures: An Overview,
Chem. Eng. Prog., 82(12), 23 (1986).

828

Vegeals, J. A. and M. ‘A, Stadtherr, Vector
Processing Strategies for Sparse Matrix
Problems in Equation-Based Flowsheeting,
submitted for publication (1987a).

Vegeais, J. A.. and M. A.. Stadtherr, Parallel
Processing Strategies for Sparse Matrix
Problems in Equation-Based Flowsheeting,
submitted for publication (1987b). ‘

