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Motivation – Why Use Intervals?

• In process modeling, and in the modeling of complex
physical phenomena, chemical engineers frequently
need to solve nonlinear equation systems in which
the variables are constrained physically within upper
and lower bounds; that is, to solve:

f(x) = 0

xL ≤ x ≤ xU

• These problems may:

– Have multiple solutions
– Have no solution
– Be difficult to converge to any solution

• Interval methods provide the power to solve these
problems with mathematical and computational
certainty
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Motivation (cont’d)

• There is also frequent interest in globally minimizing
a nonlinear function subject to nonlinear equality
and/or inequality constraints; that is, to solve
(globally):

min
x

φ(x)

subject to
h(x) = 0
g(x) ≥ 0

xL ≤ x ≤ xU

• These problems may:

– Have multiple local minima (in some cases, it
may be desirable to find them all)

– Have no solution (infeasible NLP)
– Be difficult to converge to any local minima

• Interval methods provide the power to solve these
problems with mathematical and computational
certainty
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Some Applications in Chemical

Engineering

• Fluid phase stability and equilibrium

– Activity coefficient models (Stadtherr et al.,
1995; Tessier et al., 2000)

– Cubic EOS (Hua et al., 1996, 1998, 1999)
=⇒ SAFT EOS (Xu et al., 2002)

• Combined reaction and phase equilibrium

• Location of azeotropes (Maier et al., 1998, 1999,
2000)

– Homogeneous
– Heterogeneous
– Reactive

• Location of mixture critical points (Stradi et al.,
2001)

5



Applications (cont’d)

• Solid-fluid equilibrium

– Single solvent (Xu et al., 2000, 2001)
– Solvent and cosolvents (Xu et al., 2002)

• Parameter estimation

– Relative least squares (Gau and Stadtherr, 1999,
2000)

=⇒ Error-in-variables approach (Gau and Stadtherr,
2000, 2002) – Largest problem solved: 264
variables

=⇒ Density-functional-theory model of phase transitions
in nanoporous materials (Maier et al., 2001)

• General process modeling problems (Schnepper and
Stadtherr, 1996)
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Problem-Solving Methodology

Core methodology is Interval-Newton/Generalized
Bisection (IN/GB):

Problem: Solve f(x) = 0 for all roots in X(0).

Basic iteration scheme — For a particular subinterval
(box), X(k), perform root inclusion test:

• (Range Test) Compute interval extension F(X(k)).

– If 0 /∈ F(X(k)), delete the box.

• (Interval-Newton Test) Compute the image, N(k),
of the box by solving the linear interval equation
system

Y (k)F ′(X(k))(N(k) − x(k)) = −Y (k)f(x(k))

– x(k) is some point in X(k).
– F ′ (X(k)

)
is an interval extension of the Jacobian

of f(x) over the box X(k).
– Y (k) is a scalar preconditioning matrix.
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Interval-Newton Method

• There is no solution in X(k).

8



Interval-Newton Method

• There is a unique solution in X(k).

• This solution is in N(k).

• Additional interval-Newton steps will tightly enclose
the solution with quadratic convergence.
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Interval-Newton Method

• Any solutions in X(k) are in X(k) ∩ N(k).

• If intersection is sufficiently small, repeat root
inclusion test. Otherwise, bisect the intersection
and apply root inclusion test to each resulting
subinterval.

• This is a branch-and-prune scheme on a binary tree.
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Methodology (Cont’d)

• This also can be applied to global optimization
problems.

• For unconstrained problems, solve for stationary
points.

• For constrained problems, solve for KKT points (or
more generally for Fritz-John points).

• Add an additional pruning condition (Objective
Range Test):

– Compute interval extension of the objective
function.

– If its lower bound is greater than a known
upper bound on the global minimum, prune this
subinterval since it cannot contain the global
minimum.

• This is a branch-and-bound scheme on a binary tree.
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Methodology (Cont’d)

Enhancements to basic methodology:

• Hybrid of inverse-midpoint and pivoting
preconditioner.

• Selection of x(k): Do not always use the midpoint.

• Constraint propagation (problem specific).

• Tighten interval extensions using known function
properties (problem specific).
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Preconditioning Strategy

• The scalar preconditioning matrix Y (k) is often
chosen to be an inverse-midpoint preconditioner:
inverse of the midpoint of the interval Jacobian
matrix, or inverse of the Jacobian matrix at midpoint
of the interval.

• Preconditioners that are optimal in some sense have
been proposed by Kearfott (1990,1996) based on
LP strategies.

• A pivoting preconditioner (Kearfott et al., 1991)
has only one nonzero element (pivot) in each row
yi of Y (k).

• Hybrid strategy:

– Select pivot in yi to minimize the width of

N
(k)
i ∩ X

(k)
i .

– Use this yi if it reduces width of N
(k)
i ∩ X

(k)
i

compared to use of yi from inverse-midpoint
preconditioner.
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Background—EIV Parameter Estimation

• “Standard” approach

– A distinction is made between dependent and
independent variables.

– It is assumed there is no measurement error in
the independent variables.

– Result is an estimate of the parameter vector.

• “Error-in-variables” (EIV) approach

– Measurement error in all (dependent and
independent) variables is taken into account.

– Result is an estimate of the parameter vector, and
of the “true” values of the measured variables.

– Simultaneous parameter estimation and data
reconciliation.
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EIV Parameter Estimation (cont’d)

• Measurements zi = (zi1, ..., zin)T from i =
1, . . . ,m experiments are available.

• Measurements are to be fit to a model
(p equations) of the form f(θ, z) = 0, where
θ = (θ1, θ2, . . . , θq)T is an unknown parameter
vector.

• There is a vector of measurement errors ei = z̃i−zi,
i = 1, . . . , m, that reflects the difference between
the measured values zi and the unknown “true”
values z̃i.

• The standard deviation associated with the
measurement of variable j is σj.
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EIV Parameter Estimation (cont’d)

• Using a maximum likelihood estimation with usual
assumptions, the EIV parameter estimation problem
is

min
θ,z̃i

m∑
i=1

n∑
j=1

(z̃ij − zij)2

σ2
j

subject to the model constraints

f(θ, z̃i) = 0, i = 1, . . . , m.

• This is an (nm + q)-variable optimization problem.

• Since optimization is over both θ and z̃i, i =
1, . . . ,m, this is likely to be a nonlinear optimization
problem even for models that are linear in the
parameters.
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EIV Parameter Estimation (cont’d)

• If the p model equations can be used to solve
algebraically for p of the n variables, then an
unconstrained formulation can be used

min
θ,ṽi

φ(θ, ṽi)

• ṽi, i = 1, . . . , m, refers to the n − p variables not
eliminated using the model equations.

• φ(θ, ṽi) is the previous objective function after
elimination of the p variables by substitution.

• Could solve by seeking stationary points: Solve
g(y) ≡ ∇φ(y) = 0, where y = (θ, ṽi)T.
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Solution Methods

• Various local methods have been used.

– SQP (for constrained formulation)
– Broyden (for unconstrained formulation)
– Etc.

• Since most EIV optimization problems are nonlinear,
and many may be nonconvex, local methods may
not find the global optimum.

• Esposito and Floudas (1998) apply a powerful
deterministic global optimization technique using
branch-and-bound with convex underestimators.
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Problem 1

• Estimation of Van Laar parameters from VLE data
(Kim et al., 1990; Esposito and Floudas, 1998).

P = γ1x1p
0
1(T ) + γ2(1 − x1)p

0
2(T )

y1 =
γ1x1p

0
1(T )

γ1x1p0
1(T ) + γ2(1 − x1)p0

2(T )

where

p
0
1(T ) = exp

[
18.5875 − 3626.55

T − 34.29

]

p
0
2(T ) = exp

[
16.1764 − 2927.17

T − 50.22

]
and

γ1 = exp

[
A

RT

(
1 +

A

B

x1

1 − x1

)−2
]

γ2 = exp

[
B

RT

(
1 +

B

A

1 − x1

x1

)−2
]

.

• There are five data points and four measured
variables with two parameters to be determined.
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Problem 1 (cont’d)

• Unconstrained formulation is a 12-variable
optimization problem.

• Same search space used as in Esposito and Floudas
(±3σ for the data variables).

• Global optimum found using IN/GB with hybrid
preconditioner in 807.9 seconds on Sun Ultra 2/1300
workstation (SPECfp95 = 15.5).

• Same as result found by Esposito and Floudas
in 1625 seconds on HP 9000/C160 workstation
(SPECfp95 = 16.3).

• Using inverse-midpoint preconditioner, solution time
is > 2 CPU days (Sun Ultra 2/1300).
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Problem 2

• Estimation of parameters in CSTR model (Kim et
al., 1990; Esposito and Floudas, 1998).

• Reaction is A
k1−→ B.

1

τ
(A0 − A) − k1A = 0

−B

τ
+ k1A = 0

1

τ
(T0 − T ) +

−∆Hr

ρCp

(k1A) = 0

where

k1 = c1 exp

(−Q1

RT

)

• There are ten data points and five measured
variables with two parameters to be determined.
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Problem 2 (cont’d)

• Unconstrained formulation is a 22-variable
optimization problem.

• Same search space used as in Esposito and Floudas
(±3σ for the data variables).

• Global optimum found using IN/GB with hybrid
preconditioner in 28.8 seconds on Sun Ultra 2/1300
workstation (SPECfp95 = 15.5).

• Same as result found by Esposito and Floudas
in 282.2 seconds on HP 9000/C160 workstation
(SPECfp95 = 16.3).

• Using inverse-midpoint preconditioner, solution time
is > 2 CPU days (Sun Ultra 2/1300).
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Problem 3

• Estimation of parameters in heat exchanger network
(Biegler and Tjoa, 1993).

• Network of four exchangers.

• Estimate rating parameter (UA)i for each
exchanger.

• There are 20 data points with 19 measured variables
(flowrates and temperatures).

A1

B3

A3

A2

A6

D1

D2

C1

C2

B1

B2

A8

A5

A7

A4

23



Problem 3 (cont’d)

• Six variables can be eliminated using material and
energy balance constraints.

• Unconstrained formulation is a 264-variable
optimization problem.

• Initial interval for parameters (UA)i ∈ [1, 10].

• Global optimum found using interval method in
2157.5 seconds on Sun Ultra 2/1300 workstation.

(UA)1 = 4.84
(UA)2 = 4.00

(UA)3 = 6.81

(UA)4 = 5.35
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Background—SAFT Models

1 2 3 m

Model
Monomer
(Methanol)

Model
m-MER
(Alkanol)

Hydrogen-Bonding 
Associating for Methanol

In statistical associating fluid theory (SAFT), a
molecule is modeled as a chain of tangentially
connected hard spheres, which may associate (weakly
bond) with each other at specified “association sites”.
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SAFT (cont’d)

• The equation of state (EOS) model can be expressed
in terms of residual Helmholtz energy ares as a
function of composition (mole fraction) vector x =
(x1, x2, . . . , xn)T and mixture density %.

• The expression for ares(x, %) is very complicated.

• Alternatively, the EOS can be expressed in terms of
the Helmholtz energy density ã as a function of the
component density vector ρ = (ρ1, ρ2, . . . , ρn)T.

ã(ρ) = %ares(x, %) + RT
∑

i

ρi ln[ρiRT ]

• Problem of interest: Use the SAFT EOS model to
perform phase stability analysis.

26



Phase Stability Analysis

• Will a mixture (feed) at a given T , P , and
composition x0 split into multiple phases?

• A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

• Tangent plane analysis: A mixture is not stable if
the ã vs. ρ surface ever falls below a plane tangent
to the surface at the feed density ρ0.

• That is, if the tangent plane distance function

D(ρ) = ã(ρ) − [ã(ρ0) + ∇ã(ρ0) · (ρ − ρ0)]

is negative for any composition ρ, the mixture is
not stable.

• To determine if D is ever negative, determine its
global minimum.
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Phase Stability Analysis (cont’d)

Solution Procedure—Part 1

Given T , P and x0, find the feed tangent point ρ0. To
do this:

• Solve

P − %2

(
∂ares(x, %)

∂%

)
x,T

− %RT = 0

for all % roots (there may be many).

• Choose the % root corresponding to the smallest
value of the Gibbs energy g = (ã + P )/%. Then
ρ0 = %x0.
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Phase Stability Analysis (cont’d)

Solution Procedure—Part 2

Determine the global minimum of tangent plane
distance D. To do this:

• Determine stationary points of D by solving

∇ã(ρ) −∇ã(ρ0) = 0

for all ρ roots (there may be many).

• If D is nonnegative at all stationary points, the
mixture is stable.
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Problem 4

Mixtures of n-heptane and 1-propanol at T = 333 K and P = 0.35 bar.

Feed Roots % Roots (ρ1, ρ2)
Composition (mol/L) (mol/L) D/RT value Total CPU
(x1,0, x2,0) in Part 1 in Part 2 time (seconds)†
(0.975, (6.84∗; 0.90; (6.667, 0.171) 0.0 143.3
0.025) 0.013) (2.768, 0.069) 0.005

(0.010, 0.002) 0.58 × 10−6

(0.875, (0.0128∗; 7.169; (0.011, 0.002) 0.0 289.1
0.125) 0.968) (2.708, 0.049) 0.004

(6.736, 0.112) −0.597 × 10−3

(0.45, (0.0128∗; 1.173; (0.006, 0.007) 0.0 386.5
0.55) 9.175) (2.706, 0.726) 0.006

(1.511, 10.12) −0.176 × 10−3

(0.10, (11.92∗; 0.0128; (1.192, 10.72) 0.0 189.2
0.90) 1.250) (2.667, 0.960) 0.006

(0.005, 0.007) 0.896 × 10−6

∗ feed density root corresponding to lowest Gibbs energy for feed mixture

† CPU time on Sun Ultra 10/440 workstation

30



Background—Density Functional Theory

• Popular tool for modeling adsorption and other
physical phenomena.

• Basic idea: Model system free energy and entropy
as functionals of the density distribution ρ(r).

• Lattice (discrete density distribution) or nonlattice
models can be used.

• Determine equilibrium density profile by solving
appropriate minimization problem, generally by
numerical solution of a nonlinear equation system
for stationary points in the optimization problem.

• This equation system may have multiple roots,
especially in regions of phase transitions and
hysteresis.

• For reliable study of phase behavior using DFT, a
solution technique is needed that can reliably find
all roots of a nonlinear equation system.
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Solution Methods

• Local methods with multiple initial guesses

– Broyden (e.g., Neimark and Ravikovitch, 1998)
– Successive substitution (e.g., Lastoskie et al.,

1993)
– No guarantee that all solutions are found.

• Path tracking approach (Aranovich and Donohue,
1998, 1999)

– No guarantee that all solutions are found.

• We propose using an interval-Newton/generalized-
bisection (IN/GB) approach.

– Mathematical and computational guarantee that
all solutions are found.
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Example – DFT Model of

Adsorption in Nanoscale Pores

• Lattice model of binary system (A and B): Aranovich
and Donohue (1999).

• Single component system is special case
of B = holes.

ρA(i) = fraction of lattice sites in layer i
occupied by A
ρB(i) = 1 − ρA(i)
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DFT Model (cont’d)

• The equilibrium density profile is a solution of

ln
ρA(i)(1 − ρA)
[1 − ρA(i)]ρA

− {z1[ρA(i + 1) − ρA]

+z2[ρA(i) − ρA] + z1[ρA(i − 1) − ρA]}∆/kT

= 0, 2 ≤ i ≤ N − 1

ln
ρA(1)(1 − ρA)
[1 − ρA(1)]ρA

− {z2[ρA(1) − ρA]

+z1[ρA(2) − ρA] + z1ρA}∆/kT

−z1(εAB − εBB)/kT + (εAS − εBS)/kT = 0

ρA(1) = ρA(N)

where z1 and z2 are lattice coordination numbers,
∆ = 2εAB − εAA − εBB, and ρA is a given bulk
mole fraction of A.
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Example Problems

• Single component systems of N = 2 to N = 20
layers (1 to 10 variables) were considered (same as
solved by Aranovich and Donohue, 1999).

• For each system, the equation system was
solved for the density profile (layer concentrations)
ρA(i), i = 1, . . . , N for many values of the bulk
concentration ρA.

• An initial interval of [0,1] was used for each variable
ρA(i).

• Hybrid preconditioning approach (Gau and
Stadtherr, 2002) used to solve interval Newton
equation.

• All computations were done using a Sun Ultra
10/440 workstation.
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Problem 5

N = 2
z1 = 1, z2 = 3, εAA/kT = −1.4, εAS/kT = −1.0
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Problem 6

N = 2
z1 = 1, z2 = 3, εAA/kT = −1.9, εAS/kT = −.258

Result using path tracking method of Aranovich and
Donohue (1998).
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Problem 6 (cont’d)

N = 2
z1 = 1, z2 = 3, εAA/kT = −1.9, εAS/kT = −.258

Result using IN/GB approach.
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Problem 7

N = 4
z1 = 1, z2 = 4, εAA/kT = −1.1, εAS/kT = −3.0

Plot of Gibbs adsorption Γ =
N∑

1=1

[ρA(i) − ρA]

Red → local (or global) minimum in optimization
problem (stable or metastable state).
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Problem 8

N = 8
z1 = 1, z2 = 4, εAA/kT = −1.4, εAS/kT = −4.0
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Problem 9

N = 12
z1 = 1, z2 = 4, εAA/kT = −1.1, εAS/kT = −3.0
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Problem 10

N = 20
z1 = 1, z2 = 4, εAA/kT = −1.0, εAS/kT = −3.0
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Computational Performance

Layers Variables Average Solution Time
(N) (N/2) (ms)

2 1 1
4 2 2
6 3 3
8 4 6
12 6 19
20 10 316

• Average solution time is the average CPU time
required to obtain all solutions of the nonlinear
equation system for a particular given value of the
bulk concentration.

• Times are on a Sun Ultra 10/440 workstation.
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Some Other Types of

Chemical Engineering Applications

• Dealing with uncertainties (interval-valued parameters)

• Identifying feasible (or safe) operating regions or
product spans given ranges of process inputs or
ranges of equipment designs

• Operations research problems (e.g., planning,
scheduling, etc.)
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Concluding Remarks

• Interval analysis is a powerful general-purpose
and model-independent approach for solving a
variety of process modeling problems, providing
a mathematical and computational guarantee of
reliability.

• Guaranteed reliability of interval methods comes
at the expense of a significant CPU requirement.
Thus, there is a choice between fast local methods
that are not completely reliable, or a slower method
that is guaranteed to give the correct answer.

• The modeler must make a decision concerning how
important it is to get the correct answer.

• Continuing advances in computing hardware and
software will make this approach even more
attractive.

– Compiler support for interval arithmetic (Sun

Microsystems)

– Parallel computing (Gau and Stadtherr, 2002)
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Concluding Remarks (cont’d)

• With effective load management strategies, parallel
branch-and-bound (BB) and branch-and-prune (BP)
problems can be solved (using interval methods
or other approaches) very efficiently using MPI
on a networked cluster of workstations (Gau and
Stadtherr, 2000).

– Good scalability
– Exploit potential for superlinear speedup in BB

• Parallel computing technology can be used not only
to solve problems faster, but to solve problems more
reliably.

• Reliability issues are often overlooked:

Are we just getting the wrong answers faster?
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