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The vector processing and mulfiprocessing
architectures of a computer not only accelerate
computational speeds but also offer access to larger

central memories.

James A. Vegeais, Alan B. Coon, and Mark A. Stadtherr, Univ. of Illinois, Urbana, Iil. 61801

vanced architecture machines are the so-called su-

percomputers, as typified by machines such as the
Cray-1, CDC Cyber 205, Cray X-MP, and Cray-2, The Cray-
1’s peak speed is more than an order of maghnitude faster
than that of large mainframe computers like the CDC Cyber
175 or the IBM 3081, approximately three orders of magni-
tude faster than the VAX 11/780, a very popular super-
minicomputer, and roughly four orders of magnitude faster
than the IBM'PC/AT. Depending on the number of proces-
sors available, the Cray X-MP and Cray-2 can increase
computational throughput by yet another order of magni-
tude or more relative to the Cray-1. It should be noted that
these figures reflect approximate peak speeds that may not
be realized in practice unless the program and algorithm

T‘ohday, the best-known and most widely-used ad-
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used are able to take advantage of the supercomputer archi-
tecture. ' :

Supercomputers

There were only a handful of supercomputers 10 years
ago; as recently as four years ago about half of the super- .
computers in use belonged to government facilities. This
has rapidly begun to change. Today there are well over 100
supercomputers in use. In addition to their use by govern-
ment laboratories and agencies, supercomputers are used
commonly in the petroleum industry for reservoir simula-
tion (I-4) and in other industries for nuclear reactor re-

- search and design (5), aerodynamic and structural design

for automobiles and aircraft (6), VLSI design (7), weather
forecasting (&), and even motion picture production (9). -
Several chemical companies have purchased time on super-
computers in the past and, more recently, have begun to

purchase supercomputers of their own,
The availability of supercomputers has increased recent-

ly in academia as well. With help from the National Science

Foundation and others, several universities have acquired
supercomputers. Supercomputing centers set up by the
National Sgience Foundation provide supercomputer time,
training and support as well as a computing environment
for researchers from different disciplines to share knowl-
edge about common computational problems, One of these
centers is located at the University of Illinois (10).

While supercomputers have been defined as the fastest
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computers. avmlable at any specific time (1) or as comput-
ers that are only one generation behmd the computing
requirements of leading edge efforts in science and engi-
neering (12), the characteristic that d;stmguxshes today’s
supercomputer from other computers is the extensive use
of some form of parallelism. Since computers were first
being manufactured, most of the increases in computation-
al speed have been due simply té increased clock speed
However, it appears that a limit to the clack speed is now

being approached For computers with extremely fast clock -

speeds ‘the dimensions of the machme become an impor-

tant consideration. Since electrical signals cannot travel

faster than the speed of light, a very high clock speed
requires that the maximum d1stance a signal must travel be

very small. For example, a signal can travel only about 30

centimeters in 1 nanosecond (ns).

“Therefore, a computer with a 1 ns clock (which would be
about a factor of four faster than the clock cycle of a
processor in a state-of-the-art supercomputer such as, the

Cray~2) must be no more than about a cubic foot (0.028 m3)

in size. This, of course, causes tremendous wiring and

coolmg problems. Consequenuy, it has become necessary

for computer manufacturers to look to the paraﬂel process-
ing of instructions and data to significantly increase the
speed of their computers. This paraﬂehsm generally mani-
fests itself in some form of vector processmg or multipro-
cessing archltecture For instance, machines such as the
Cray X-MP orCray-2 usea vector muluprocessmg architec-
ture.

Despite all of the current interest in supercomputers,

their availability is still limlted by their high cost, typically ‘

in excess of $5 million and perhaps much more. This may
put the supercomputer out of the price range of all but the
largest concerns. However, machines with advanced com-
puter archttectures that cost one or two orders of magm—
tude less than this are now available, and these machines
offer substantial performance i improvements over similarly-
priced conventional machines. Some of these advanced ar-
chitecture machines use architectures very similar to the
Cray-1 and may even be software-compatible with the Cray-
1. Others use much different architectural concepts. As-

suming that theu- architectures can be exploited effectively

by the user, these minisupercomputers (or personal super-
computers) appear to offer signifi cantly better price/per-
formance ratios than the convenncnal technology

Chemical engineering applxcatxons

For the chemical engineer, advanced arclntecture ma-
chines will provide three overlapping opportumtles (13

1. To solve problems involving the modeling and analy-
sis of complex physwal phenomena that were previously
24

intractable or at least computationally infeasible.

2. To greatly increase engineering design productivity
in areas requiring large-scale computation.

3. To use complex models in real-time apphcatlons

On traditional computers, one may need to limit the
problem in terms of dimensionality, resolution or physical
assumptxons. The supercomputer reduces these limita-

~ tions. It enables the chemical engineer to solve problems

involving the modelmg of a combination of phenomena
such as slmultaneous chemical reaction, fluid flow, heat
transfer and mass transfer in much more detail and with
greater accuracy than previously possible.

Advanced computer architectures can be used to increase
the productwnty of design engineers, Many computer-aided
design (CAD) problems may be solved without the use of a
supercomputer, but CAD offers the design engineer very:
rapld feedback on the results of design changes. In steady

© state process ﬂowsheetmg and optimization, the use of

advanced architectures will provide not only the ability to
more realistically handle complex phenomena, but also will
have truly interactive design capabilities.

The third category is currently the least developed of the
three. One likely chemical engineering application is proc-
ess control. Real time simulations of entire plant complexes
using advanced computer architectures will provide a pow-

erful tool for on-line optlmlzatlon of complete plant opera-

tions.
Advanced -computer architectures

As noted earher. the key element in advanced computer
architectures is parallelism (14-16). There are many differ-
ent ways in which a computer can be made to operate in
parallel (17-19). Perhaps the most widely used taxonomy
involves the four architectures proposed by Flynn (20):
single-instruction single-data (SISD), single-instruction
multiple-data (SIMD), multiple-instruction single-data
(M[SD), and multiple-instruction multiple data (MIMD).

* In the SISD computer (including most conventional com-
puters), only one instruction can be executed at a time and

the instruction can operate only on one datum. In an SIMD

while only one instruction can be executed at a time each
instruction performs the same operation simultaneously on
many different data. For example, a single instruction can
compute the sum of two vectors. All (or at least some) of the
additions of the elements of the two operand vectors can be
done snmultaneously 'In the MIMD computer, different in-
structions perform different operatlons on many data si- .
multaneously.

Some computers do not fit readily into one of these
categories. For example, a “pipelined” computer has been
considered by various people to be an SISD computer (20,
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The characferzsz‘zc z‘/zat dzsz‘znguzskes foday’s
supercomputer from other computers is the extenszve use of

some form of parallelzsm

an SIMD computer (21), and an MISD computer 17, 22. .
The MISD category is considered by some not to be a useful
category (23) because they regard it as impractical and
‘there are no real 1mplzmentat10ns. For these reasons, per-
haps a better and. simpler way of classrfymg advanced archi-
tectures is as vector processors, multiprocessors, and vec-
tor multiprocessors (24). ,
The vector processing category includes SIMD and pipe-
lined computers since both facxlltate the processing of iden-
tical operations on large vectors or arrays of numbers. For
example, a floating-point operation involves several steps.
Without pipelining, all the steps. needed to complete one
operation would be performed before starting the first step
of the next operation. Therefore, the computer works on
one operation at a time. On the other hand, a particular
operation in a highly prpelmed computer is performed in
several “statlons," each of which is only one step of the
overall operation. Since all stations work concurrently, the
computer can perform each step of the operation on differ-

ent data at the same time, just as in an assembly line.”

Examples of this type of computer are the. highly-pipelined

Cyber 205 (25) and Cray-1 (26), whose operations differ .

somewhat. The Cyber 205 operates most efﬁclently on very
long vectors, while the Cray-1 operates efficiently even on
relatively short vectors. Rudimentary forms of pipelining
can also be found in some conventional machines,

SIMD computers are composed of an array of separate
processors, each performing the same operation at the
same time but on different data. Perhaps the best-known
hxgh-performance machines of this type are the ILLIAC IV

(27), now retired, and the Massively Parallel Processor -

(MPP)(28 built for NASA by Goodyear Aerospace primari-
ly fori image processing. The ILLIAC IV, which had an array
of 64 processors, could add two 64-element vectors in
about the same time as a scalar addition, since all 64 scalar
addntxons needed to add the vectors could be done in paral-
lel. ’

The multiprocessing category covers architectures that
use an array of scalar processors, each capable of executing
different instructions at the same time on different data.
Since the processors can execute dufferent instructions,
they are not necessarily synchronized. Examples of com-
mercial multiprocessors are the BBN Butterfly (29) and the
Intel iPSC (30). There are many other experimental proto-
type machines of this type as well as those in various stages

-of commercxahzatlon. Some conventional machines can
also be thought of as “loosely-coupled" multiprocessors
(23).

The vector multlprocessmg category is essentlally acom-
bination of vector processing and multiprocessing. A num-
ber of processors can run in parallel, each of which by itself
December 1986
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is a powerful vector processor and generally of the pipelined

- type. Most state-of-the-art supercomputers such as the

Cray X-MP (31) and Cray-2 (32 fall into this category, and
plans for newer machines suggest that this architecture will

continue to dominate the high end of the supercomputer
market for at least the short-to-medium term. Currently
available state-of-the-art machines have up to four vector

- processors in parallel, and this number is expected to grow
- significantly over the next several years. :

Mul._tiprocessmg .
In all of these machines, the extent to which their com-

puting capability can be exploited depends largely on how

well the software is tailored to that type of architecture. Ina

vector processor, this would depend on the extent to which

a problem, cod,e,‘ or algorithm can be “vectorized,” that is,

put into a form in which as many operations as possible are

done on vectors. Since the architectures of these machines
vary greatly from one another, it is necessary to know more
about them to write efficient software for a particular ma-
chine.

The individual processors used in advanced architectures
range from low-priced, relatrvely slow microprocessors
such as the 80286 processors in the Intel iPSC to extremely
fast, custom-designed processors such as those in the Cray-
2. The early supercomputers (e.g., Cray-1) were generally
composed of one high-speed pipelined processor. The most
recent generation of supercomputers (e.g., Cray-2) includes
machines with several high-speed processors. Early proto-
type multrprocessors. however, were generally composed of
microprocessors due to their cost, availability, and reliabil-
ity. Recently, commercial machines composed of micro-
processors have begun to appear. It has been discovered
that, in many applications, many slower, inexpensive micro-

“processors working in parallel can achieve the same compu-

tational speed as a single fast one. The microprocessors
currently used most often are the 8086,/80286 and the
68000. So, in a sense, these computers can be thought of as
arrays of PC or Macintosh computers..

While the processors in these multiprocessing machines
are mrcroprocessors that operate sequentially, many of the
custom-made and all of the fastest supercomputer proces-
sors include other levels of parallelism within their proces-
sors, For example, the Cray-2 computer currently has up to
four processors. Because there'are multiple pipelines within
each of thése processors, it is possible to slmultaneously

operate more than one processor on a program and more

than one pipeline within each processor (18, 23).

Memory access

Multiprocessors also differ greatly in the way they access
: - : : 25
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memory. In some computers, each processor has'its own
local memory. If a processor needs data from another, the
data must be passed from the memory of one processor to
that of the other processor. At the other extreme, some
computers have a global memory: all of the processors
access the same memory. In this case it is unnecessary to
transfer data between processors. Normally, the memory is
divided in such a way that only one processor can access a
particular portion of memory at a time. Because of potential
_ conflicts among different processors trying to access the
same memory bank at the same time, machines with shared
memory have used relatively few processors.
Other machines have memories that lie somewhere be-

tween local and global Forinstance, a computer canhavea .

number of separate memories that can be assigned dynami-
cally to the different processors through some sort of inter-
connection network as a program is executed The memory
is global in the sense that it can be accessed directly,
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though not simultaneously, by all processors, but it is not
truly global since it comprises a set of separate memories.
Some computers have more than one level of memory.
Often there will be a relatively small fast memory, used to
keep only those variables and portions of code that are
currently needed, and one or more levels of slower memory.
Other multiprocessors have both local and global memo-
ries. The presence of the global memory allows data to be
shared without requiring data transfers between local mem-
ories that could be very time-consuming or could tie up the
processors. The local memory can be accessed more qulckly

than global memory (18, 23, 33, 34, 35).
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Figure 3. Linear interconnection scheme.

Figure 4. Ring Intercongvection scﬁeme.

- Figure 5. Star interconnection scheme.
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Interconnection schemes _
The interconnections between the individual processors

in a multiprocessing computer also vary a great deal. Con- -

nections can be classified as either static or dynamic. Static
schemes have fixed connections between processors, while
dynamic schemes allow for switching of interconnettions

while a program is being executed.

In the ideal static scheme, each processor would be con-
nected to all others to facilitate the transfer of data from
one processor to another. The number of connections need-
ed for this is MN— 1)/2 where Nis the number of proces-
sors. This number is not very large for small N. However,
16 processors would require 120 interconnections, 64 pro-
cessors would require 2,016, and 256 processors would
require 32,640. In practice, these large numbers of connec-
tions are not feasible because of insufﬁcignt space within
the computer. Because of this, other interconnection
schemes have been devised that attempt to allow for effi-
cient transfer of data between processors with fewer inter-
connections between the processors.

One interconnection scheme that was initially popular is
the nearest-neighbor mesh, Figure 1. This is a two-dimen-
sional rectangular grid where each processor is connected
to the four nearest processors. Two-dimensional grid prob-
lems often adapt well to this sort of architecture since

solutions at one grid point normally depend on the values at

the nearest neighbors—exactly those processors that are
directly connected. : ,
Another architecture that has attracted some interest is

Figure 6. Three-dimensional hypercube interconnection scheme.
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the tree architecture, Figure 2, This type of architecture
seems to lend itself nicely to the decomposition of prob-
lems: a root-node processor could distribute part of a prob-
lem to each of its branch-node processors. These proces-
sors would, in turn, decompose the problem further and the
parts would be processed by the next level in the tree.
Many other interconnection schemes that have been pro-
posed include: the linear, Figure 3; ring, Figure 4; star,
Figure 5; and variations of these. Perhaps the architecture
receiving the most interest currently, though, is the hypetr-
cube (or N-cube), The hypercube scheme connects 2¥ pro-
cessors so that each can communicate di rectly with other N
processors. The three-dimensional case is shown in Figure
6. One reason for the popularity of the N-cube is that many
other interconnection schemes, such as ring or linear, can
be thought of as a subset of a hypercube. For example, if an
algorithm is designed to work well with a ring-connected
array, it will often work well on a hypercube. -
- One dynamic scheme of connecting the processors is to

connect them to a single pathway, a bus, Figure 7. All

transfers of data must occur over this pathway. Unfortu-

nately, the bus can be used only to pass one datum at a time.

Hence, this connection scheme is suitable only for a very
small number of processors, where there would not be as
much contention for the single pathway. ,

It is not necessary that dynamic interconnections be
between processors. Interconnections between processors
and separate memories, like those mentioned above, are
sometimes used instead. One such scheme is the crossbar
switch, Figure 8, which essentially connects all processors
to all memories. This switch allows every processor to be

~ connected to a. different memory simultaneously. Other

switching networks have been used as well, such as the
banyan network, omega network (Figure 9), and Batcher
network. More information on interconnection networks
can be found in (18, 23, 36, 37, 38.

Other considerations -

N : : .
Nearly all of the advanced architecture computers avail-
able today run a high-level language, usually Fortran, Spe-
cial instructions are often added to both high- and low-level
languages to better take advantage of the architecture. Of
course, vector computers have vector instructions to per-
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form in one instruction that which would normally be a
series of instructions in the form of a DO loop on a sequen-
tial computer. Other statements are often added also. For
example, the Cray computers have a vectorizing compiler

(39) that attempts to vectorize as much of the code as

possible. The compiler, however, is prevented from vector-
izing if loops conitain data dependencies. For instance, in
the following code, the comipiler would assume that the
elements of the array computed in the second line depend

though no such data dependency actually exists.

DO10I=1,N
A(L+N)=A®D)+B(Y)
10 CONTINUE

Thus, the loop would not normally vectorize for this rea-
son. A special compiler directive is provided that forces
vectorization to occur despite an apparent data dependency

on values of elements computed within the DO loop, even-

in the loop. For instance, the loop:

CDIR$ IVDEP
~ DO10I=1,N
AI+N)=AM+B(D)
10 CONTINUE

would vectorize because the additional statement instructs
the compiler to ignore the assumed data dependency.

In multiprocessors, additional instructions are needed to
allow parts of programs to be synchronized or to allow a
precedence order between parts of code. For example, the
Cray X-MP has a library routine (EVWAIT) that causes

“execution of code to wait until another routine (EVPOST) s
called (40). Routines exist on some other multiprocessors

28

to allow for the transfer of data from one processor to
another. : : ‘

Measuring performance

~The traditional way of measuring the performance of a.
computer has been how many MIPS (millions of instruc-
tions per second) it could perform. Parallel computers have
rendered this measure rather meaningless, because one
sing!e instruction can perform many operations, -tens of ‘
thousands in some cases. A more meaningful measure of a
computer’s speed is how many MFLOPS (millions of float-
ing point operations per second) it can perform. Unfortu-
nately, this measure can also be misleading because the
number of MFLOPS a computer actually performs depends
greatly on how well the code is written to take advantage of
the architecture of that particular computer. - ;

~ Itis not unusual for MFLOPS rates to vary well over an
order of maghnitude for different programs. Manufacturers
eft{en list an MFLOPS rating for their computers. Often this

~ is a peak rate and computation cannot be sustained at this

rate for a long period of time. By comparing the MFLOPS
rate for a particular code with the peak or the sustainable
MFLOPS rate, however, one can get a good idea of how well
a particular code takes advantage of the computer’s archi-
tecture. One very popular benchmark for comparing com-
puter performance is the solution of linear equation sys-
tems using the LINPACK routines (41).

Speedup is another factor used to measure the perfor-
mance of a particular algorithm. On a multiprocessor,
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Figure 9. Omeya interconnection network,
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speedup is defined as the time it takes to complete a job
using only one processor, divided by the time the job re-
quires using P processors. The best possible speedup
would be P, indicating that the algorithm could be per-
formed in Pindependent parts of equal size. The efficiency
is the speed-up divided by the number of processors.

If the fraction of code that is able to be performed in

parallel on Pprocessors is £ the maximum Speedqp is P/(P

= fP+ f). This relationship, known as Amdah!’s law (42, is
derived from a simple model of parallel processing whose
assumptions include: independence of parallel tasks; a neg-
~ ligible amount of overhead time incurred in initiating the
parallel tasks; and negligible amounts of time for data
qQrganization and interprocessor communication and syn-
chronization. Figure 10 shows a plot of speedup against
the fraction of code that is parallelizable, for some values of
P. For significant speedup, significant portions of the ¢code
need to be run in parallel. This becomes even more impor-
tant as the number of processors increases. Note, for in-
stance, that with 64 processors, just 5% nonparallelized
code will result in a maximum speedup of 15.42 (or a

8 T T T T y P=g

»

P=4

SPEEDUP

o 1 1 1 1
o .2 4 .6 8 1.0

FRACTION PARALLELIZED CODE
Figure 10. A plot of Amdahl’s law for several values of P,

maximum efficiency of only 24%). It should be remembered
that Amdahl’s law does not take into account any overhead

from running the job in parallel. This would further reduce. ,

the speedup and efficiency.
Speedup is a measure that is also used with pipelined
computers. In this case it is the ratio of the time it takes for

a job to execute without vectorization to the time it takes

for a job to execute with vectorization. For pipelined com-
puters, one can obtain an equation identical to Amdahl's
law. In this case, however, frefers to the fraction of the code
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that vectorizes and Pto ratio of peak vector épeed to peak
scalar speed. : :

Programming and algorithmic considerations

As mentioned earlier, the programmer must consider the
characteristics of an advanced architecture before writing a
program that runs well on a computer with that particular
architecture. The concerns vary somewhat for the different
classes of computers. ‘ '

In a vector processor, one must be concerned with writ-

ing code so that as much of the code as possible consists of
vector operations. Vectorizing compilers can now do a good

job of producing code that is vectorized, although some
improvement can often be made by coding in assembly
language. Unfortunately, the compiler does not know as
much about the purpose of the code as does the program-

mer. Therefore, it is still necessary for the programmer to

write code in such a way that the compiler can recognize as
much vectorizable code as possible. ,
Vectorization can be inhibited by many different factors.
First, compilers generally vectorize only DO loops. Loops
created with IF statements will not vectorize and should be
avoided. Vectorization may not take place if certain state-
ments are within the loops. For example, loops with IF
statements, subroutine calls, or statements. with recursion
will not normally vectorize nor will loops with irregular

addressing. Strategies that avoid some of these problems -
vary from simply removing a statement from a loop to -

splitting a loop into multiple loops to using special vector
functions such as scatter/ gather (43-49). -

Even when a loop can be vectorized, it may not execute
as fast as it might if the code were altered. For example,
loops may often be speeded up by unrolling the loop to
reduce the number of memory references (50). Nested loops

- may often be speeded up by changing the o;der of the loops

so that the longest loop is vectorized. ,

It should be noted that codes that vectorize on one
computer may not vectorize on another vector computer or
may not show as much of a speed increase if they do
vectorize. For an example, Cray computers can operate
only on variables that are in the computer's registers. Since
each register can hold only 64 words at once, performing
operations on vectors of length greater than 64 requires
that the computer split the vector into smaller vectors of
length 64. The Cyber 205, however, operates' directly on
variables in memory. Although the start-up time for such
memory operations is large compared to that for register
operations, the Cyber 205 can operate on extremely long
vectors with only one vector operation, avoiding the over-

- head that is associated with the initialization of the addi-

tional vector operations. :

Programming for a multiprocessor essentially entails
writing code that is split into many separate tasks, some of
which can be executed simultaneously. On a shared-memo-
ry computer this often results in some sort of task queue,
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The multzpmcessmg category covers arc/zzz‘ecz‘ures z‘hat

use an array of scalar processors, each capable of executing
different znsz‘ructzons at the same z‘zme on different daz‘a

“The next task in the queue is begun when a processor
becomes available. On a multiprocessor without global
memory, however, it is often necessary to specify not only
the tasks but also to determine which processor should do
each task. It is also necessary to determme in whxch local
memory variables will be kept. : .

Algonthms can be either synchronous or asynchronous.
Various degrees of synchronization exist. The most syn-
chronized approach would be to use an MIMD computer as
an SIMD computer by programming so that all processors
perform the same operation at the same time.

A slightly less synchronized method would be for all
processors. to start different tasks at the same time. As
processors complete their tasks, they become idle until the
last processor finishes its task. They may all begin on their
~ next task then. This method is often easy to program as it
involves a sequence of parallel steps. In such an algorithm it
becomes important to keep the time for the completion of a
task about the.same for all processors to minimize the
amount of time that processors remain idle while waiting
for the other processors to finish,

A more efficient method is to decompose the problem but
not require that all tasks start simultaneously. This allows
processors that have completed their tasks to begin new
tasks 1mmednately, if the necessary data are available. In
this case it is necessary to synchronize only so that a
processor does not attempt to use an operand that has not
yet been calculated by another processor. , :

This synchromzatxon can be done by several different
methods. One is by causing a processor to wait until a
certain necessary event has occurred. Another is to cause a
processor to wait for the completxon of a certain task. In
this case, the size of the separate tasks in the code (or
granularity) becomes a critical factor in obtaining maxi-
mum efficiency. In the case of very small granularity, ma-
chines are being developed for which this synchromzatlon
can be done on the machine level, in what is known as a data
flow machine (23, 51). For larger granulanty, the synchro-
nization is usually done by the programmer or the compiler.

Another major concern to the multiprocessor program-

mer is how to structure the data i in the multiprocessor. This-

is normally not a problem for a shared- -memory multiproc-
essor, but is extremely important in machines with local
memory, such as computers with a hypercube architecture.
If not done properly, the memory transfer time could dorm'
nate the total execution time of the program.

The structuring of a program into several parallel sets of
instructions that are capable of executing concurrently is
called multitasking (40). When these parallel sets of in-
structions consist of large sectlons of code this process is
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referred to as macrotasking, while microtasking is the par-
titioning of code into parallel tasks at the DO loop level. An
ideal program is one that could be macrotasked into several

- independent tasks, one for each available processor and

each requiring the same amount of time for completxon, S0
that its efficiency approaches one. ’
In reality, an efficiency of one (i.e., a speedup of P is
rarely possible for several reasons (5.% Multitasking is
invoked at the cost of a certain amount of overhead (which
is associated with the use of operations that are not neces-

 sary for single processor implementations, such as defining

and distributing tasks) so that even an ideally structured
program cannot attain an efficiency of one, although its

k efficiency would approach one. Also, the tasks of a multi-

tasked program may depend on results from other tasks,

- causing processors to remain idle until the necessary re-

sults are available. Finally, some programs may not have
any identifiable parallel structure or may have only a small
portion of instructions that can be performed in parallel. It
should be noted, however, that there are unusual circum-
stances under which efficiencies greater than one may oc-
cur (53, 54). In such cases, the assumptions upon which
Amdahl’s law is based are not valid.

To execute efficiently, vector multiprocessors obviously
require algonthms and programs that exploit both vector
operations and parallelism. However, the need for long
vectors and the need for several independent tasks can
sometimes be competing demands. For example, in the
implementation of a nested dissection algorithm on a vector
computer, the factorization time can be decreased by stop-
ping the dissection process short of completion (55). The
incomplete dissection yields longer vectors than the origi-
nal scheme, but it also ynelds fewer submatrices that can be
factored in parallel, -

Some algorithms have high efficiencies for a small num-
ber of processors but exhibit a sharp decline in efficiency
once the number of processors is increased. Peters (56)
reports that the solution of matrices arising from finite
element calculations on a square domain will yield a speed-
up of about five with eight processors, or an efficiency of

-0.63. However, no further speedup is obtained if more

processors are used, regardless of the number of unknowns
involved. This indicates that after the parallel portion of the
algorxthm is split into as many as eight separate tasks, the

~ sequential portion begins to dominate the total time needed

to perfSrm the algorithm. Further efforts to exploit the
architecture of a vector multiprocessor with such an algo-
rithm should be concentrated on vectorizing the algorithm
or code, particularly those pOl‘thﬂS that cannot be multi-

tasked.
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In conclusion

The ever-increasing demand for more computing power
has manifested itself not only in the popularity of single and
multiple vector processors with extremely fast clock
speeds, but also in the recent advent of innovative configu-
rations of arrays of microprocessors. The two predominant

trends in advanced architectures are the use of a few ex-

tremely powerful processors in parallel and the use of very
many microprocessors in parallel. It is not certain yet
whether there will continue to be a market for both classes
of machines. The former type of machine has been firmly
established as a valuable scientific tool. However, develop-
-ments within the latter class indicate that its members may
be economical alternatives to expensive machines like the
Cray-2, In either case, an understanding of the parallel
nature of both the architecture and the algorithm is neces-
sary to fully utilize its capabilities. And as computational
requirements continue to grow, it seems inevitable to use
parallel architectures in all branches of science and engi-
neering.
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