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Abstract

In recent years, molecularly-based equations of state, as typified by the SAFT (statistical associating
fluid theory) approach, have become increasingly popular tools for the modeling of phase behavior. How-
ever, whether using this, or even much simpler models, the reliable calculation of phase behavior from a
given model can be a very challenging computational problem. A new methodology is described that is the
first completely reliabléechnique for computing phase stability and equilibrium from the SAFT model. The
method is based on interval analysis, in particular an interval Newton/generalized bisection algorithm, which
provides a mathematical and computatiogiaaranteeof reliability, and is demonstrated using honassociat-
ing, self-associating, and cross-associating systems. New techniques are presented that can also be exploited
when conventional point-valued solution methods are used. These include the use of a volume-based prob-
lem formulation, in which the core thermodynamic function for phase equilibrium at constant temperature
and pressure is the Helmholtz energy, and an approach for dealing with the internal iteration needed when
there are association effects. This provides for direct, as opposed to iterative, determination of the derivatives

of the internal variables.



1 Introduction

In recent years, molecularly-based equations of state (EOS) have become increasingly popular tools for
the modeling of phase behavior. These models, as typified by the SAFT (statistical associating fluid theory)
approach;® characteristically have parameters with well-defined physical meaning, based on molecular
structure (e.g., chain length) and interactions (e.g., association energy), and thus may be more reliable in
making extrapolations to different molecules or thermodynamic conditions. Unfortunately, even when good
EOS models are available, it is often very difficult to actually calculate the equilibrium phase behavior
reliably from the given models.

Since the number of phases present at equilibrium may not be kawiori, the computation of phase
equilibrium is often considered in two stages, as outlined by Miché@rThe first involves thephase
stability problem, that is, to determine whether or not a given mixture will split into multiple phases. The
second involves thphase splitproblem, that is to determine the amounts and compositions of the phases
assumed to be present. After a phase split problem is solved, it is then necessary to do phase stability analysis
on the results to determine whether the postulated number of phases was correct, and if not to repeat the
phase split problem. Both the phase stability and phase split problems can be formulated as minimization
problems, or as equivalent nonlinear equation solving problems. There are several versions of this two-stage
approach. The recent version of Lucia ethhas been applied to a wide variety of practical problems and
appears to be particularly useful. With the choice of the proper thermodynamic state fufttioagywo-
stage framework can be applied to phase equilibrium problems with various types of specficiations (e.g.,
constant temperature and pressure, constant temperature and density, isentropic, isenthalpic, etc.).

For determining phase equilibrium at constant temperature and pressure, the case considered here, a
minimum in the total Gibbs energy of the system is sought. Phase stability analysis may be interpreted as
a global optimality test that determines whether the phase being tested corresponds to a global minimum in
the total Gibbs energy of the system. If it is determined that a phase will split, then a phase split problem is
solved, which can be interpreted as findingpeal minimum in the total Gibbs energy of the system. This
local minimum can then be tested for global optimality using phase stability analysis. If necessary the phase
split calculation must then be repeated, perhaps changing the number of phases assumed to be present, until
a solution is found that meets the global optimality test. Clearly the correct solution of the phase stability
problem, itself a global optimization problem, is the key in this two-stage global optimization procedure
for phase equilibrium. Assuming that the phase stability problem is correctly solved, this type of two-stage
procedure can be shown to converge in a finite number of steps to the equilibrium solution (e.g., McKinnon

et al1d).



Conventional minimization or equation solving techniques for solving the phase stability problem are
initialization dependent, and may fail by converging to trivial or nonphysical solutions or to a point that is a
local but not a global minimum, even for very simple models (e.g., Green'& dhus there is no guaran-
tee that the phase stability problem has been correctly solved. Furthermore, two-stage methods that do not
solve the phase stability problem to global optimality (e.g., Michefs€r,ucia et all1) provide no guar-
antee that the phase equilbrium problem has been solved correctly. Thus, there has been significant interest
in the development of completely reliable methods, as reviewed in more detail by Hu& &aaticularly
noteworthy is the work of McDonald and Floud&s'®and Harding and Floud&8,who have shown that for
certain activity coefficient models and cubic EOS models, that the phase stability and equilibrium problems
can be made amenable, through the formulation of convex underestimating functions, to solution by pow-
erful global optimization techniques using branch and bound, which provide a mathematical guarantee of
reliability.

An alternative approach for solving the phase stability problem is the use of interval analysis. This
provides not only a mathematical guarantee of global optimality, but also a computational gu&tairiee,
it deals automatically with the rounding error issues that are inherent in floating-point arithmetic and that
lead to the loss of mathematical guarantees. This method, based on an interval Newton/generalized bisection
algorithm, was originally suggested by Stadtherr et'alvho applied it to problems involving excess Gibbs
energy models, as later done also by McKinnon et%a$ubsequently, Hua et &:22 applied this method
to problems modeled with cubic equations of state, and efforts were made to improve the computational
efficiency of the approach, both for EOS modeland for excess Gibbs energy modéls.

We demonstrate here the use of the interval approach for the completely reliable solution of phase
stability and equilibrium problems when the SAFT EOS model is used. Since the SAFT EOS is most
conveniently expressed in terms of the Helmholtz energy, we use a “volume-based” formulation of the phase
stability and equilibrium problems at constant temperature and pressure, in which the core thermodynamic
function is the Helmholtz energy. This problem formulation was developed by Nagarajarfebual.as
noted by Michelser? its use has not yet been widely investigated. In the course of applying the interval
approach, we also address other numerical issues concerning SAFT; in particular, we present an approach
for dealing with the “internal” iteration required when association effects are included in the SAFT model.
The final result is a new computational procedure, witlnathematical and computational guarantee
reliability, for solving phase stability and equilibrium problems when the SAFT EOS model is used.

In the next section, we present the mathematical formulation of the problem, summarizing the SAFT
EOS model and the volume-based approach for solving the phase stability and equilibrium problems, as well

as providing some additional detail about the two-stage procedure for determining phase equilibrium. In



Section 3, we describe the actual solution methodology used, including a summary of the interval approach
that provides the guarantee of reliability. Then, in Section 4, we present results for several test problems,

and, in Section 5, summarize the conclusions of this study.

2 Problem Formulation

2.1 SAFT Equation of State

Many details concerning the SAFT EOS and it variants can be found elsewfekegood description
of the key concepts underlying SAFT has been provided by Fu and Sarldi¢his section we summarize
the equations and parameters that make up the SAFT EOS for a mixture of species.

In the SAFT model, molecules of each species are treated as a chain composed of equal-size, spherical
segments, with molecules of each different spetlesving different number of segments;, temperature-
independent segment molar volume (at close packifj),and temperature-independent segment interac-
tion energy,u?. For molecules that may associate, for instance due to hydrogen bonding, an association
energy parameter®B and dimensionless association volume parametér are used to characterize the
interaction between association sitesandB. Values of these parameters for a wide range of compounds
are given by Huang and Raddsz.

The SAFT EOS is generally expressed in terms of the residual Helmholtz energy per unit mole of
mixture o™ (this is the Helmholtz energy relative to an ideal gas mixture of the same composition and at
the same temperature and density). There are hard sphere, dispersion, chain and association contributions
that must be accounted for, so

a'es = ahs + adlsp + achaln + @@ssoc, (1)

There are some variations in the SAFT model, depending on the expressions used to represent each of these
contributions. We use the model as described by Huang and R&dosz.

The hard sphere contributias is based on the hard sphere EOS as expressed by IBGBiaind is

given by
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Here o is the total molar density of the mixture, is the mole fraction of compoundin the mixture, N

is the number of components in the mixtur€, is Avogadro’s number; is an exponent, and,; is the



temperature-dependent segment diameter given by
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k is Boltzmann’s constant, and= 71/2/6 is the packing fraction for close-packed spheres.

where

The dispersion termdP used by Huang and Raddszs

adlSp

T

To determine the average segment numbgaverage segment energyand average reduced density (pack-

ing fraction)n, the van der Waals one-fluid (vdW1) approach, that treats the mixture as a hypothetical pure

fluid having the same residual properties as the mixture, is used (as in Egs. (2-3) above). Thus, with the

vdW1 mixing rule,

N
m=>Y_xm, (7)
i—1
TN, N
n=""228 womadd = ¢ (8)
i—1
and
N N
E Z xlxjmzmjv?](uz]/k:T)
u o i=1j=1 9
> xixjmimjv%
i=1j=1
where
3
oy = {12 @)+ )]} (10)
uij = (1 — kij)(ugiug)/?, (11)
2.0\
v? = U?O [1 —0.12exp < ;;f )] (12)
and
Y i) , 13
wi = (14 57 a3)

The D;; are the Chen and Kreglewékiconstants, which are listed in Table 1, ank = 10, with some

exceptions as discussed by Huang and RaficEhe k;; are binary interaction parameters that can be fit

to experimental data. It should be noted that under the one-fluid approach the upper limit on the reduced

densityn will be given by the closest packing of equal diameter spheres, which is the reduced density given
by 7 = 7v/2/6. It should also be noted that different versions of SAFT, for instance the SSAFT (simplified
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SAFT) model of Fu and Sandlérmay use different expressions for the dispersion term. Furthermore,
different mixing rules may be used; for example, Huang and R&dasp discuss mixing rules based on
volume fraction. While we use the expressions given above for the dispersion term, the computational
method described here is general purpose and can be applied in connection with any variation of the SAFT
EOS.

The chain termgh#in, as derived by Chapman et &lis based on the pair correlation functiag (d;;),

in the form of Boubik,?® and is given by
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This is a special case of the more general pair correlation funéfioeeded below, which is
2
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with dij representingiiidjj/(dii + djj).

Finally, the association terma25s°°, is written as

“RT - ix [; llnXAi - %1 + %} : 17)
where the summation oveY; indicates summation over all association sites on companddere M; is
the number of association sites on compon’eathAi is the mole fraction of molecules @fwhich are
notbonded at the association sife. This is determined from
—1

) (18)
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where the summation ovés; indicates summation over all association sites on componehtote that

this means thaf(* is, in general, given only implicitly by Eq. (18), sincé”: appears not only on the
left-hand side, but also in one of the terms in the double summation on the right-hand side. Thus, when there
are association effects to be accounted for, evaluation of the SAFT EOS requires an “internal” iteration to
solve for the “internal” variables( ¢, except in some special cases in which it is possible to solve for these

variables explicitly. In Eq. (18) the association strength functighBi is

AAB; ggs(dzj) [exp (EAiBj /kJT) _ 1} O'%F&AiBj (19)



with
oy = (07 4+ 0j)/2. (20)

The SAFT parameters®:Bi andx*:B; are the association energy and dimensionless association volume,
respectively, used to characterize interactions between Ajtend B;. In a mixture, there may be self-
association interactiong & j) involving the same types of sitea (= B) or different types of sites on
molecules of the same species, and there may be cross-association interacorik lfetween sites on
molecules of different species.

Egs. (1), (2), (6), (14) and (17) provide an expression for the SAFT EOS in terms of the molar residual

Helmholtz energy:"*(x, o) given (at constant temperature) as a function of composition (mole fraction)

x = (z1,...,2x)" and total molar density. In pressure-explicit form, the EOS may be written
res
P = 92 (M) + oRT (21)
89 x,T

where the last term is the ideal gas contribution. For ease of dealing with the furctidr, o) and its
derivatives, the parameterization given by Huang and Ratéallowing the approach of Toplis¥ is

very useful.

2.2 Phase Stability Problem

As discussed above, the determination of phase stability, i.e., whether or not a given mixture can split
into multiple phases, is a key step in phase equilibrium computations, providing a global optimality test
for the minimization of the total Gibbs energy. The determination of phase stability is typically done using
tangent plane analysis. For a mixture at consi@nP, and composition (mole fractions),, the tangent
plane condition is usually expres$ed in terms of the molar Gibbs energy of the mixture as a function of
molar composition and volume (or density). The mixture is not stable if the molar Gibbs energy surface
g(x, o) ever falls below a plane tangent to the surfacegat

However, since the SAFT EOS is most conveniently expressed in terms of the Helmholtz energy, as
detailed above, we choose here to use a “volume-based” formulation of tangent plane @nialysisch
the Helmholtz energy is the core function. For this case, the tangent plane condition is expressed in terms
of the Helmholtz energy density (Helmholtz energy per unit volume of mixture) as a function of the molar
component density vectar= (p1,...,pn)T. A mixture (the “feed” or “test phase”) at constakif P, and
composition (molar densitieg), is not stable if the Helmholtz energy density surfa¢p) ever falls below

a plane tangent to the surfacemgt That is, if the tangent plane distance function

D(p) = a(p) — [a(py) + Va(py) - (p — po)] (22)



is negative for any compositiop, the mixture is not stabl’. HereV is used to indicate the gradient
vector, and the Helmholtz energy densityp) can be obtained from the molar residual Helmholtz energy
a™(x, o) given by Eq. (1) by first defining the residual Helmholtz energy dersdftyp) = 0a**(x, ¢) and
then adding the ideal gas energy of mixing term, yielding

N

a(p) = @™ (p) + RT'Y pyn[p;RT]. (23)
=1

To simplify dealing with the functiora(p) and its derivatives, we use a parameterization"®f(p) similar
to the parameterization that Huang and Rad&8ssed fora™ (x, o). This new parameterization is given in
Appendix A.

To determine ifD(p) ever becomes negative, an unconstrained minimizatioD@f) can be done.
Clearly, it is important to find thglobal minimum, or one may incorrectly conclude that the mixture is
stable. Alternatively, this may be treated as an equation solving problem. Itis easily seen that the stationary

points in the optimization problem can be found by solving the nonlinear equation system
Va(p) — Va(py) = 0. (24)

This equation system has a trivial root@t= p, and, becausé(p) is likely to be nonconvex, may have
multiple nontrivial roots as well, corresponding to multiple local extrema in the optimization problem. If
this approach is used, it is important that no roots of the equation system be missed, since that may result
in failure to find the one corresponding to the global minimum. Thus, whether solved directly by some
minimization algorithm, or indirectly by some nonlinear equation solver, this can be a very difficult problem

to solve reliably. As explained in more detail below, we will use here an interval-based methodology that
provides a mathematical and computational guarantee that no roots of Eq. (24) will be missed, thus ensuring
that the global minimum iD(p) will be found, and that the phase stability problem is solved correctly.

Since in typical problem specifications the mixture composition is given in terms of the mole fraction
vectorxg (or equivalently in terms of mole numbers), in order to use Egs. (22) or (24) for phase stability
analysis it is necessary to first determine the feed composition in terms of the molar densityyedgtois
can be done by substituting = x into the EOS, Eqg. (21), and solving for the mixture dengityThen
po = 0xp. Adifficulty here is that the SAFT EOS is high ordergdrand thus there may be a large number
of real roots (e.g., Koak et al° Lucia and Lud'). The real density root that yields the smallest molar Gibbs
energyg = (a + P)/o must then be used to compuytg. Thus, in solving the EOS fay, it is important that
no real density roots be missed, since that may result in failure to find the root yielding the smallest Gibbs
energy. Again, by using the interval approach described below, we can provide a guarantee that no roots of
the EOS will be missed.



The fact that for a giverx there may be multiple real values pfthat satisfy the EOS highlights an
advantage of the volume-based approach over the usual molar approach, at least in the context of conven-
tional point-valued numerical techniques. Note that the usual approach to phase stability analysis is based
on the molar Gibbs free energy functigiix, o), which will be multivalued if the EOS has multiple real
density roots. In this case, the actual function that must be us&;hi§(x, 0), which may not be a smooth
function. Thus, not only are there difficulties in ensuring that all the real density roots are found, but also
in dealing with the optimization of a nonsmooth function. In contrast, the volume-based approach uses the
function a(p), which is a smooth function of the component densities and is not multivalued with respect
to the component densities. This point is explained in some detail by Nagarajaf® évrathe case of a
cubic EOS. However, since the interval approach used here can deal with multiple real roots of the EOS,
and the resulting nonsmooth Gibbs energy function, without any special effort, as shown by Hire&tal.
for the case of cubic EOS models, this advantage of the volume-based approach does not come into play
here. Nevertheless, we wish to emphasize that this approach may have significant advantages when applied
in connection with conventional point-valued methods for computing phase behavior from the SAFT EOS.

The phase stability problem represents one stage in the two-stage procedure outlined above for comput-
ing phase equilibrium. If solution of the phase stability problem indicates that the mixture will split into

multiple phases, then the second stage of procedure, the phase split problem, must be considered.

2.3 Phase Split Problem

In solving the phase split problem, it is desired to compute the amounts and compositions of the phases
present at equilibrium. For constaiitand P, this means that the minimum in the total Gibbs energy
G = A+ PV must be sought, either by direct optimization, or, equivalently, by solution of the first-order
optimality conditions (equifugacity conditions).

Following again the volume-based approach of Nagarajan &t thle problem is to minimize
G = [Via(p)' + VWa(p)" + -+ V¥a(p)* | + PO + VI 4 4 VY (25)
subject to the material balance constraint
74PN va | % L SUESRRRNIR 74 (5 QU (26)

Here it is assumed that there abephases, labeleH I1, ..., ¥, and that the basis for the material balance
is a unit mole system. The first-order optimality (equifugacity) conditions for this constrained minimization
problem require that

Va(p") = Va(p") = --- = Va(p¥) (27)



and that
P=F(p") = F(p'") = --- = F(p¥), (28)

where the pressure-explicit equation of stdtes= F(p), can be expressétiin terms ofa(p) by

P =F(p) = Va(p)-p—a(p). (29)

While global optimization techniques may be applied directly to the minimization problem here, the
two-stage procedure being used requires only that a local minimum be sought, either by direct minimization
or by solution of the equifugacity conditions. As noted by Sun and Séfdgood initial guesses for the
local solution of the phase split problem can typically be generated from the local minima in the tangent
plane distance functio® found by solving Eq. (24) as part of the phase stability problem. For example, if
a two-phase split problem is being solved, and three local minindawere identified in the phase stability
problem just completed, then taken pairwise (since two phases have been assumed) there are three different
initial guesses that could be generated for the two-phase split problem.

Once a local solution to the phase split problem has been found, it is then checked for global optimality
by solving a phase stability problem, testing any one of the phases computed, since they must all share the
same tangent plane (a necessary condition for equifugacity). If the tested phase proves not to be stable,
then another local solution must be sought, either by using a different initial guess with the same number
of phases, or by increasing the number of phases. If a local solution to the phase split problem is found
that does prove to be stable when phase stability analysis is done, then the final molar compositions can be
determined by computing for each phase % pi andz; = p;/o.

The type of two-stage process outIineZglhere for computing phase equilibrium is widely used. How-
ever, its reliability cannot be guaranteed unless one can guarantee that the phase stability problem is solved

correctly. To provide this guarantee we use the interval approach discussed in the next section.

3 Problem Solving Methodology

In this section we provide details about the actual problem solving methodology used to solve the phase
stability and phase split problems when the SAFT EOS model is used. Since, as emphasized above, the key
to the solving the phase equilibrium problem correctly is the ability to solve the phase stability problem with

complete certainty, we first summarize the interval approach used for this purpose.

3.1 Interval Approach

We apply here interval mathematics, in particular an interval Newton/generalized bisection (IN/GB)

technique, to find enclosures for all solutions to the nonlinear equation solving problems that arise in the
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phase stability problem. We will briefly outline these topics here, and then, in section 3.2, explain how they
were applied to solve the phase stability problem. Recent monographs which more thoroughly introduce
interval analysis, as well as interval arithmetic and other aspects of computing with intervals, include those
of Neumaier®® Hanse* and Kearfot®® It should be emphasized that, when machine computations with
interval arithmetic operations are done, as in the procedures outlined below, the endpoints of an interval
are computed with a directed outward rounding. That is, the lower endpoint is rounded down to the next
machine-representable number and the upper endpoint is rounded up to the next machine-representable
number. In this way, through the use of interval, as opposed to floating point arithmetic, any potential
rounding error problems are eliminated.

A key concept in the interval methodology used is that oféerval extensionFor an arbitrary function
f(x), the interval extension over the intenl, denotedF'(X), is an interval enclosing all values 6fx)
for x € X that is, it encloses theange of f(x) over X (interval quantities are indicated in upper case,
point quantities in lower case). It is often computed by substituting the given int&riaio the function
f(x) and then evaluating the function using interval arithmetic. This so-called “natural” interval extension
is often wider than the actual range of function values, though it always includes the actual range. This
overestimation of the function range is due to the “dependency” problem, which may arise when a variable
occurs more than once in a function expression. While a variable may take on any value within its interval,
it must take on theamevalue each time it occurs in an expression. However, this type of dependency is not
recognized when the natural interval extension is computed. In effect, when the natural interval extension
is used, the range computed for the function is the range that would occur if each instance of a particular
variable were allowed to take on a different value in its interval range.

Consider the solution of a nonlinear equation sysfér) = 0, wherex € X(© and the goal is to find
(or, more precisely, enclose within very narrow intervaii)the roots of the equation systemX{". The
solution algorithm is applied to a sequence of intervals, beginning with the initial interval vectorXox)
specified by the user. This initial interval can be chosen to be sufficiently large to enclose all physically
feasible behavior. For an inten*) in the sequence, the first step in the solution procedure fittation
range test Here the interval extensioR (X (%)) of f(x) over the current intervaK (*) is computed and
tested to see whether it contains zero. If not, then clearly there is no rét pf= 0 in this interval and it
can be discarded. K (*) passes the function range test, then the next step istér@al Newton testThis
requires an interval extension of the Jacobian matrii(®j, and involves setting up and solving the interval
Newton equation (a system of linear interval equations) for a new interval, referred to hereimsgee
Comparison of the image to the current interval being tested provides a powerful existence and uniqueness

test for roots of the equation systéfnlin particular, if the image is a proper subset of the current interval,
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then this is mathematical proof that the current interval contaimsiquesolution off (x) = 0, which can

be tightly enclosed with quadratic convergence by continued application of the interval Newton equation.
Furthermore, any root lying in the current interval must also lie in the image. Thus, if the image and the
current interval do not intersect, this is mathematical proof that the current interval contains no roots of
f(x) = 0. If the number of roots in the current interval cannot be proven to be zero or one in this way,
then in most cases the current interval is bisected, and the resulting two intervals added to the sequence of
intervals to be tested.

These are the basic ideas of interval Newton/generalized bisection (IN/GB) methods. More detailed
descriptions of the technique used are available from Schnepper and StdinerHua et at> As a
framework for our implementation of the IN/GB method, we use appropriately modified FORTRAN-77
routines from the packages INTB¥and INTLIB.2° In addition, for solving the interval Newton equation,
the hybrid preconditioning technique of Gau ef%is employed. Overall, the IN/GB method described
above provides a procedure that is mathematicatiy computationally guaranteed to encladesolutions
of the nonlinear equation systems that must be solved to perform phase stability analysis using the SAFT
ECS.

3.2 Phase Stability Problem

To solve the phase stability problem, we use the interval approach outlined above to saWextié
nonlinear equation system given by Eq. (24) to enchdkthe stationary points of the tangent plane distance
function D. This guarantees that the global minimumiofwill be located. If the global minimum ab is
negative then the phase being tested is not stable. However, it should be noted thatfirnttimgtationary
points is not always necessary, as discussed in more detail below. To inipatize initial interval used for
each component;,i =1,..., N, is

v2 ] (30)

pi € [5 Namd
The lower bound: is some arbitrary small positive number, taken here tg be 10~ (mol/mL), corre-
sponding to the implicit assumption in phase stability analysis that every component is present in at least
trace amounts. The upper bound comes from the closest packing limit for pure componbith says
that the reduced densitycannot exceed = 7r\/§/6. Note that no initial point guess is needed, and that
the initial interval used covers all physically feasible possibilities. In some cases, especially at low reduced
temperatures, it may be appropriate to consider “non-physical” density roots (e.g., KodR)et.al, den-
sity roots that exceed the closest packing limit. If this is desired, the upper limit in Eq. (30) should be
determined based apnot exceeding one, resulting in the upper liGyi{r Nam;d3;). Expressions for the

derivatives appearing in Eq. (24) and its Jacobian are given by Egs. (41-42) in Appendix A.
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If the initial mixture composition is given in terms of mole fractionginstead of component densities
po, then, as explained in more detail above, it is first necessary to compute the mixture démsitger to
formulate Eg. (24). This is done by using the IN/GB approach to solve Eq. (2b) fivenx = x(. The

initial interval used for is

o€ , (31)
Zmax BT N
1=

The lower bound comes from setting an arbitrary upper limitZgf,. on the compressibility factof =

P/oRT. A value of Z,,,x = 2 is used here; this should be more than adequate for the reduced pressures
considered in the examples used below; however, this value can be adjusted as needed in solving other types
of problems. The upper bound comes again from the closest packing limit. While in general the EOS may
have a large number of real density roots, in our experience, many of these can be eliminated by enforcing
this upper bound om. However, there may still be multiple real density roots in the interval given by Eq.
(31). As explained above, the one corresponding to the lowest Gibbs energy must then be used to determine
po- Oncep, has been determined one can then proceed to solve Eq. (24). As discussed previously, if
one wishes to consider non-physical density roots, then the upper limit in Eq. (31) should be adjusted to
correspond te not exceeding one.

In order to apply the interval approach to solve Eqg. (24), it is necessary to compute interval extensions of
this function and its Jacobian for a giverinterval. To do this it is first necessary to deal with the “internal”
iteration defined by Eq. (18) for the “internal” variabl&s":. This is anlV, x N nonlinear equation system,
where N, indicates the total number of association sites in the model. The goal is to determine an interval
value, preferably with as small as width as possible, forXre, such that it containall values of theX 4
that satisfy Eq. (18) for the curreptinterval. There are several possible ways to do this:-erpansion
approack is used here. First a point-valued version of Eq. (18) is formulated using the midpoints of the
currentp; intervals, and its (unigue in [0,1]) solution found. The uniqueness of the point solution in [0,1]

can be seen by rewriting Eqg. (18) as

N
Jay = XM 4 Na Y3 (X txPiarss) -1, (32)
j=1 B;

which has the Jacobian elements

8fAz a B, AiB i Ai AiAi
i = 1—|—NAJZ_:1§(ij IAMBET) 4 N p XA (33)
- J
Ofa, A; AAB;
S = Nap XHarDs, (34)
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Noting that the slopes in Egs. (33—-34) are positive, that the Jacobian matrix is diagonally dominant and thus
nonsingular, and thafa, = 0 is bracketed byX*: = 0 and X4 = 1 for all association sites, one can
conclude that there is a unique solution in [0,1]. Once a point solution is found it is gradually expanded as
an interval until the image computed by applying the interval Newton equation to Eq. (32) is contained in
the expanded(” interval. This interval for theé{*: has now been verified to contain all values of fié:
that satisfy Eq. (18) for the curreptinterval. If the currenp interval is relatively wide, it is possible that
the result for one or more of th&*: will be no smaller than [0,1]. In this case, processing of the cupent
interval is stopped and it is bisected.

In order to evaluate Eq. (24) and its Jacobian, not only are intervals fof theeeded, but also intervals
for the first and second derivatives of the*: with respect to the;. From differentiation of Eq. (24), the
first derivativeg X 4i], = X4 /0p;, are

(XA, = —Na (X492 {ZZ/} AMBI X B, %Z Bi[ARBs] +ZXBkAAiBj} (35)
j=1B j=1 B By
where[AAPBi], = 9AABi /9 p,. This is not an explicit expression faK 4], since[X ], also appears in
a term in the first double summation on the right-hand side. While it appears to be common practice to solve
this iteratively for the derivativeEX4¢];,, we show here how this can be done directly without iteration. This

is possible because Eq. (35) is in fact linear inthé‘:|,, and can be rearranged

QYr = . (36)

Herey is the N, x 1 vector comprising the first derivativéX 4], that are to be solved fof) is anN, x N,
matrix with coefficients
gii = 1+ (XM)2Nap ARA

= (XM)?Nap; A%P,
andcy is anNg x 1 vector with elements given by
N
i = —(XMPNA LIS p XBIANBI] 4 3T X BeafBs £
j=1 B, By

Once theX?: are determined from Eq. (18), then Eq. (36) is justanx N, system of linear equations

that can be solved for the vectgy, of first derivatives of X with respect top,. This is repeated for

each species = 1,...,N. Since in the algorithm being used here {§é: are interval valued, Eq. (36)

is a linear interval equation system. There are various approaches for bounding the solution set of such a
system?3-354142\We first precondition Eq. (36) using a standard inverse-midpoint preconditioner (that is,

the inverse of the point-valued matrix formed from the midpoints of the elemenfy.ofThis system is
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then solved using the approach first described by Hahden bounding the elements @p~'. Since all
the linear systems to be solved for the first derivatives ofXHe (and for the second derivatives as seen
below) have the same coefficient maté)x the inverse can be saved and re-used. If the cupenterval
is relatively wide, it is possible that useful bounds on the solution set of Eq. (36) cannot be obtained. In
this case, the processing of the currgninterval is stopped and it is bisected. It should be emphasized
that this procedure for theirect computation of the first derivatives of tié” can also be exploited when
conventional point-valued methods are used to compute phase behavior from SAFT.

The second derivatives of thE*: are needed if the current interval has passed the range test and
an interval Newton test is required. From differentiation of Eq. (35), the second derivakiveg, =
9> X A [9p0p, are

i 1 N
[XAi]kl — % {ZZPAAB [XBi], 37)
B

j=1 j

N
30D oy ([AABI[XB)y 4 [AAP][X B 4 XBI (AN
j=1 B
+ 00 (XAt e XBANBE ) 57 ([P AN X B AR, ) }
By By

where[A%Bi],, = 02A%Bi /9p,.0p;. Again this is not an explicit expression fox¢],; and it appears to
be common practice to solve Eq. (37) iteratively for the second derivdtk/ég ;. However, this also can

be done directly by solution of a linear equation system. Note that Eq. (37) can be rearranged

Q Yk = Cki, (38)

whereyy, is the N, x 1 vector comprising the second derivatié&":],; that are to be solved fof) is the

samelN; x N, matrix defined above, and arg; is anN; x 1 vector with elements given by

A; A;
o = HXMLEN, )

N
(XA)?Na {Z >~ oy (IAMPIX D] + [AAPI X 4 X P [AAP], ) +

j=1 B,
S (B ANEe . XB AN ) 37 (B AN XBAAS,) } .
Bk By

Once theX?: are determined from Eq. (18) and the first derivatii&$"], from Eq. (36), then Eq. (38) is
just anN, x N, system of linear equations that can be solved for the vegtosf second derivatives of 4
with respect tg, andp;. This is repeated for each pair of species- 1,..., N andl =1,..., N. Since

in the algorithm being used here, thg*: and [X 4], are interval valued, we again require the use of an
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interval linear equation solver to determine interval-valued results foiXte],;. This can be done using

the same approach as discussed above for determining intervals faftHg, and, in fact, since the matrix

Q in Eq. (38) is the same as in Eq. (36), the bounds)on generated in solving Eq. (36) can be used for
solving Eg. (38) as well. As in the case of the first derivatives, we emphasize that this procedure for the
direct computation of the second derivatives of tki€ can also be taken advantage of when conventional
point-valued methods are used to compute phase behavior from SAFT. Since in point-valued methods a
problem formulation in terms af and o may be used, and since this formulation is required here in order to
solve Eq. (21) for the feed density we give in Appendix B the linear equation systems that can be solved

for the first and second derivatives of the*: when this formulation is used.

Because of the complexity of Eg. (24) and its Jacobian elements, it is difficult in computing interval
extensions to avoid overestimation due to the dependency problem discussed above. However, some steps
can be taken in an attempt to ameliorate this difficulty. For example, density weighted averages are fre-
qguently occurring quantities in the model. These are quantities of thesfo#m% pisi, where thes; are
constants. There are two inequality constraints orpiltleat, when active, can bé:ulsed to more tightly bound
expressions of this form. These inequalities are

S omn e =L
o Pi Z Omin = ZmaxRT’
indicating simply that the sum of the component densities must be no less than the minimum totaldensity
setin Eg. (31), and
TNA & 3 T
n=Gg=——> pimid; <T7=——,
6 = 6

which indicates that the reduced density from Eq. (8) cannot exceed the closest packing value. If non-
physical density roots are being allowed, as discussed above, then the upper bousidooid be set to
one. For any intervgb for which either of these constraints is active, the bounds@amn be improved using
the procedure explained by Hua etafor the case of mole fraction weighted averages.

Another useful procedure for reducing overestimations due to the dependency problem is the use of
high-order Taylor models, as explained by Makino and BérZhis is particularly useful in dealing with
the terms in Egs. (40—42) in Appendix A that arise from the dispersion term given by Eq. (6). For example,

consider the quantity
4 9 1 j ) )
F(G,O) =) Dy (—> iGUN ¢
i=1j=1 T
that occurs in both Egs. (41) and (42). Héreand( are parameters defined in Appendix A, and are both

interval valued. A Taylor model of (G, ¢) can be constructed with respect to one or both of the variables

G and¢. Doing this for¢ and using a ninth-order Taylor expansion around some gpiat¢, taken here to
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be the midpoint of the interval, yields

4 9 ;
F(G, Q) = FGG)+ (- Y Dy (_) TEGRIITE
Jj=

=1 1

- cp - 1N et )
T ZZDu (;) iGN (5 - 1)¢
i=17=2

= Cp ZZDH( ) G~ 1) —2)- (G - 8)CY .

i=175=9

Note that sinceF (G, ¢) is a ninth-order polynomial ig and we have used a ninth-order Taylor model, the

_|_

remainder bound in the Taylor series is zero. Using such high-order Taylor models for this and the other
similar quantities in Eqs. (40—-42) that arise from the dispersion term leads to substantial computational

savings.

3.3 Phase Split Problem

For solving the phase split problem, it is sufficient to use a local, point-valued method, since the results
will subsequently be checked for global optimality using phase stability analysis. Thus, modelers may use
their favorite methodology, whether it is based on direct optimization of the total Gibbs energy or based
on solution of the equifugacity conditions. To solve the phase split problem, we follow the equifugacity
approach, and use the nonlinear equation solving code NEQLU described by Chen and $tadtselre
the equation system given by Eqs. (26—28). This code is based on the “dogleg” approach. For the special
caseN = V¥, the phase rule dictates that the component densities in each phase can be determined by solving
only the system given by Egs. (27-28), with Eq. (26) used subsequently to compute the phase volumes.
Initial guesses for the phase split problem are determined from results of the prior phase stability analysis,

as discussed above.

4 Test Problems and Results

To test our initial implementation of the interval methodology for reliable computation of phase stability
and equilibrium from SAFT, several different binary mixtures have been used. The first two mixtures are
self-associating systems, the next two are cross-associating, and the final one is nonassociating. For all
problems, the SAFT parameters used for each component were taken from Huang and Radasz
listed in Table 2. The nomenclature for association type in Table 2 is that used by Huang and*Radosz
and is explained further in the examples below. All computations were performed on a Sun Ultra 10/440

workstation.
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4.1 Problem 1. 2B Self-Associating System

This is a mixture ofn-heptane(l) and-propanol(2). There are no association sitesneheptane
molecules, but-propanol molecules self-associatePropanol is assumed to be of association type 2B. This
means that there are two association sites:on the hydrogen in the hydroxyl group, aBg, on the oxygen
in the hydroxyl group, and that there is no association between sites of the same type;Aat's = 0,

AB2B2 — 0 andAA2B2 = AB242 £ 0. From Table 2¢42B2 /i = 2619 K, andx”2B2 = 0.01968. For this

special case, the internal variabl®s2 and X2 are equal and can be solved for explicitly from Eq. (18)
without iteration. However, in order to emphasize the generality of the approach used here, we have not
exploited this in solving this problem. For the binary interaction parameter, wi;pise0.018, as given by

Fu and Sandlef.

Table 3 shows results for five different feed compositiagsat 7 = 333 K and P = 0.35 bar. For
each feed, the results of solving the EOS for the feed depsitse shown first. While mathematically the
EOS may in some cases have other real density roots, those shown are all the real density roots within
the physically feasible bounds specified above. The density root corresponding to the minimum Gibbs
energy is indicated with an asterisk. This is the root used in the calculatig 6 set up the phase
stability problem. Shown next in the Table are the results of solving the initial phase stability problem. Each
stationary point found, along with the corresponding value of the tangent plane digasagven. Then
for the cases in which the feed is not stable (i.e., there is a negative vald®) fone final results of the
phase equilibrium calculation are given, in terms of the composition (mole fractions) in each phase, and
the molar phase fraction for each phase. The computational results for phase stability and equilibrium
agree well with those that were obtained by Fu and Sahdking the same SAFT model, but with slightly
different (unpublished) model parameters. It should be noted that, while rounded point approximations are
given in Table 3, we have actually determined verified enclosures of each stationary point and cabhputed
for this enclosure. Similarly, the results are rounded point approximations of verified enclosures. Each
such enclosure is a very narrow interval that is known to contain a unique root based on the interval Newton
uniqueness test.

In solving the phase stability problem, for this example, and for the subsequent examples, we have
located the global minimum i by solving Eq. (24) foall the stationary points i. It should be noted,
however, that the interval methodology can be implemented so that it is not necessary to find enclosures of
all the stationary points. This can be done by making use of the underlying global minimization problem,
and incorporating a branch-and-bound strategy into the overall IN/GB algorithm. For example, since the
objective functionD has a known value of zero pt= p,, any p interval for which the interval extension of

D has a lower bound greater than zero cannot contain the global minimum and thus can be discarded, even
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though it may contain a stationary point (at whibhwill be positive and thus not of interest). However, the
addition of such objective range tests requires the additional work of computing an interval extension of

so will not necessarily reduce computation time requirements. Computation times can often be reduced by
noting that in order to demonstrate that a mixture is not stable, it is not really necessary to find the global
minimum of D, but only to findany point p for which D is negative. This can often be done using a

fast local method, followed by verification of the negativity Dfusing interval arithmetic. However, this
shortcut is not suitable for the initial phase stability test, at least if one plans to use the results to initialize
the subsequent phase split calculation. These ideas for incorporating branch-and-bound strategies and local
methods into the algorithm for solving the phase stability problem have been discussed in more detail by
Hua et al*® in the context of cubic EOS models.

For the feed mixtures that split into two phases, the CPU time requirements are roughly twice that for the
mixtures that do not split. This is because, for the mixtures that split, the phase stability problem is solved
rigorously twice, once at the beginning to determine that the mixture is not stable and to generate initial
guesses for the phase split calculation, and then once at the end to verify that the two-phase solution found
is in fact the global minimum in the total Gibbs energy. However, if there is some alternative means to get
initial guesses for the phase split problem, then, for the initial phase stability test, a local method could be
used as a shortcut, as discussed above, to try to establish that the mixture is not stable. Using this approach,
the CPU times for the feeds that split could be roughly halved.

The computation time requirements for this problem and those that follow are relatively large. This is
not surprising considering the complexity of the model and the fact that a mathematical and computational
guarantee of reliability has been provided. Clearly, there is a trade-off between computational speed and
reliability. However, since this is our first implementation of IN/GB for the phase stability problem with the
SAFT EOS, we anticipate that there are opportunities for improving its computational efficiency. As dis-
cussed further below, the decision to treat the internal iteration with generality, rather than take advantage of
the special properties of a given system, comes at a significant computational cost. As with all computation
time results, it is also important to view such results in the context of the ongoing advances in computer

processor speed, which continues to roughly double every 18 months.

4.2 Problem 2. 1A Self-Associating System

This is a mixture of acetic acid(1) and benzene(2). There are no association sites on benzene molecules,
but acetic acid molecules self associate. In SAFT, the carboxylic acid group is typically treated as a single
strong association sité () that can self associate. Thus, acetic acid is considered as having a 1A association

type, witheA141 /k = 3941 K ands”141 = 0.03926. Again, for this special case, the internal variaflé:
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can be solved for explicitly from Eq. (18) without iteration, but to emphasize the generality of our approach,
we have not exploited this in solving this problem. For the binary interaction parameter, Wwg &s6.031,
as given by Fu and Sandlér.

Three feed compositions were considered’at 323 K and P = 0.25 bar, as indicated in Table 4.
The interval methodology worked well in all cases, demonstrating stability of the feads at 0.125 and
x1,0 = 0.75, and a phase split for the feedat, = 0.25. Again, these computed results for phase stability
and equilibrium agree well with those that were obtained by Fu and Sandigrg the same SAFT model,

but with slightly different (unpublished) model parameters.

4.3 Problem 3. 2B + 2B Cross-Associating System

This is a mixture ofi-butanol(1) and ethanol(2). Both components are assumed to be of association type
2B, as described above. Here there is no association between sites of the sameAypé;ise AA14A2 =
Af2AL = AA2A2 — g and AP1BrL = ABiB2 — AB:Bir — AB2B2 — . From Table 2¢41B1 /k = 2605 K,
eA2B2 /1 = 2759 K, k21B1 = 0.01639, and x*2B2 = 0.02920. For the cross associating parameters

eMB2 — A2B1 gndgAiB2 = xA2B1 we use the “mixing rules” of Fu and Sandler:

AB2 = (A2B1 — [ AB1cAB,

Ay As A1B2 | cA1Bs
2
It should be noted that alternative mixing rules for cross-association are available (e.g., Wolbach and San-
dler*®). For the binary interaction parameter, we ésg = 0.010, as in Fu and Sandlérwho solve the
problem with the same SAFT model but slightly different (unpublished) parameters.
Three feed compositions were considered’at 343 K and P = (.35 bar, as indicated in Table 5.

The interval methodology worked well in all cases, demonstrating the stability of the feeds at 0.265
andz;o = 0.9, and a phase split for the feedat, = 0.65. The increase in CPU times compared to the
first two problems apparently arises from the increased difficulty of the internal iteration problem due to the
cross association terms. Once again the computed results are in good agreement with the computed results

of Fu and Sandlef.

4.4 Problem 4. 1A + 2B Cross-Associating System

This is a mixture of acetic acid (1) ardbutanol (2). Acetic acid is treated as having association type
1A, and1-butanol as having type 2B, both as described above. Thus there are a total of three association

sites,A; on acetic acid, and, andB, on 1-butanol. For the nonzero association parameters, the mixing
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rules given by Fu and Sandleare used:

6A1A2 — eAlBQ — \/€A1A1 €A2B2
K]AlAl +/€AIBQ
2

A1A2 _ A1B2

For the binary interaction parameter, we ése= —0.046, as in Fu and Sandlér.

Three feed compositions at= 308 K and P = 0.02664 bar were considered, and the results shown in
Table 6. Again the IN/GB approach worked well for each feed, demonstrating the stability of the feeds at
z1,0 = 0.995 andz; o = 0.80, and a phase split for the feedat, = 0.95. Again, these computed results

match closely the results computed from the SAFT model by Fu and S&ndler.

4.5 Problem 5. Nonassociating System

This is a mixture of ethene(l) andeicosane(2). There are no association sites on either molecule
S0 a®°¢ = 0 in Eq. (1). The binary interaction parameter value used kas= 0.076, from Huang
and Radosz. Three feed compositions @t = 423 K and P = 20 bar were considered, and three more at
T = 423 Kand P = 250 bar, with the results shown in Table 7. The computed results match the calculations
of Huang and Radoszwho used the same SAFT model.

The CPU times required for these mixtures are significantly less than in the previous cases, suggesting,
not surprisingly, that the additional model complexity resulting from the association term contributes sub-
stantially to the difficulty of solving the problem. It should be emphasized that, in the implementation of
the interval approach tested here, we have chosen to treat the internal iteration resulting from the association
term with complete generality. Undoubtedly, if one took advantage of the special properties of each type of
association system, for example the ability to solve the internal iteration explicitly in some cases and the use
of other special relationships between the internal variables, the computational effort required by the first

four problems could be greatly reduced.

5 Concluding Remarks

We have described here a new methodology that is thectirapletely reliabléechnique for computing
phase stability and equilibrium from the SAFT EOS model. The method is based on interval analysis, in
particular an interval Newton/generalized bisection algorithm, which provides a mathematical and compu-
tationalguaranteeof reliability. The method was demonstrated using a number of test problems, including
nonassociating, self-associating, and cross-associating systems. While we have demonstrated the technigue

here using the Huang and Radb3wersion of SAFT, with binary mixtures as examples, the methodology
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is general purpose and can be applied to other versions of SAFT, as well as to multicomponent systems, and
multiple fluid phases of any type (i.e., not just VLE and LLE, but VLLE, etc.). For the case of more than two
phases, computational times will not differ significantly from the case of two phases, at least if the rigorous
phase stability analysis is not used to generate initial guesses for phase split calculations and thus needs to
be done only once, to verify the final result. For multicomponent systems, our experience (e.g., Tessier et
al.?%) is that computation times will increase with the number of components, though perhaps not in entirely
predictable ways.

The use of a volume-based problem formulation, in which the core thermodynamic function for phase
equilibrium at constant temperature and pressure is the Helmholtz energy, proved to be very convenient.
Moreover, since it lessens difficulties due to multiple real roots of the EOS, this problem formulation may
have significant advantages when applied in connection with conventional point-valued methods. A new
approach for dealing with the internal iteration needed when there are association effects was also developed.
This provides for direct, as opposed to iterative, determination of the derivatives of the internal variables, and
can be applied not only in the context of the interval methodology described here, but also when conventional

point-valued methods are used.
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Appendix A. SAFT Parameterization

Parameters

Eight parametersA throughH, are used here, which are similar to those used by Huang and Ratlosz,
who gave a parameterization @f(x, p), the residual molar Helmholtz energy in terms of mole fraction
and total density. However, the parameterization here i8'f6(p), the residual Helmholtz energy density

in terms of molar component densities. Note that kkrés abbreviated ag;, (5 as(, andg?js(dij) asg;;.

A=Y pimd,] ; G=|—F)4
=1

C= imgd; =(—|C
;Pm G2 5
N
TNa
D= i ’Ld7,7 =|\—)D
>Spamidt s <= ("5

After parameterization, the residual Helmholtz energy density is

gres 3%(_%2 g_z C3 4 9 . Cj
= Al -O+F+E DG |2 +H (4
e e R b ]n( O+ FHEY Y06 HEEN
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First Derivatives with Respect to Component Densities

The notation - |; is used here to indicat@ - |/0py.

_ (7Na\ my(di)? 3d;d; 2dkCo
il = < 6 )(1—()2{d’“+di+c]lj {1+1—C]

did; 17T 26 A
d; +d; 1-¢ (1-¢)? ’
1

[In(g:5)], = P (96, 5

+ 2

[A], = my, ; [Bli, = mydy, ; (O = myds, ;

6

N
[Fli = (1 —mg) In(ger) + > pr(1 — ma)gulr/gu ;

(Dl = mydy ; [Clk = (WNA) Dy ; [Elp = my ;

This leads to

L oare 3[B]wCC + 3B[C)C — 3C2[C)4/D + 2C3[D)y/ D
ﬁ 8pk D(l - C)

2C°3 (¢

* B K?’BCC - %> e+ 25 2N

[3013[5];@ ~ QCD[BD]k - [A]k] (1 - ¢) - [% _A] e

+ [F]

gt nolf
¢ Elayy

4
1=

LY e 24 Zg LYo
1]:1DZ] L’} i@ C +[C]k¢:1j:1DZ] {T} jGC
+ [H]g.
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Second Derivatives with Respect to Component Densities

The notation| - ]; is used here to indicat®@?| - ]/9px0p;.

TNA\ 2 2mpmy (dd;)? d;d; dkdl@]
e = drd di + dy + 35252
9351k < 6 ) (1-¢)3 kl+3di+dj[l+ k+31_<

2
dz‘ dj dl C2 dk C2 dk dl C22 .
n 2<r+dj> [1+31_<+31_<+6(1_C)2]}7

gl [9i5]k1 — ﬁ[gi]‘]l[gij]k ;

(In gijlk = —
)

N
[Flie = (1= mg)[In ger)y + (1 — my) I gulie + Y pi(1 — mi)[In gl 5
i=1

2 U
Gl = [mkml (k—ij,i) Ui

N N
- [G]; Z pimimgvy: — [Glx Z pimimyuy, — Gmkmlvgl] ;
i=1 i=1
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This leads to

1 o

- 2 <3[B]kCC +3BIC)iC — 3021[)C’]k N 20?;[)1;],€>

D(1-¢)
B (BBICNC + 3iBLCIC - 0T
602[%§[D]l N 602[%]2[17% B 603[1;]5[19]1)
2 BC . 3 2 C3[D
08 (10 s 112
D(1[<k€§)2 <3[B]lCC+3B[C]1C— 301[30]1 +2 2?)
6[¢ ]z[CMCg 6C%[CLilClr  4CP[¢Ik[D]s
D*1-Q)*  D*(1-¢)* D3(1-¢)?
[<]; [302[C]k _ 20Dy, 1
1— q D? D3 F
3 3C2[C), 203D
([f]i[?)g [ﬁ —A] B 1[4_]12 < D[2 I D[3 - [A]z> Il
4 9 i i
E] |[G1 Y. Dy <%>]iG(i_1)Cj +CLDD Dy <%>]jG"<U‘”]
i=1j=1 i=1j=1
4 9 1\ 4 9 1
(B0 {60 33 Dy (5) 60 +10e Y Dy (1) jGZc@—”]
i=1j=1 i=1j=1
4
FE [G]MZZDU (%) ZGZ—1CJ
i=1;j=1

+ [H] - 42)
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Appendix B. Linear Systems for Derivatives of Internal Variables

The derivatives of the internal variablés*: can be determined directly without iteration by solving a
series of linear equation systems. In the text the linear equation systems to be solved are given for the case
in which the volume-based approach is used and the problem formulated in terms of the molar component
densitiesp;. In this Appendix, we give the linear systems for the case in which the independent variables
are the component mole fractiomg and total density. For the indices: andi below, values in the range
1,..., N refer to the mole fraction variables and a value\of- 1 refers to the total density.

First Derivatives

The first derivative$X 2], can be determined by solving the linear systems
Qyr = cg, k=1,...,N + 1. (43)

Herey,, is the N, x 1 vector comprising the first derivativéX 4], that are to be solved fof) is anN, x N,
matrix with coefficients

gii = 1+ Nap(XA0)?z; A%
qij = Nap(X™)?a;AMB,

andcyg is an N x 1 vector with elements given by

N
= Nap(XM)? (z X AN 3 Y X [AAiBj]k) k=i

B, j=1 B;

N
2 :_NA XA {ZZ (AAiBj +p[AAiBj]k)}7 k':N_|_1
=1B

Second Derivatives
The second derivativds{ 4], can be determined by solving the linear systems
kal:(}kl, k‘:l,...,N—l-l, l:1,...,N—|—1. (44)

Hereyy, is the N, x 1 vector comprising the second derivativiés":],; that are to be solved for ar@ is
the sameV,; x N matrix defined above in this Appendix. On the right-hand sigejs an N, x 1 vector

with elements given by

Cil = Tj + Sgr + b,
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where fork =1,...,Nandli=1,..., N,

2[X A [ XA,

rp = XAi )

si = —Nap(XH)? {sza (XB [ARB 4 [X B [ARP], 4 [XBj]z[AAiBj]k)} ’
B

Jj=1 J

by = —NAp<XAi>2{Z([AAin]szk+AAin[XBk]z)
Bk

£ 3 (AMEXP 4 ANE X, ) } ,

B,
fork=1,...,N andl = N + 1, r;; ands,,; are the same as above, and
ty = —NA(XA {pz ( AA iBr), xBr 4 APB [XBk]l) +ZAAinXBk
Bg By

ZZ (AAB [XB] [AAiBj]kXBj)}’
j=1 B;

and fork = N + 1,

2[X M3
Trp = T XA
N
s = —Na(XM)2 ST ay (28085 [ X B, 4 ofAMPs) x Py
j=1 B,

T 2p[ANB X + pX P aN],) ]

trr = 0.
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Table 1: Chen and KreglewsKiconstantsD;; used in Eq. (6).

D;; 1=1 =2 1=3 1 =4
j=1 —8.8043 2.9396 —2.8225 0.34
j=2 41646270 —6.0865383  4.7600148  —3.1875014
Jj=3 —48.203555 40.137956 11.257177 12.231796
j=4 14043620 —76.230797 —66.382743 —12.110681
Jj=5 —=195.23339 —133.70055  69.248785 0.0
j=6 113.51500 860.25349 0.0 0.0
j=7 0.0 —1535.3224 0.0 0.0
j=28 0.0 1221.4261 0.0 0.0
j=9 0.0 —409.10539 0.0 0.0

32



Table 2: SAFT parametet$or compounds in Problems 1-5.

Compound v (mL/mol) m  u%/k(K) ¢/k(K) 10%x association type
Acetic Acid 14.5 2.132 290.73 3941 3.926 1A
Benzene 11.421 3.749 250.19 - - -
1-Butanol 12.0 3.971 225.96 2605 1.639 2B
n-Eicosane 12.0 13.940  211.25 - - —
Ethanol 12.0 2.457 213.48 2759 2.920 2B
Ethene 18.157 1.464 212.06 - - —
n-Heptane 12.282 5.391 204.61 - - -
1-Propanol 12.0 3.240 225.68 2619 1.968 2B
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Table 3: Results for Problem h-heptane(1) and-propanol(2) afl” = 333 K and P = 0.35 bar, withk;; = 0.018.

Feed Root® Roots(p1, p2)
Composition (mol/L) (mol/L) D/RT value  Equil. Phase | Equil. Phaselll Total CPU
(z1,0, 2,0) from Eq. (21) from Eq. (24) fromEq. (22)  x(, 22, ¢) (z1, 22, @) time (secondg)
(0.975, (6.84*; 0.90; (6.667,0.171) 0.0 (0.975,0.025, - 143.3
0.025) 0.013) (2.768,0.069) 0.005 1.0)

(0.010, 0.002) 0.58 x 1076
(0.875, (0.0128*; 7.169;  (0.011,0.002) 0.0 (0.959,0.041, (0.789,0.211, 289.1
0.125) 0.968) (2.708,0.049) 0.004 0.507) 0.493)

(6.736,0.112)  —0.597 x 10~3
(0.60, (0.0128*;1.114;  (0.0077,0.0051) 0.0 (0.60,0.40, - 194.3
0.40) 8.344) (2.817,0.298) 0.005 1.0)

(5.310,2.626) 0.001
(0.45, (0.0128*; 1.173; (0.006, 0.007) 0.0 (0.143,0.857,  (0.462,0.538, 386.5
0.55) 9.175) (2.706,0.726) 0.006 0.037) 0.963)

(1.511,10.12)  —0.176 x 10~3
(0.10, (11.92%; 0.0128; (1.192,10.72) 0.0 (0.10,0.90, - 189.2
0.90) 1.250) (2.667,0.960) 0.006 1.0)

(0.005,0.007)  0.896 x 106

* feed density root corresponding to lowest Gibbs energy for feed mixture
1 CPU time on Sun Ultra 10/440 workstation
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Table 4: Results for Problem 2: acetic acid(1) and benzene@)-aB23 K and P = 0.25 bar, withk;; = 0.031.

Feed Rooty Roots(p1, p2)
Composition (mol/L) (mol/L)
(1,0, 22,0) from Eq. (21) from Eq. (24)

(0.125, (0.0095%; 1.452; (0.001,0.008)
0.875) 11.86) (1.207, 4.366)
(4.134,8.415)
(32.71,0.232 x 1075)
(0.25, (0.0096%; 1.470;  (0.0024,0.0072)
0.75) 12.38) (3.015,2.774)
(10.86,4.108)
(32.69,0.970 x 10~6)
(0.75, (15.12*%; 1.471; (11.34,3.78)
0.25) 1.116 x 10~2) (3.252,2.648)

(0.0024, 0.0066)
(32.69,0.890 x 10~6)

D/RT value Equil. Phase | Equil. Phase Il Total CPU
from Eq. (22)  z(, x2, ¢) (z1, 22, @) time (seconds)
0.0 (0.125,0.875, - 343.0
0.01 1.0)
0.003
0.355
0.0 (0.241,0.759  (0.707,0.293, 719.2
0.009 0.98) 0.02)
—3.06 x 1074
0.335
0.0 (0.75,0.25, - 357.9
0.0095 1.0)
0.57 x 107¢
0.335

* feed density root corresponding to lowest Gibbs energy for feed mixture

1 CPU time on Sun Ultra 10/440 workstation
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Table 5: Results for Problem 3:Butanol(1) and Ethanol(2) &t = 343 K andT" = 0.35 bar withk;; = 0.010.

Feed Rootg Roots(p1, p2)
Composition (mol/L) (mol/L) D/RT value Equil. Phase| Equil. Phase Il Total CPU
(1,0, 22,0) from Eq. (21) from Eq. (24) from Eq. (22) z(, z2, @) (z1, 22, @) time (seconds)
(0.90, (10.86*; 0.012; (9.774,1.086) 0.0 (0.90,0.10, - 858.7
0.10) 1.081) (3.953,0.529) 0.0087 1.0)

(0.0044,0.0028) 0.5 x 10~°
(0.65, (12.00%; 1.227; (7.802,4.201) 0.0 (0.672,0.328, (0.270,0.730, 1816.1
0.35) 0.0125) (3.028,1.990) 0.008 0.945) 0.055)

(0.0033,0.0097) —0.48 x 10~°
(0.265, (0.0125%; 1.536;  (0.0033,0.0092) 0.0 (0.265,0.735, - 907.3
0.735) 14.34) (3.106, 1.886) 0.0085 1.0)

(7.949,3.960)  0.111 x 10~3

* feed density root corresponding to lowest Gibbs energy for feed mixture
1 CPU time on Sun Ultra 10/440 workstation
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Table 6: Results for Problem 4: Acetic acid(1) antutanol(2) afl’ = 308 K and P = 0.02664 bar, withk;; = —0.046.

Feed Rootg Roots(p1, p2)
Composition (mol/L) (mol/L)
(1,0, z2,0) from Eq. (21) from Eq. (24)
(0.995, (0.0012%;31.38;  (0.001,0.58 x 10~°)
0.005) 17.34; 1.279) (31.8,0.5 x 1073)

(16.02, 0.805)
(7.310,0.216)

(0.95, (0.0012%; 1.217;  (0.001,0.58 x 10~%4)

0.05) 16.95; 30.83) (5.520,1.076)
(12.73,3.062)
(31.79,0.005)

(0.80, (15.72%; 29.21;
0.20) 1.060; 0.0011)

(12.58,3.144)

(31.79,0.0057)

(5.494,1.127)
(0.001,0.58 x 10~4)

D/RT value Equil. Phase |
from Eq. (22) x(, z2, ¢)
0.0 (0.995,0.005,
0.279 1.0)
0.003
0.014
0.0 (0.824,0.176,
0.0131 0.068)
—0.0005
0.280
0.0 (0.80,0.20,
0.281 1.0)
0.0133
0.415 x 10~7

Equil. Phase Il Total CPU
(z1, 22, @) time (seconds)
- 818.6
(0.959,0.041, 1766.4

0.932)
- 887.0

* feed density root corresponding to lowest Gibbs energy for feed mixture

1 CPU time on Sun Ultra 10/440 workstation



Table 7: Results for Problem 5: ethene(1) anBicosane(2) al’ = 423 K, P = 20 bar andP = 250 bar, withk;; = 0.076.

8¢

Feed Rootg Roots(p1, p2)

Composition (mol/L) (mol/L) D/RT value Equil. Phase | Equil. Phase Il Total CPU
(z1,0, 2,0); P from Eq. (21) from Eq. (24) from Eq. (22) x(, 22, @) (z1, 22, @) time (seconds)
(0.9999, 0.589 (0.608,2.433) 4.77 x 107* (0.9999, 0.0001, - 38.9
0.0001); (1.321,0.943) 3.28 x 1073 1.0)

P =20 bar (0.589,0.589 x 10~%) 0.0

(0.50, 4.184 (3.717,0.857) 1.09 x 1073 (0.99988,0.00012  (0.192,0.808, 88.5
0.50); (2.092,2.092) 0.0 0.38) 0.62)

P =20 bar (1.988,0.180 x 1073)  —1.21 x 1073

(0.18, 3.00 (0.541,2.464) 0.0 (0.18,0.82, - 38.2
0.82); (1.214,0.918) 317 x 1073 1.0)

P = 20 bar (0.546,0.694 x 10~%)  0.40 x 10—*

(0.85, 7.968 (6.773,1.195) 0.0 (0.85,0.15, - 64.8
0.15); (8.765,0.152) 0.989 x 10~4 1.0)

P = 250 bar (8.773,0.330) 0.103 x 1073

(0.95, 9.166 (8.708,0.458) 0.0 (0.876,0.124, (0.987,0.013, 131.3
0.05); (8.840,0.128) —0.196 x 1074 0.330) 0.670)

P = 250 bar (7.234,1.063) —0.358 x 1074

(0.99, 8.879 (8.790,0.089) 0.0 (0.99,0.01, - 60.6
0.01); 1.0)

P = 250 bar

1 CPU time on Sun Ultra 10/440 workstation



