
Reliable Computation of Phase Stability and
Equilibrium from the SAFT Equation of State

Gang Xu, Joan F. Brennecke and Mark A. Stadtherr∗

Department of Chemical Engineering
University of Notre Dame

182 Fitzpatrick Hall
Notre Dame, IN 46556

USA

February 2001
(revised, May 2001)

Keywords: SAFT; Phase Stability; Phase Equilibrium; Computational Method; Interval Analysis.

(for submission toIndustrial & Engineering Chemistry Research,
special issue in honor of Dr. Hasan Orbey)

∗Author to whom all correspondence should be addressed. Fax: (219) 631-8366; E-mail: markst@nd.edu



Abstract

In recent years, molecularly-based equations of state, as typified by the SAFT (statistical associating

fluid theory) approach, have become increasingly popular tools for the modeling of phase behavior. How-

ever, whether using this, or even much simpler models, the reliable calculation of phase behavior from a

given model can be a very challenging computational problem. A new methodology is described that is the

first completely reliabletechnique for computing phase stability and equilibrium from the SAFT model. The

method is based on interval analysis, in particular an interval Newton/generalized bisection algorithm, which

provides a mathematical and computationalguaranteeof reliability, and is demonstrated using nonassociat-

ing, self-associating, and cross-associating systems. New techniques are presented that can also be exploited

when conventional point-valued solution methods are used. These include the use of a volume-based prob-

lem formulation, in which the core thermodynamic function for phase equilibrium at constant temperature

and pressure is the Helmholtz energy, and an approach for dealing with the internal iteration needed when

there are association effects. This provides for direct, as opposed to iterative, determination of the derivatives

of the internal variables.



1 Introduction

In recent years, molecularly-based equations of state (EOS) have become increasingly popular tools for

the modeling of phase behavior. These models, as typified by the SAFT (statistical associating fluid theory)

approach,1–8 characteristically have parameters with well-defined physical meaning, based on molecular

structure (e.g., chain length) and interactions (e.g., association energy), and thus may be more reliable in

making extrapolations to different molecules or thermodynamic conditions. Unfortunately, even when good

EOS models are available, it is often very difficult to actually calculate the equilibrium phase behavior

reliably from the given models.

Since the number of phases present at equilibrium may not be knowna priori, the computation of phase

equilibrium is often considered in two stages, as outlined by Michelsen.9,10 The first involves thephase

stability problem, that is, to determine whether or not a given mixture will split into multiple phases. The

second involves thephase splitproblem, that is to determine the amounts and compositions of the phases

assumed to be present. After a phase split problem is solved, it is then necessary to do phase stability analysis

on the results to determine whether the postulated number of phases was correct, and if not to repeat the

phase split problem. Both the phase stability and phase split problems can be formulated as minimization

problems, or as equivalent nonlinear equation solving problems. There are several versions of this two-stage

approach. The recent version of Lucia et al.11 has been applied to a wide variety of practical problems and

appears to be particularly useful. With the choice of the proper thermodynamic state functions,12 the two-

stage framework can be applied to phase equilibrium problems with various types of specficiations (e.g.,

constant temperature and pressure, constant temperature and density, isentropic, isenthalpic, etc.).

For determining phase equilibrium at constant temperature and pressure, the case considered here, a

minimum in the total Gibbs energy of the system is sought. Phase stability analysis may be interpreted as

a global optimality test that determines whether the phase being tested corresponds to a global minimum in

the total Gibbs energy of the system. If it is determined that a phase will split, then a phase split problem is

solved, which can be interpreted as finding alocal minimum in the total Gibbs energy of the system. This

local minimum can then be tested for global optimality using phase stability analysis. If necessary the phase

split calculation must then be repeated, perhaps changing the number of phases assumed to be present, until

a solution is found that meets the global optimality test. Clearly the correct solution of the phase stability

problem, itself a global optimization problem, is the key in this two-stage global optimization procedure

for phase equilibrium. Assuming that the phase stability problem is correctly solved, this type of two-stage

procedure can be shown to converge in a finite number of steps to the equilibrium solution (e.g., McKinnon

et al.13).
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Conventional minimization or equation solving techniques for solving the phase stability problem are

initialization dependent, and may fail by converging to trivial or nonphysical solutions or to a point that is a

local but not a global minimum, even for very simple models (e.g., Green et al.14); thus there is no guaran-

tee that the phase stability problem has been correctly solved. Furthermore, two-stage methods that do not

solve the phase stability problem to global optimality (e.g., Michelsen,9,10 Lucia et al.11) provide no guar-

antee that the phase equilbrium problem has been solved correctly. Thus, there has been significant interest

in the development of completely reliable methods, as reviewed in more detail by Hua et al.15 Particularly

noteworthy is the work of McDonald and Floudas16–19and Harding and Floudas,20 who have shown that for

certain activity coefficient models and cubic EOS models, that the phase stability and equilibrium problems

can be made amenable, through the formulation of convex underestimating functions, to solution by pow-

erful global optimization techniques using branch and bound, which provide a mathematical guarantee of

reliability.

An alternative approach for solving the phase stability problem is the use of interval analysis. This

provides not only a mathematical guarantee of global optimality, but also a computational guarantee,15 since

it deals automatically with the rounding error issues that are inherent in floating-point arithmetic and that

lead to the loss of mathematical guarantees. This method, based on an interval Newton/generalized bisection

algorithm, was originally suggested by Stadtherr et al.,21 who applied it to problems involving excess Gibbs

energy models, as later done also by McKinnon et al..13 Subsequently, Hua et al.22,23 applied this method

to problems modeled with cubic equations of state, and efforts were made to improve the computational

efficiency of the approach, both for EOS models15 and for excess Gibbs energy models.24

We demonstrate here the use of the interval approach for the completely reliable solution of phase

stability and equilibrium problems when the SAFT EOS model is used. Since the SAFT EOS is most

conveniently expressed in terms of the Helmholtz energy, we use a “volume-based” formulation of the phase

stability and equilibrium problems at constant temperature and pressure, in which the core thermodynamic

function is the Helmholtz energy. This problem formulation was developed by Nagarajan et al.,25 but as

noted by Michelsen,12 its use has not yet been widely investigated. In the course of applying the interval

approach, we also address other numerical issues concerning SAFT; in particular, we present an approach

for dealing with the “internal” iteration required when association effects are included in the SAFT model.

The final result is a new computational procedure, with amathematical and computational guaranteeof

reliability, for solving phase stability and equilibrium problems when the SAFT EOS model is used.

In the next section, we present the mathematical formulation of the problem, summarizing the SAFT

EOS model and the volume-based approach for solving the phase stability and equilibrium problems, as well

as providing some additional detail about the two-stage procedure for determining phase equilibrium. In
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Section 3, we describe the actual solution methodology used, including a summary of the interval approach

that provides the guarantee of reliability. Then, in Section 4, we present results for several test problems,

and, in Section 5, summarize the conclusions of this study.

2 Problem Formulation

2.1 SAFT Equation of State

Many details concerning the SAFT EOS and it variants can be found elsewhere.1–8 A good description

of the key concepts underlying SAFT has been provided by Fu and Sandler.7 In this section we summarize

the equations and parameters that make up the SAFT EOS for a mixture of species.

In the SAFT model, molecules of each species are treated as a chain composed of equal-size, spherical

segments, with molecules of each different speciesi having different number of segments,mi, temperature-

independent segment molar volume (at close packing),v00
i , and temperature-independent segment interac-

tion energy,u0
i . For molecules that may associate, for instance due to hydrogen bonding, an association

energy parameterεAB and dimensionless association volume parameterκAB are used to characterize the

interaction between association sitesA andB. Values of these parameters for a wide range of compounds

are given by Huang and Radosz.4

The SAFT EOS is generally expressed in terms of the residual Helmholtz energy per unit mole of

mixtureares (this is the Helmholtz energy relative to an ideal gas mixture of the same composition and at

the same temperature and density). There are hard sphere, dispersion, chain and association contributions

that must be accounted for, so

ares = ahs + adisp + achain + aassoc. (1)

There are some variations in the SAFT model, depending on the expressions used to represent each of these

contributions. We use the model as described by Huang and Radosz.4–6

The hard sphere contributionahs is based on the hard sphere EOS as expressed by Boubĺık,26 and is

given by
ahs

RT
=

6
πNA%

[
(ζ2)3 + 3ζ1ζ2ζ3 − 3ζ1ζ2(ζ3)2

ζ3(1 − ζ3)2
−
(

ζ0 − (ζ2)3

(ζ3)2

)
ln (1 − ζ3)

]
(2)

where

ζj =
πNA%

6

N∑
i=1

ximid
j
ii , j = 0, 1, 2, 3. (3)

Here% is the total molar density of the mixture,xi is the mole fraction of compoundi in the mixture,N

is the number of components in the mixture,NA is Avogadro’s number,j is an exponent, anddii is the
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temperature-dependent segment diameter given by

dii = σi

[
1 − 0.12 exp

(
−3u0

kT

)]
, (4)

where

σi =
(

v00
i

6τ
πNA

)1/3

, (5)

k is Boltzmann’s constant, andτ = π
√

2/6 is the packing fraction for close-packed spheres.

The dispersion termadisp used by Huang and Radosz4,5 is

adisp

RT
= m

4∑
i=1

9∑
j=1

Dij

(
u

kT

)i (η

τ

)j

. (6)

To determine the average segment numberm, average segment energyu and average reduced density (pack-

ing fraction)η, the van der Waals one-fluid (vdW1) approach, that treats the mixture as a hypothetical pure

fluid having the same residual properties as the mixture, is used (as in Eqs. (2–3) above). Thus, with the

vdW1 mixing rule,

m =
N∑

i=1

ximi, (7)

η =
πNA%

6

N∑
i=1

ximid
3
ii = ζ3 (8)

and

u

kT
=

N∑
i=1

N∑
j=1

xixjmimjv
0
ij(uij/kT )

N∑
i=1

N∑
j=1

xixjmimjv0
ij

, (9)

where

v0
ij =

{
1/2

[
(v0

i )
1/3 + (v0

j )
1/3
]}3

, (10)

uij = (1 − kij)(uiiujj)1/2, (11)

v0
i = v00

i

[
1 − 0.12 exp

(
−3u0

kT

)]3

(12)

and

uii = u0
i

(
1 +

e

kT

)
. (13)

TheDij are the Chen and Kreglewski27 constants, which are listed in Table 1, ande/k = 10, with some

exceptions as discussed by Huang and Radosz.4 The kij are binary interaction parameters that can be fit

to experimental data. It should be noted that under the one-fluid approach the upper limit on the reduced

densityη will be given by the closest packing of equal diameter spheres, which is the reduced density given

by τ = π
√

2/6. It should also be noted that different versions of SAFT, for instance the SSAFT (simplified
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SAFT) model of Fu and Sandler,7 may use different expressions for the dispersion term. Furthermore,

different mixing rules may be used; for example, Huang and Radosz5 also discuss mixing rules based on

volume fraction. While we use the expressions given above for the dispersion term, the computational

method described here is general purpose and can be applied in connection with any variation of the SAFT

EOS.

The chain term,achain, as derived by Chapman et al.,3 is based on the pair correlation function,ghs
ii (dii),

in the form of Boubĺık,26 and is given by

achain

RT
=

N∑
i=1

xi(1 − mi) ln (ghs
ii (dii)) (14)

where

ghs
ii (dii) =

1
1 − ζ3

+
3dii

2
ζ2

(1 − ζ3)2
+ 2

[
dii

2

]2 ζ2
2

(1 − ζ3)3
. (15)

This is a special case of the more general pair correlation function,26 needed below, which is

ghs
ij (dij) =

1
1 − ζ3

+
3diidjj

dii + djj

ζ2

(1 − ζ3)2
+ 2

[
diidjj

dii + djj

]2
(ζ2)2

(1 − ζ3)3
(16)

with dij representingdiidjj/(dii + djj).

Finally, the association term,aassoc, is written as

aassoc

RT
=

N∑
i=1

xi


∑

Ai

[
ln XAi − XAi

2

]
+

Mi

2


 , (17)

where the summation overAi indicates summation over all association sites on componenti. HereMi is

the number of association sites on componenti, andXAi is the mole fraction of molecules ofi which are

not bonded at the association siteAi. This is determined from

XAi =


1 + NA

N∑
j=1

∑
Bj

ρjX
Bj∆AiBj



−1

, (18)

where the summation overBj indicates summation over all association sites on componentj. Note that

this means thatXAi is, in general, given only implicitly by Eq. (18), sinceXAi appears not only on the

left-hand side, but also in one of the terms in the double summation on the right-hand side. Thus, when there

are association effects to be accounted for, evaluation of the SAFT EOS requires an “internal” iteration to

solve for the “internal” variablesXAi , except in some special cases in which it is possible to solve for these

variables explicitly. In Eq. (18) the association strength function∆AiBj is

∆AiBj = ghs
ij (dij)

[
exp (εAiBj/kT ) − 1

]
σ3

ijκ
AiBj (19)
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with

σij = (σi + σj)/2. (20)

The SAFT parametersεAiBj andκAiBj are the association energy and dimensionless association volume,

respectively, used to characterize interactions between sitesAi andBj . In a mixture, there may be self-

association interactions (i = j) involving the same types of sites (A = B) or different types of sites on

molecules of the same species, and there may be cross-association interactions (i 6= j) between sites on

molecules of different species.

Eqs. (1), (2), (6), (14) and (17) provide an expression for the SAFT EOS in terms of the molar residual

Helmholtz energyares(x, %) given (at constant temperature) as a function of composition (mole fraction)

x = (x1, . . . , xN )T and total molar density%. In pressure-explicit form, the EOS may be written

P = %2
(

∂ares(x, %)
∂%

)
x,T

+ %RT (21)

where the last term is the ideal gas contribution. For ease of dealing with the functionares(x, %) and its

derivatives, the parameterization given by Huang and Radosz,5,6 following the approach of Topliss,28 is

very useful.

2.2 Phase Stability Problem

As discussed above, the determination of phase stability, i.e., whether or not a given mixture can split

into multiple phases, is a key step in phase equilibrium computations, providing a global optimality test

for the minimization of the total Gibbs energy. The determination of phase stability is typically done using

tangent plane analysis. For a mixture at constantT , P , and composition (mole fractions)x0, the tangent

plane condition is usually expressed9,29 in terms of the molar Gibbs energy of the mixture as a function of

molar composition and volume (or density). The mixture is not stable if the molar Gibbs energy surface

g(x, %) ever falls below a plane tangent to the surface atx0.

However, since the SAFT EOS is most conveniently expressed in terms of the Helmholtz energy, as

detailed above, we choose here to use a “volume-based” formulation of tangent plane analysis25 in which

the Helmholtz energy is the core function. For this case, the tangent plane condition is expressed in terms

of the Helmholtz energy density (Helmholtz energy per unit volume of mixture) as a function of the molar

component density vectorρ = (ρ1, . . . , ρN )T. A mixture (the “feed” or “test phase”) at constantT , P , and

composition (molar densities)ρ0 is not stable if the Helmholtz energy density surfaceã(ρ) ever falls below

a plane tangent to the surface atρ0. That is, if the tangent plane distance function

D(ρ) = ã(ρ) − [ã(ρ0) + ∇ã(ρ0) · (ρ − ρ0)] (22)
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is negative for any compositionρ, the mixture is not stable.25 Here∇ is used to indicate the gradient

vector, and the Helmholtz energy densityã(ρ) can be obtained from the molar residual Helmholtz energy

ares(x, %) given by Eq. (1) by first defining the residual Helmholtz energy densityãres(ρ) = %ares(x, %) and

then adding the ideal gas energy of mixing term, yielding

ã(ρ) = ãres(ρ) + RT
N∑

i=1

ρi ln [ρiRT ]. (23)

To simplify dealing with the functioña(ρ) and its derivatives, we use a parameterization ofãres(ρ) similar

to the parameterization that Huang and Radosz5,6 used forares(x, %). This new parameterization is given in

Appendix A.

To determine ifD(ρ) ever becomes negative, an unconstrained minimization ofD(ρ) can be done.

Clearly, it is important to find theglobal minimum, or one may incorrectly conclude that the mixture is

stable. Alternatively, this may be treated as an equation solving problem. It is easily seen that the stationary

points in the optimization problem can be found by solving the nonlinear equation system

∇ã(ρ) −∇ã(ρ0) = 0. (24)

This equation system has a trivial root atρ = ρ0 and, becausẽa(ρ) is likely to be nonconvex, may have

multiple nontrivial roots as well, corresponding to multiple local extrema in the optimization problem. If

this approach is used, it is important that no roots of the equation system be missed, since that may result

in failure to find the one corresponding to the global minimum. Thus, whether solved directly by some

minimization algorithm, or indirectly by some nonlinear equation solver, this can be a very difficult problem

to solve reliably. As explained in more detail below, we will use here an interval-based methodology that

provides a mathematical and computational guarantee that no roots of Eq. (24) will be missed, thus ensuring

that the global minimum inD(ρ) will be found, and that the phase stability problem is solved correctly.

Since in typical problem specifications the mixture composition is given in terms of the mole fraction

vectorx0 (or equivalently in terms of mole numbers), in order to use Eqs. (22) or (24) for phase stability

analysis it is necessary to first determine the feed composition in terms of the molar density vectorρ0. This

can be done by substitutingx = x0 into the EOS, Eq. (21), and solving for the mixture density%. Then

ρ0 = %x0. A difficulty here is that the SAFT EOS is high order in% and thus there may be a large number

of real roots (e.g., Koak et al.,30 Lucia and Luo31). The real density root that yields the smallest molar Gibbs

energyg = (ã +P )/% must then be used to computeρ0. Thus, in solving the EOS for%, it is important that

no real density roots be missed, since that may result in failure to find the root yielding the smallest Gibbs

energy. Again, by using the interval approach described below, we can provide a guarantee that no roots of

the EOS will be missed.
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The fact that for a givenx there may be multiple real values of% that satisfy the EOS highlights an

advantage of the volume-based approach over the usual molar approach, at least in the context of conven-

tional point-valued numerical techniques. Note that the usual approach to phase stability analysis is based

on the molar Gibbs free energy functiong(x, %), which will be multivalued if the EOS has multiple real

density roots. In this case, the actual function that must be used ismin
%

g(x, %), which may not be a smooth

function. Thus, not only are there difficulties in ensuring that all the real density roots are found, but also

in dealing with the optimization of a nonsmooth function. In contrast, the volume-based approach uses the

function ã(ρ), which is a smooth function of the component densities and is not multivalued with respect

to the component densities. This point is explained in some detail by Nagarajan et al.25 for the case of a

cubic EOS. However, since the interval approach used here can deal with multiple real roots of the EOS,

and the resulting nonsmooth Gibbs energy function, without any special effort, as shown by Hua et al.15,22,23

for the case of cubic EOS models, this advantage of the volume-based approach does not come into play

here. Nevertheless, we wish to emphasize that this approach may have significant advantages when applied

in connection with conventional point-valued methods for computing phase behavior from the SAFT EOS.

The phase stability problem represents one stage in the two-stage procedure outlined above for comput-

ing phase equilibrium. If solution of the phase stability problem indicates that the mixture will split into

multiple phases, then the second stage of procedure, the phase split problem, must be considered.

2.3 Phase Split Problem

In solving the phase split problem, it is desired to compute the amounts and compositions of the phases

present at equilibrium. For constantT and P , this means that the minimum in the total Gibbs energy

G = A + PV must be sought, either by direct optimization, or, equivalently, by solution of the first-order

optimality conditions (equifugacity conditions).

Following again the volume-based approach of Nagarajan et al.,25 the problem is to minimize

G =
[
V Iã(ρ)I + V IIã(ρ)II + · · · + V Ψã(ρ)Ψ

]
+ P (V I + V II + · · · + V Ψ) (25)

subject to the material balance constraint

V IρI + V IIρII + · · · + V ΨρΨ = x0. (26)

Here it is assumed that there areΨ phases, labeledI, II, . . . ,Ψ, and that the basis for the material balance

is a unit mole system. The first-order optimality (equifugacity) conditions for this constrained minimization

problem require that

∇ã(ρI) = ∇ã(ρII) = · · · = ∇ã(ρΨ) (27)
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and that

P = F(ρI) = F(ρII) = · · · = F(ρΨ), (28)

where the pressure-explicit equation of state,P = F(ρ), can be expressed25 in terms ofã(ρ) by

P = F(ρ) = ∇ã(ρ) · ρ − ã(ρ). (29)

While global optimization techniques may be applied directly to the minimization problem here, the

two-stage procedure being used requires only that a local minimum be sought, either by direct minimization

or by solution of the equifugacity conditions. As noted by Sun and Seider,32 good initial guesses for the

local solution of the phase split problem can typically be generated from the local minima in the tangent

plane distance functionD found by solving Eq. (24) as part of the phase stability problem. For example, if

a two-phase split problem is being solved, and three local minima inD were identified in the phase stability

problem just completed, then taken pairwise (since two phases have been assumed) there are three different

initial guesses that could be generated for the two-phase split problem.

Once a local solution to the phase split problem has been found, it is then checked for global optimality

by solving a phase stability problem, testing any one of the phases computed, since they must all share the

same tangent plane (a necessary condition for equifugacity). If the tested phase proves not to be stable,

then another local solution must be sought, either by using a different initial guess with the same number

of phases, or by increasing the number of phases. If a local solution to the phase split problem is found

that does prove to be stable when phase stability analysis is done, then the final molar compositions can be

determined by computing for each phase% =
N∑

i=1
ρi andxi = ρi/%.

The type of two-stage process outlined here for computing phase equilibrium is widely used. How-

ever, its reliability cannot be guaranteed unless one can guarantee that the phase stability problem is solved

correctly. To provide this guarantee we use the interval approach discussed in the next section.

3 Problem Solving Methodology

In this section we provide details about the actual problem solving methodology used to solve the phase

stability and phase split problems when the SAFT EOS model is used. Since, as emphasized above, the key

to the solving the phase equilibrium problem correctly is the ability to solve the phase stability problem with

complete certainty, we first summarize the interval approach used for this purpose.

3.1 Interval Approach

We apply here interval mathematics, in particular an interval Newton/generalized bisection (IN/GB)

technique, to find enclosures for all solutions to the nonlinear equation solving problems that arise in the
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phase stability problem. We will briefly outline these topics here, and then, in section 3.2, explain how they

were applied to solve the phase stability problem. Recent monographs which more thoroughly introduce

interval analysis, as well as interval arithmetic and other aspects of computing with intervals, include those

of Neumaier,33 Hansen34 and Kearfott.35 It should be emphasized that, when machine computations with

interval arithmetic operations are done, as in the procedures outlined below, the endpoints of an interval

are computed with a directed outward rounding. That is, the lower endpoint is rounded down to the next

machine-representable number and the upper endpoint is rounded up to the next machine-representable

number. In this way, through the use of interval, as opposed to floating point arithmetic, any potential

rounding error problems are eliminated.

A key concept in the interval methodology used is that of aninterval extension. For an arbitrary function

f(x), the interval extension over the intervalX, denotedF(X), is an interval enclosing all values off(x)

for x ∈ X; that is, it encloses therangeof f(x) over X (interval quantities are indicated in upper case,

point quantities in lower case). It is often computed by substituting the given intervalX into the function

f(x) and then evaluating the function using interval arithmetic. This so-called “natural” interval extension

is often wider than the actual range of function values, though it always includes the actual range. This

overestimation of the function range is due to the “dependency” problem, which may arise when a variable

occurs more than once in a function expression. While a variable may take on any value within its interval,

it must take on thesamevalue each time it occurs in an expression. However, this type of dependency is not

recognized when the natural interval extension is computed. In effect, when the natural interval extension

is used, the range computed for the function is the range that would occur if each instance of a particular

variable were allowed to take on a different value in its interval range.

Consider the solution of a nonlinear equation systemf(x) = 0, wherex ∈ X(0) and the goal is to find

(or, more precisely, enclose within very narrow intervals)all the roots of the equation system inX(0). The

solution algorithm is applied to a sequence of intervals, beginning with the initial interval vector (box)X(0)

specified by the user. This initial interval can be chosen to be sufficiently large to enclose all physically

feasible behavior. For an intervalX(k) in the sequence, the first step in the solution procedure is thefunction

range test. Here the interval extensionF(X(k)) of f(x) over the current intervalX(k) is computed and

tested to see whether it contains zero. If not, then clearly there is no root off(x) = 0 in this interval and it

can be discarded. IfX(k) passes the function range test, then the next step is theinterval Newton test. This

requires an interval extension of the Jacobian matrix off(x), and involves setting up and solving the interval

Newton equation (a system of linear interval equations) for a new interval, referred to here as theimage.

Comparison of the image to the current interval being tested provides a powerful existence and uniqueness

test for roots of the equation system.36 In particular, if the image is a proper subset of the current interval,
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then this is mathematical proof that the current interval contains auniquesolution off(x) = 0, which can

be tightly enclosed with quadratic convergence by continued application of the interval Newton equation.

Furthermore, any root lying in the current interval must also lie in the image. Thus, if the image and the

current interval do not intersect, this is mathematical proof that the current interval contains no roots of

f(x) = 0. If the number of roots in the current interval cannot be proven to be zero or one in this way,

then in most cases the current interval is bisected, and the resulting two intervals added to the sequence of

intervals to be tested.

These are the basic ideas of interval Newton/generalized bisection (IN/GB) methods. More detailed

descriptions of the technique used are available from Schnepper and Stadtherr37 and Hua et al.15 As a

framework for our implementation of the IN/GB method, we use appropriately modified FORTRAN-77

routines from the packages INTBIS38 and INTLIB.39 In addition, for solving the interval Newton equation,

the hybrid preconditioning technique of Gau et al.40 is employed. Overall, the IN/GB method described

above provides a procedure that is mathematicallyandcomputationally guaranteed to encloseall solutions

of the nonlinear equation systems that must be solved to perform phase stability analysis using the SAFT

EOS.

3.2 Phase Stability Problem

To solve the phase stability problem, we use the interval approach outlined above to solve theN × N

nonlinear equation system given by Eq. (24) to encloseall the stationary points of the tangent plane distance

functionD. This guarantees that the global minimum ofD will be located. If the global minimum ofD is

negative then the phase being tested is not stable. However, it should be noted that findingall the stationary

points is not always necessary, as discussed in more detail below. To initializeρ, the initial interval used for

each componentρi, i = 1, . . . ,N , is

ρi ∈
[
ξ,

√
2

NAmid3
ii

]
(30)

The lower boundξ is some arbitrary small positive number, taken here to beξ = 10−15 (mol/mL), corre-

sponding to the implicit assumption in phase stability analysis that every component is present in at least

trace amounts. The upper bound comes from the closest packing limit for pure componenti, which says

that the reduced densityη cannot exceedτ = π
√

2/6. Note that no initial point guess is needed, and that

the initial interval used covers all physically feasible possibilities. In some cases, especially at low reduced

temperatures, it may be appropriate to consider “non-physical” density roots (e.g., Koak et al.30), i.e., den-

sity roots that exceed the closest packing limit. If this is desired, the upper limit in Eq. (30) should be

determined based onη not exceeding one, resulting in the upper limit6/(πNAmid
3
ii). Expressions for the

derivatives appearing in Eq. (24) and its Jacobian are given by Eqs. (41–42) in Appendix A.
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If the initial mixture composition is given in terms of mole fractionsx0 instead of component densities

ρ0, then, as explained in more detail above, it is first necessary to compute the mixture density% in order to

formulate Eq. (24). This is done by using the IN/GB approach to solve Eq. (21) for%, givenx = x0. The

initial interval used for% is

% ∈


 P

ZmaxRT
,

√
2

NA

N∑
i=1

xi0mid3
ii


 (31)

The lower bound comes from setting an arbitrary upper limit ofZmax on the compressibility factorZ =

P/%RT . A value ofZmax = 2 is used here; this should be more than adequate for the reduced pressures

considered in the examples used below; however, this value can be adjusted as needed in solving other types

of problems. The upper bound comes again from the closest packing limit. While in general the EOS may

have a large number of real density roots, in our experience, many of these can be eliminated by enforcing

this upper bound on%. However, there may still be multiple real density roots in the interval given by Eq.

(31). As explained above, the one corresponding to the lowest Gibbs energy must then be used to determine

ρ0. Onceρ0 has been determined one can then proceed to solve Eq. (24). As discussed previously, if

one wishes to consider non-physical density roots, then the upper limit in Eq. (31) should be adjusted to

correspond toη not exceeding one.

In order to apply the interval approach to solve Eq. (24), it is necessary to compute interval extensions of

this function and its Jacobian for a givenρ interval. To do this it is first necessary to deal with the “internal”

iteration defined by Eq. (18) for the “internal” variablesXAi . This is anNs×Ns nonlinear equation system,

whereNs indicates the total number of association sites in the model. The goal is to determine an interval

value, preferably with as small as width as possible, for theXAi , such that it containsall values of theXAi

that satisfy Eq. (18) for the currentρ interval. There are several possible ways to do this; anε-expansion

approach35 is used here. First a point-valued version of Eq. (18) is formulated using the midpoints of the

currentρi intervals, and its (unique in [0,1]) solution found. The uniqueness of the point solution in [0,1]

can be seen by rewriting Eq. (18) as

fAi = XAi + NA

N∑
j=1

∑
Bj

(
ρjX

AiXBj∆AiBj

)
− 1, (32)

which has the Jacobian elements

∂fAi

∂XAi
= 1 + NA

N∑
j=1

∑
Bj

(
ρjX

Bj∆AiBj

)
+ NAρiX

Ai∆AiAi (33)

∂fAi

∂XBj
= NAρjX

Ai∆AiBj . (34)
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Noting that the slopes in Eqs. (33–34) are positive, that the Jacobian matrix is diagonally dominant and thus

nonsingular, and thatfAi = 0 is bracketed byXAi = 0 andXAi = 1 for all association sites, one can

conclude that there is a unique solution in [0,1]. Once a point solution is found it is gradually expanded as

an interval until the image computed by applying the interval Newton equation to Eq. (32) is contained in

the expandedXAi interval. This interval for theXAi has now been verified to contain all values of theXAi

that satisfy Eq. (18) for the currentρ interval. If the currentρ interval is relatively wide, it is possible that

the result for one or more of theXAi will be no smaller than [0,1]. In this case, processing of the currentρ

interval is stopped and it is bisected.

In order to evaluate Eq. (24) and its Jacobian, not only are intervals for theXAi needed, but also intervals

for the first and second derivatives of theXAi with respect to theρi. From differentiation of Eq. (24), the

first derivatives[XAi ]k = ∂XAi/∂ρk are

[XAi ]k = −NA(XAi)2



N∑
j=1

∑
Bj

ρj∆AiBj [XBj ]k +
N∑

j=1

∑
Bj

ρjX
Bj [∆AiBj ]k +

∑
Bk

XBk∆AiBj


 (35)

where[∆AiBj ]k = ∂∆AiBj/∂ρk. This is not an explicit expression for[XAi ]k since[XAi ]k also appears in

a term in the first double summation on the right-hand side. While it appears to be common practice to solve

this iteratively for the derivatives[XAi ]k, we show here how this can be done directly without iteration. This

is possible because Eq. (35) is in fact linear in the[XAi ]k and can be rearranged

Qyk = ck. (36)

Hereyk is theNs×1 vector comprising the first derivatives[XAi ]k that are to be solved for,Q is anNs×Ns

matrix with coefficients

qii = 1 + (XAi)2NAρi∆AiAi

qij = (XAi)2NAρj∆AiBj ,

andck is anNs × 1 vector with elements given by

cAi
k = −(XAi)2NA




N∑
j=1

∑
Bj

ρjX
Bj [∆AiBj ]k +

∑
Bk

XBk∆AiBj


 .

Once theXAi are determined from Eq. (18), then Eq. (36) is just anNs × Ns system of linear equations

that can be solved for the vectoryk of first derivatives ofXAi with respect toρk. This is repeated for

each speciesk = 1, . . . ,N . Since in the algorithm being used here theXAi are interval valued, Eq. (36)

is a linear interval equation system. There are various approaches for bounding the solution set of such a

system.33–35,41,42We first precondition Eq. (36) using a standard inverse-midpoint preconditioner (that is,

the inverse of the point-valued matrix formed from the midpoints of the elements ofQ). This system is
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then solved using the approach first described by Hansen41 for bounding the elements ofQ−1. Since all

the linear systems to be solved for the first derivatives of theXAi (and for the second derivatives as seen

below) have the same coefficient matrixQ, the inverse can be saved and re-used. If the currentρ interval

is relatively wide, it is possible that useful bounds on the solution set of Eq. (36) cannot be obtained. In

this case, the processing of the currentρ interval is stopped and it is bisected. It should be emphasized

that this procedure for thedirect computation of the first derivatives of theXAi can also be exploited when

conventional point-valued methods are used to compute phase behavior from SAFT.

The second derivatives of theXAi are needed if the currentρ interval has passed the range test and

an interval Newton test is required. From differentiation of Eq. (35), the second derivatives[XAi ]kl =

∂2XAi/∂ρk∂ρl are

[XAi ]kl =
2[XAi ]k[XAi ]l

XAi
− NA(XAi)2




N∑
j=1

∑
Bj

ρj∆AiBj [XBj ]kl (37)

+
N∑

j=1

∑
Bj

ρj

(
[∆AiBj ]l[XBj ]k + [∆AiBj ]k[XBj ]l + XBj [∆AiBj ]kl

)

+
∑
Bk

(
[XBk ]l∆AiBk + XBk [∆AiBk ]l

)
+
∑
Bl

(
[XBl ]k∆AiBl + XBl [∆AiBl ]k

)


where[∆AiBj ]kl = ∂2∆AiBj/∂ρk∂ρl. Again this is not an explicit expression for[XAi ]kl and it appears to

be common practice to solve Eq. (37) iteratively for the second derivatives[XAi ]kl. However, this also can

be done directly by solution of a linear equation system. Note that Eq. (37) can be rearranged

Qykl = ckl, (38)

whereykl is theNs × 1 vector comprising the second derivatives[XAi ]kl that are to be solved for,Q is the

sameNs × Ns matrix defined above, and andckl is anNs × 1 vector with elements given by

ckl =
2[XAi ]k[XAi ]l

XAi
− (39)

(XAi)2NA




N∑
j=1

∑
Bj

ρj

(
[∆AiBj ]l[XBj ]k + [∆AiBj ]k[XBj ]l + XBj [∆AiBj ]kl

)
+

∑
Bk

(
[XBk ]l∆AiBk + XBk [∆AiBk ]l

)
+
∑
Bl

(
[XBl ]k∆AiBl + XBl [∆AiBl ]k

)
 .

Once theXAi are determined from Eq. (18) and the first derivatives[XAi ]k from Eq. (36), then Eq. (38) is

just anNs×Ns system of linear equations that can be solved for the vectorykl of second derivatives ofXAi

with respect toρk andρl. This is repeated for each pair of speciesk = 1, . . . ,N andl = 1, . . . ,N . Since

in the algorithm being used here, theXAi and [XAi ]k are interval valued, we again require the use of an
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interval linear equation solver to determine interval-valued results for the[XAi ]kl. This can be done using

the same approach as discussed above for determining intervals for the[XAi ]k, and, in fact, since the matrix

Q in Eq. (38) is the same as in Eq. (36), the bounds onQ−1 generated in solving Eq. (36) can be used for

solving Eq. (38) as well. As in the case of the first derivatives, we emphasize that this procedure for the

direct computation of the second derivatives of theXAi can also be taken advantage of when conventional

point-valued methods are used to compute phase behavior from SAFT. Since in point-valued methods a

problem formulation in terms ofx and% may be used, and since this formulation is required here in order to

solve Eq. (21) for the feed density%, we give in Appendix B the linear equation systems that can be solved

for the first and second derivatives of theXAi when this formulation is used.

Because of the complexity of Eq. (24) and its Jacobian elements, it is difficult in computing interval

extensions to avoid overestimation due to the dependency problem discussed above. However, some steps

can be taken in an attempt to ameliorate this difficulty. For example, density weighted averages are fre-

quently occurring quantities in the model. These are quantities of the forms̄ =
N∑

i=1
ρisi, where thesi are

constants. There are two inequality constraints on theρi that, when active, can be used to more tightly bound

expressions of this form. These inequalities are

N∑
i=1

ρi ≥ %min =
P

ZmaxRT
,

indicating simply that the sum of the component densities must be no less than the minimum total density%

set in Eq. (31), and

η = ζ3 =
πNA

6

N∑
i=1

ρimid
3
ii ≤ τ =

π
√

2
6

,

which indicates that the reduced density from Eq. (8) cannot exceed the closest packing value. If non-

physical density roots are being allowed, as discussed above, then the upper bound onη should be set to

one. For any intervalρ for which either of these constraints is active, the bounds ons̄ can be improved using

the procedure explained by Hua et al.15 for the case of mole fraction weighted averages.

Another useful procedure for reducing overestimations due to the dependency problem is the use of

high-order Taylor models, as explained by Makino and Berz.43 This is particularly useful in dealing with

the terms in Eqs. (40–42) in Appendix A that arise from the dispersion term given by Eq. (6). For example,

consider the quantity

F(G, ζ) =
4∑

i=1

9∑
j=1

Dij

(
1
τ

)j

iG(i−1)ζj

that occurs in both Eqs. (41) and (42). HereG andζ are parameters defined in Appendix A, and are both

interval valued. A Taylor model ofF(G, ζ) can be constructed with respect to one or both of the variables

G andζ. Doing this forζ and using a ninth-order Taylor expansion around some pointζp ∈ ζ, taken here to
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be the midpoint of theζ interval, yields

F(G, ζ) = F(G, ζp) + (ζ − ζp)
4∑

i=1

9∑
j=1

Dij

(
1
τ

)j

iG(i−1)jζ(j−1)
p

+
(ζ − ζp)2

2!

4∑
i=1

9∑
j=2

Dij

(
1
τ

)j

iG(i−1)j(j − 1)ζ(j−2)
p

+
...

...
...

+
(ζ − ζp)9

9!

4∑
i=1

9∑
j=9

Dij

(
1
τ

)j

iG(i−1)j(j − 1)(j − 2) · · · (j − 8)ζ(j−9)
p .

Note that sinceF(G, ζ) is a ninth-order polynomial inζ and we have used a ninth-order Taylor model, the

remainder bound in the Taylor series is zero. Using such high-order Taylor models for this and the other

similar quantities in Eqs. (40–42) that arise from the dispersion term leads to substantial computational

savings.

3.3 Phase Split Problem

For solving the phase split problem, it is sufficient to use a local, point-valued method, since the results

will subsequently be checked for global optimality using phase stability analysis. Thus, modelers may use

their favorite methodology, whether it is based on direct optimization of the total Gibbs energy or based

on solution of the equifugacity conditions. To solve the phase split problem, we follow the equifugacity

approach, and use the nonlinear equation solving code NEQLU described by Chen and Stadtherr44 to solve

the equation system given by Eqs. (26–28). This code is based on the “dogleg” approach. For the special

caseN = Ψ, the phase rule dictates that the component densities in each phase can be determined by solving

only the system given by Eqs. (27–28), with Eq. (26) used subsequently to compute the phase volumes.

Initial guesses for the phase split problem are determined from results of the prior phase stability analysis,

as discussed above.

4 Test Problems and Results

To test our initial implementation of the interval methodology for reliable computation of phase stability

and equilibrium from SAFT, several different binary mixtures have been used. The first two mixtures are

self-associating systems, the next two are cross-associating, and the final one is nonassociating. For all

problems, the SAFT parameters used for each component were taken from Huang and Radosz4 and are

listed in Table 2. The nomenclature for association type in Table 2 is that used by Huang and Radosz4

and is explained further in the examples below. All computations were performed on a Sun Ultra 10/440

workstation.
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4.1 Problem 1. 2B Self-Associating System

This is a mixture ofn-heptane(1) and1-propanol(2). There are no association sites onn-heptane

molecules, but1-propanol molecules self-associate.1-Propanol is assumed to be of association type 2B. This

means that there are two association sites:A2, on the hydrogen in the hydroxyl group, andB2, on the oxygen

in the hydroxyl group, and that there is no association between sites of the same type; that is,∆A2A2 = 0,

∆B2B2 = 0, and∆A2B2 = ∆B2A2 6= 0. From Table 2,εA2B2/k = 2619 K, andκA2B2 = 0.01968. For this

special case, the internal variablesXA2 andXB2 are equal and can be solved for explicitly from Eq. (18)

without iteration. However, in order to emphasize the generality of the approach used here, we have not

exploited this in solving this problem. For the binary interaction parameter, we usekij = 0.018, as given by

Fu and Sandler.7

Table 3 shows results for five different feed compositionsx0 at T = 333 K and P = 0.35 bar. For

each feed, the results of solving the EOS for the feed density% are shown first. While mathematically the

EOS may in some cases have other real density roots, those shown are all the real density roots within

the physically feasible bounds specified above. The density root corresponding to the minimum Gibbs

energy is indicated with an asterisk. This is the root used in the calculation ofρ0 to set up the phase

stability problem. Shown next in the Table are the results of solving the initial phase stability problem. Each

stationary point found, along with the corresponding value of the tangent plane distanceD is given. Then

for the cases in which the feed is not stable (i.e., there is a negative value forD), the final results of the

phase equilibrium calculation are given, in terms of the composition (mole fractions) in each phase, and

the molar phase fractionφ for each phase. The computational results for phase stability and equilibrium

agree well with those that were obtained by Fu and Sandler7 using the same SAFT model, but with slightly

different (unpublished) model parameters. It should be noted that, while rounded point approximations are

given in Table 3, we have actually determined verified enclosures of each stationary point and computedD

for this enclosure. Similarly, the% results are rounded point approximations of verified enclosures. Each

such enclosure is a very narrow interval that is known to contain a unique root based on the interval Newton

uniqueness test.

In solving the phase stability problem, for this example, and for the subsequent examples, we have

located the global minimum inD by solving Eq. (24) forall the stationary points inD. It should be noted,

however, that the interval methodology can be implemented so that it is not necessary to find enclosures of

all the stationary points. This can be done by making use of the underlying global minimization problem,

and incorporating a branch-and-bound strategy into the overall IN/GB algorithm. For example, since the

objective functionD has a known value of zero atρ = ρ0, anyρ interval for which the interval extension of

D has a lower bound greater than zero cannot contain the global minimum and thus can be discarded, even
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though it may contain a stationary point (at whichD will be positive and thus not of interest). However, the

addition of such objective range tests requires the additional work of computing an interval extension ofD,

so will not necessarily reduce computation time requirements. Computation times can often be reduced by

noting that in order to demonstrate that a mixture is not stable, it is not really necessary to find the global

minimum of D, but only to findany point ρ for which D is negative. This can often be done using a

fast local method, followed by verification of the negativity ofD using interval arithmetic. However, this

shortcut is not suitable for the initial phase stability test, at least if one plans to use the results to initialize

the subsequent phase split calculation. These ideas for incorporating branch-and-bound strategies and local

methods into the algorithm for solving the phase stability problem have been discussed in more detail by

Hua et al.15 in the context of cubic EOS models.

For the feed mixtures that split into two phases, the CPU time requirements are roughly twice that for the

mixtures that do not split. This is because, for the mixtures that split, the phase stability problem is solved

rigorously twice, once at the beginning to determine that the mixture is not stable and to generate initial

guesses for the phase split calculation, and then once at the end to verify that the two-phase solution found

is in fact the global minimum in the total Gibbs energy. However, if there is some alternative means to get

initial guesses for the phase split problem, then, for the initial phase stability test, a local method could be

used as a shortcut, as discussed above, to try to establish that the mixture is not stable. Using this approach,

the CPU times for the feeds that split could be roughly halved.

The computation time requirements for this problem and those that follow are relatively large. This is

not surprising considering the complexity of the model and the fact that a mathematical and computational

guarantee of reliability has been provided. Clearly, there is a trade-off between computational speed and

reliability. However, since this is our first implementation of IN/GB for the phase stability problem with the

SAFT EOS, we anticipate that there are opportunities for improving its computational efficiency. As dis-

cussed further below, the decision to treat the internal iteration with generality, rather than take advantage of

the special properties of a given system, comes at a significant computational cost. As with all computation

time results, it is also important to view such results in the context of the ongoing advances in computer

processor speed, which continues to roughly double every 18 months.

4.2 Problem 2. 1A Self-Associating System

This is a mixture of acetic acid(1) and benzene(2). There are no association sites on benzene molecules,

but acetic acid molecules self associate. In SAFT, the carboxylic acid group is typically treated as a single

strong association site (A1) that can self associate. Thus, acetic acid is considered as having a 1A association

type, withεA1A1/k = 3941 K andκA1A1 = 0.03926. Again, for this special case, the internal variableXA1
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can be solved for explicitly from Eq. (18) without iteration, but to emphasize the generality of our approach,

we have not exploited this in solving this problem. For the binary interaction parameter, we usekij = 0.031,

as given by Fu and Sandler.7

Three feed compositions were considered atT = 323 K and P = 0.25 bar, as indicated in Table 4.

The interval methodology worked well in all cases, demonstrating stability of the feeds atx1,0 = 0.125 and

x1,0 = 0.75, and a phase split for the feed atx1,0 = 0.25. Again, these computed results for phase stability

and equilibrium agree well with those that were obtained by Fu and Sandler7 using the same SAFT model,

but with slightly different (unpublished) model parameters.

4.3 Problem 3. 2B + 2B Cross-Associating System

This is a mixture of1-butanol(1) and ethanol(2). Both components are assumed to be of association type

2B, as described above. Here there is no association between sites of the same type, so∆A1A1 = ∆A1A2 =

∆A2A1 = ∆A2A2 = 0 and∆B1B1 = ∆B1B2 = ∆B2B1 = ∆B2B2 = 0. From Table 2,εA1B1/k = 2605 K,

εA2B2/k = 2759 K, κA1B1 = 0.01639, andκA2B2 = 0.02920. For the cross associating parameters

εA1B2 = εA2B1 andκA1B2 = κA2B1, we use the “mixing rules” of Fu and Sandler:7

εA1B2 = εA2B1 =
√

εA1B1εA2B2

κA1B2 = κA2B1 =
κA1B2 + κA1B2

2
.

It should be noted that alternative mixing rules for cross-association are available (e.g., Wolbach and San-

dler45). For the binary interaction parameter, we usekij = 0.010, as in Fu and Sandler,7 who solve the

problem with the same SAFT model but slightly different (unpublished) parameters.

Three feed compositions were considered atT = 343 K and P = 0.35 bar, as indicated in Table 5.

The interval methodology worked well in all cases, demonstrating the stability of the feeds atx1,0 = 0.265

andx1,0 = 0.9, and a phase split for the feed atx1,0 = 0.65. The increase in CPU times compared to the

first two problems apparently arises from the increased difficulty of the internal iteration problem due to the

cross association terms. Once again the computed results are in good agreement with the computed results

of Fu and Sandler.7

4.4 Problem 4. 1A + 2B Cross-Associating System

This is a mixture of acetic acid (1) and1-butanol (2). Acetic acid is treated as having association type

1A, and1-butanol as having type 2B, both as described above. Thus there are a total of three association

sites,A1 on acetic acid, andA2 andB2 on 1-butanol. For the nonzero association parameters, the mixing
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rules given by Fu and Sandler7 are used:

εA1A2 = εA1B2 =
√

εA1A1εA2B2

κA1A2 = κA1B2 =
κA1A1 + κA1B2

2
.

For the binary interaction parameter, we usekij = −0.046, as in Fu and Sandler.7

Three feed compositions atT = 308 K andP = 0.02664 bar were considered, and the results shown in

Table 6. Again the IN/GB approach worked well for each feed, demonstrating the stability of the feeds at

x1,0 = 0.995 andx1,0 = 0.80, and a phase split for the feed atx1,0 = 0.95. Again, these computed results

match closely the results computed from the SAFT model by Fu and Sandler.7

4.5 Problem 5. Nonassociating System

This is a mixture of ethene(1) andn-eicosane(2). There are no association sites on either molecule

so aassoc = 0 in Eq. (1). The binary interaction parameter value used waskij = 0.076, from Huang

and Radosz.5 Three feed compositions atT = 423 K andP = 20 bar were considered, and three more at

T = 423 K andP = 250 bar, with the results shown in Table 7. The computed results match the calculations

of Huang and Radosz,5 who used the same SAFT model.

The CPU times required for these mixtures are significantly less than in the previous cases, suggesting,

not surprisingly, that the additional model complexity resulting from the association term contributes sub-

stantially to the difficulty of solving the problem. It should be emphasized that, in the implementation of

the interval approach tested here, we have chosen to treat the internal iteration resulting from the association

term with complete generality. Undoubtedly, if one took advantage of the special properties of each type of

association system, for example the ability to solve the internal iteration explicitly in some cases and the use

of other special relationships between the internal variables, the computational effort required by the first

four problems could be greatly reduced.

5 Concluding Remarks

We have described here a new methodology that is the firstcompletely reliabletechnique for computing

phase stability and equilibrium from the SAFT EOS model. The method is based on interval analysis, in

particular an interval Newton/generalized bisection algorithm, which provides a mathematical and compu-

tationalguaranteeof reliability. The method was demonstrated using a number of test problems, including

nonassociating, self-associating, and cross-associating systems. While we have demonstrated the technique

here using the Huang and Radosz4,5 version of SAFT, with binary mixtures as examples, the methodology
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is general purpose and can be applied to other versions of SAFT, as well as to multicomponent systems, and

multiple fluid phases of any type (i.e., not just VLE and LLE, but VLLE, etc.). For the case of more than two

phases, computational times will not differ significantly from the case of two phases, at least if the rigorous

phase stability analysis is not used to generate initial guesses for phase split calculations and thus needs to

be done only once, to verify the final result. For multicomponent systems, our experience (e.g., Tessier et

al.24) is that computation times will increase with the number of components, though perhaps not in entirely

predictable ways.

The use of a volume-based problem formulation, in which the core thermodynamic function for phase

equilibrium at constant temperature and pressure is the Helmholtz energy, proved to be very convenient.

Moreover, since it lessens difficulties due to multiple real roots of the EOS, this problem formulation may

have significant advantages when applied in connection with conventional point-valued methods. A new

approach for dealing with the internal iteration needed when there are association effects was also developed.

This provides for direct, as opposed to iterative, determination of the derivatives of the internal variables, and

can be applied not only in the context of the interval methodology described here, but also when conventional

point-valued methods are used.
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Appendix A. SAFT Parameterization

Parameters

Eight parameters,A throughH, are used here, which are similar to those used by Huang and Radosz,5,6

who gave a parameterization ofares(x, %), the residual molar Helmholtz energy in terms of mole fraction

and total density. However, the parameterization here is forãres(ρ), the residual Helmholtz energy density

in terms of molar component densities. Note that heredii is abbreviated asdi, ζ3 asζ, andghs
ij (dij) asgij .

A =
N∑

i=1

ρimid
0
i ; ζ0 =

(
πNA

6

)
A

B =
N∑

i=1

ρimid
1
i ; ζ1 =

(
πNA

6

)
B

C =
N∑

i=1

ρimid
2
i ; ζ2 =

(
πNA

6

)
C

D =
N∑

i=1

ρimid
3
i ; ζ =

(
πNA

6

)
D

E = A =
N∑

i=1

ρimi ;

F = achain/RT =
N∑

i=1

ρi(1 − mi) ln(gii) ;

G =
u

kT
=

N∑
i=1

N∑
j=1

ρiρjmimj[uij/kT ]v0
ij

N∑
i=1

N∑
j=1

ρiρjmimjv0
ij

;

H =
aassoc

RT
=

N∑
i=1

ρi


∑

Ai

[
ln XAi − XAi

2

]
+

Mi

2


 .

After parameterization, the residual Helmholtz energy density is

ãres

RT
=

3BC
D ζ − C3

D2

1 − ζ
+

C3

D2

(1 − ζ)2
+

[
C3

D2
− A

]
ln (1 − ζ) + F + E

4∑
i=1

9∑
j=1

DijG
i
[
ζ

τ

]j
+ H. (40)
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First Derivatives with Respect to Component Densities

The notation[ · ]k is used here to indicate∂[ · ]/∂ρk.

[gij ]k =
(

πNA

6

)
mk(dk)2

(1 − ζ)2

{
dk +

3didj

di + dj

[
1 +

2dkζ2
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+ 2
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]2 [
2ζ2
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3dk(ζ2)2
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]}
;
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1
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2
k ;
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3
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6
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0
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This leads to

1
RT
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3[B]kCζ + 3B[C]kζ − 3C2[C]k/D + 2C3[D]k/D2

D(1 − ζ)

+
1

D(1 − ζ)2

[(
3BCζ − C3

D

)
[ζ]k +

3C2[C]k
D

− 2C3[D]k
D2

]
+

2C3[ζ]k
D2(1 − ζ)3

+

[
3C2[C]k

D2
− 2C3[D]k

D3
− [A]k

]
ln(1 − ζ) −

[
C3

D2
− A

]
[ζ]k

1 − ζ

+ [F ]k + [E]k
4∑

i=1

9∑
j=1

DijG
i
[
ζ

τ

]j

+ E


[G]k

4∑
i=1

9∑
j=1

Dij

[
1
τ

]j
iG(i−1)ζj + [ζ]k

4∑
i=1

9∑
j=1

Dij

[
1
τ

]j
jGiζ(j−1)




+ [H]k. (41)

27



Second Derivatives with Respect to Component Densities

The notation[ · ]kl is used here to indicate∂2[ · ]/∂ρk∂ρl.
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This leads to
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Appendix B. Linear Systems for Derivatives of Internal Variables

The derivatives of the internal variablesXAi can be determined directly without iteration by solving a

series of linear equation systems. In the text the linear equation systems to be solved are given for the case

in which the volume-based approach is used and the problem formulated in terms of the molar component

densitiesρi. In this Appendix, we give the linear systems for the case in which the independent variables

are the component mole fractionsxi and total density%. For the indicesk andl below, values in the range

1, . . . ,N refer to the mole fraction variables and a value ofN + 1 refers to the total density.

First Derivatives

The first derivatives[XAi ]k can be determined by solving the linear systems

Qyk = ck, k = 1, . . . ,N + 1. (43)

Hereyk is theNs×1 vector comprising the first derivatives[XAi ]k that are to be solved for,Q is anNs×Ns

matrix with coefficients

qii = 1 + NAρ(XAi)2xi∆AiAi

qij = NAρ(XAi)2xj∆AiBj ,

andck is anNs × 1 vector with elements given by

cAi
k = −NAρ(XAi)2


∑

Bk

XBk∆AiBk +
N∑

j=1

∑
Bj

xjX
Bj [∆AiBj ]k


 , k = 1, . . . ,N

cAi
k = −NA(XAi)2




N∑
j=1

∑
Bj

xjX
Bj

(
∆AiBj + ρ[∆AiBj ]k

)
 , k = N + 1.

Second Derivatives

The second derivatives[XAi ]kl can be determined by solving the linear systems

Qykl = ckl, k = 1, . . . ,N + 1, l = 1, . . . ,N + 1. (44)

Hereykl is theNs × 1 vector comprising the second derivatives[XAi ]kl that are to be solved for andQ is

the sameNs × Ns matrix defined above in this Appendix. On the right-hand side,ckl is anNs × 1 vector

with elements given by

ckl = rkl + skl + tkl,
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where fork = 1, . . . ,N andl = 1, . . . ,N ,

rkl =
2[XAi ]k[XAi ]l

XAi
,

skl = −NAρ(XAi)2



N∑
j=1

∑
Bj

xj

(
XBj [∆AiBj ]kl + [XBj ]k[∆AiBj ]l + [XBj ]l[∆AiBj ]k

)
 ,

tkl = −NAρ(XAi)2


∑
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(
[∆AiBk ]lXBk + ∆AiBk [XBk ]l

)

+
∑
Bl

(
[∆AiBl ]kXBl + ∆AiBl [XBl ]k

)
 ,

for k = 1, . . . ,N andl = N + 1, rkl andskl are the same as above, and

tkl = −NA(XAi)2

ρ

∑
Bk

(
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)
+
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+
N∑
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∑
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(
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)
 ,

and fork = N + 1,

rkk =
2[XAi ]2k

XAi
,

skk = −NA(XAi)2



N∑
j=1

∑
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(
2∆AiBj [XBj ]k + 2[∆AiBj ]kXBj
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)}
,

tkk = 0.
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Table 1: Chen and Kreglewski27 constantsDij used in Eq. (6).

Dij i = 1 i = 2 i = 3 i = 4

j = 1 −8.8043 2.9396 −2.8225 0.34

j = 2 4.1646270 −6.0865383 4.7600148 −3.1875014

j = 3 −48.203555 40.137956 11.257177 12.231796

j = 4 140.43620 −76.230797 −66.382743 −12.110681

j = 5 −195.23339 −133.70055 69.248785 0.0

j = 6 113.51500 860.25349 0.0 0.0

j = 7 0.0 −1535.3224 0.0 0.0

j = 8 0.0 1221.4261 0.0 0.0

j = 9 0.0 −409.10539 0.0 0.0

32



Table 2: SAFT parameters4 for compounds in Problems 1–5.

Compound v00 (mL/mol) m u0/k (K) ε/k (K) 102κ association type

Acetic Acid 14.5 2.132 290.73 3941 3.926 1A

Benzene 11.421 3.749 250.19 – – –

1-Butanol 12.0 3.971 225.96 2605 1.639 2B

n-Eicosane 12.0 13.940 211.25 – – –

Ethanol 12.0 2.457 213.48 2759 2.920 2B

Ethene 18.157 1.464 212.06 – – –

n-Heptane 12.282 5.391 204.61 – – –

1-Propanol 12.0 3.240 225.68 2619 1.968 2B
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Table 3: Results for Problem 1:n-heptane(1) and1-propanol(2) atT = 333 K andP = 0.35 bar, withkij = 0.018.

Feed Roots% Roots(ρ1, ρ2)
Composition (mol/L) (mol/L) D/RT value Equil. Phase I Equil. Phase II Total CPU
(x1,0, x2,0) from Eq. (21) from Eq. (24) from Eq. (22) (x1, x2, φ) (x1, x2, φ) time (seconds)†

(0.975, (6.84∗; 0.90; (6.667, 0.171) 0.0 (0.975, 0.025, – 143.3
0.025) 0.013) (2.768, 0.069) 0.005 1.0)

(0.010, 0.002) 0.58 × 10−6

(0.875, (0.0128∗; 7.169; (0.011, 0.002) 0.0 (0.959, 0.041, (0.789, 0.211, 289.1
0.125) 0.968) (2.708, 0.049) 0.004 0.507) 0.493)

(6.736, 0.112) −0.597 × 10−3

(0.60, (0.0128∗; 1.114; (0.0077, 0.0051) 0.0 (0.60, 0.40, – 194.3
0.40) 8.344) (2.817, 0.298) 0.005 1.0)

(5.310, 2.626) 0.001

(0.45, (0.0128∗; 1.173; (0.006, 0.007) 0.0 (0.143, 0.857, (0.462, 0.538, 386.5
0.55) 9.175) (2.706, 0.726) 0.006 0.037) 0.963)

(1.511, 10.12) −0.176 × 10−3

(0.10, (11.92∗; 0.0128; (1.192, 10.72) 0.0 (0.10, 0.90, – 189.2
0.90) 1.250) (2.667, 0.960) 0.006 1.0)

(0.005, 0.007) 0.896× 10−6

∗ feed density root corresponding to lowest Gibbs energy for feed mixture
† CPU time on Sun Ultra 10/440 workstation
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Table 4: Results for Problem 2: acetic acid(1) and benzene(2) atT = 323 K andP = 0.25 bar, withkij = 0.031.

Feed Roots% Roots(ρ1, ρ2)
Composition (mol/L) (mol/L) D/RT value Equil. Phase I Equil. Phase II Total CPU
(x1,0, x2,0) from Eq. (21) from Eq. (24) from Eq. (22) (x1, x2, φ) (x1, x2, φ) time (seconds)†

(0.125, (0.0095∗; 1.452; (0.001, 0.008) 0.0 (0.125, 0.875, – 343.0
0.875) 11.86) (1.207, 4.366) 0.01 1.0)

(4.134, 8.415) 0.003
(32.71, 0.232× 10−5) 0.355

(0.25, (0.0096∗; 1.470; (0.0024, 0.0072) 0.0 (0.241, 0.759 (0.707, 0.293, 719.2
0.75) 12.38) (3.015, 2.774) 0.009 0.98) 0.02)

(10.86, 4.108) −3.06× 10−4

(32.69, 0.970× 10−6) 0.335

(0.75, (15.12∗; 1.471; (11.34, 3.78) 0.0 (0.75, 0.25, – 357.9
0.25) 1.116× 10−2) (3.252, 2.648) 0.0095 1.0)

(0.0024, 0.0066) 0.57 × 10−6

(32.69, 0.890× 10−6) 0.335

∗ feed density root corresponding to lowest Gibbs energy for feed mixture
† CPU time on Sun Ultra 10/440 workstation
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Table 5: Results for Problem 3:1-Butanol(1) and Ethanol(2) atT = 343 K andT = 0.35 bar withkij = 0.010.

Feed Roots% Roots(ρ1, ρ2)
Composition (mol/L) (mol/L) D/RT value Equil. Phase I Equil. Phase II Total CPU
(x1,0, x2,0) from Eq. (21) from Eq. (24) from Eq. (22) (x1, x2, φ) (x1, x2, φ) time (seconds)†

(0.90, (10.86∗; 0.012; (9.774, 1.086) 0.0 (0.90, 0.10, – 858.7
0.10) 1.081) (3.953, 0.529) 0.0087 1.0)

(0.0044, 0.0028) 0.5 × 10−5

(0.65, (12.00∗; 1.227; (7.802, 4.201) 0.0 (0.672, 0.328, (0.270, 0.730, 1816.1
0.35) 0.0125) (3.028, 1.990) 0.008 0.945) 0.055)

(0.0033, 0.0097) −0.48 × 10−6

(0.265, (0.0125∗; 1.536; (0.0033, 0.0092) 0.0 (0.265, 0.735, – 907.3
0.735) 14.34) (3.106, 1.886) 0.0085 1.0)

(7.949, 3.960) 0.111× 10−3

∗ feed density root corresponding to lowest Gibbs energy for feed mixture
† CPU time on Sun Ultra 10/440 workstation
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Table 6: Results for Problem 4: Acetic acid(1) and1-butanol(2) atT = 308 K andP = 0.02664 bar, withkij = −0.046.

Feed Roots% Roots(ρ1, ρ2)
Composition (mol/L) (mol/L) D/RT value Equil. Phase I Equil. Phase II Total CPU
(x1,0, x2,0) from Eq. (21) from Eq. (24) from Eq. (22) (x1, x2, φ) (x1, x2, φ) time (seconds)†

(0.995, (0.0012∗;31.38; (0.001, 0.58× 10−5) 0.0 (0.995, 0.005, – 818.6
0.005) 17.34; 1.279) (31.8, 0.5 × 10−3) 0.279 1.0)

(16.02, 0.805) 0.003
(7.310, 0.216) 0.014

(0.95, (0.0012∗; 1.217; (0.001, 0.58× 10−4) 0.0 (0.824, 0.176, (0.959, 0.041, 1766.4
0.05) 16.95; 30.83) (5.520, 1.076) 0.0131 0.068) 0.932)

(12.73, 3.062) −0.0005
(31.79, 0.005) 0.280

(0.80, (15.72∗; 29.21; (12.58, 3.144) 0.0 (0.80, 0.20, – 887.0
0.20) 1.060; 0.0011) (31.79, 0.0057) 0.281 1.0)

(5.494, 1.127) 0.0133
(0.001, 0.58× 10−4) 0.415 × 10−7

∗ feed density root corresponding to lowest Gibbs energy for feed mixture
† CPU time on Sun Ultra 10/440 workstation
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Table 7: Results for Problem 5: ethene(1) andn-Eicosane(2) atT = 423 K, P = 20 bar andP = 250 bar, withkij = 0.076.

Feed Roots% Roots(ρ1, ρ2)
Composition (mol/L) (mol/L) D/RT value Equil. Phase I Equil. Phase II Total CPU
(x1,0, x2,0); P from Eq. (21) from Eq. (24) from Eq. (22) (x1, x2, φ) (x1, x2, φ) time (seconds)†

(0.9999, 0.589 (0.608, 2.433) 4.77 × 10−4 (0.9999, 0.0001, – 38.9
0.0001); (1.321, 0.943) 3.28 × 10−3 1.0)
P = 20 bar (0.589, 0.589× 10−4) 0.0

(0.50, 4.184 (3.717, 0.857) 1.09 × 10−3 (0.99988, 0.00012 (0.192, 0.808, 88.5
0.50); (2.092, 2.092) 0.0 0.38) 0.62)
P = 20 bar (1.988, 0.180× 10−3) −1.21 × 10−3

(0.18, 3.00 (0.541, 2.464) 0.0 (0.18, 0.82, – 38.2
0.82); (1.214, 0.918) 3.17 × 10−3 1.0)
P = 20 bar (0.546, 0.694× 10−4) 0.40 × 10−4

(0.85, 7.968 (6.773, 1.195) 0.0 (0.85, 0.15, – 64.8
0.15); (8.765, 0.152) 0.989× 10−4 1.0)
P = 250 bar (8.773, 0.330) 0.103× 10−3

(0.95, 9.166 (8.708, 0.458) 0.0 (0.876, 0.124, (0.987, 0.013, 131.3
0.05); (8.840, 0.128) −0.196× 10−4 0.330) 0.670)
P = 250 bar (7.234, 1.063) −0.358× 10−4

(0.99, 8.879 (8.790, 0.089) 0.0 (0.99, 0.01, – 60.6
0.01); 1.0)
P = 250 bar

† CPU time on Sun Ultra 10/440 workstation
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