Global Optimization of Mixed-Integer Nonlinear Problems Using Interval Analysis

Presentation 11f, AIChE Annual Meeting 2005

Gang (Gary) Xu Invensys/SimSci-Esscor
Mark A. Stadtherr U. of Notre Dame
Motivation:

Explore the potential use of interval-Newton/generalized-bisection (INGB) approach (with or without branch-and-bound) for deterministic global optimization in mixed-integer nonlinear programming (MINLP).
Outline:

- Problem definition and background;
- Introduction and discussion of interval-Newton/generalized bisection (INGB) and its application to MINLP;
- Combination of INGB and branch-and-bound
- Examples
MINLP Problem:

\[
\text{min } f(x,y) \\
\text{s.t. } h(x,y) = 0, \\
g(x,y) \leq 0,
\]

with \(x\) indicating real variables and \(y\) indicating integer variables

• Want to determine global minimum, or
• May want to determine all KKT points
Considerable work has been done on this problem – for example:

- ECP combined with a general branch and bound;
- DICOPT++ coupled with zero-one branch-and-bound;
- Outer Approximation (OA)
- SMIN- and GMIN αBB (Floudas and coworkers)
INGB Applied to MINLP:

• Basic Idea
 – Formulate MINLP problem as continuous (NLP) problem
 – Solve for KKT points using interval-Newton approach -- Guaranteed to find all KKT points
 – Enforce integers using a special bisection rule during the interval-Newton algorithm
 – Can combine with branch-and-bound -- Find only the KKT point that is the global minimum
Interval-Newton/Generalized Bisection Method (INGB)

- Given a system of equations, an initial interval (bounds on all variables), and a solution tolerance:
 - IN/GB can find (enclose), with mathematical and computational certainty, all solutions to the equation system, or it can determine that no solutions exist
 - The equation system must have a finite number of real roots in the initial interval
 - No strong assumptions or simplifications to the equation system are needed
INGB Method

Problem: Solve $f(x) = 0$ for all roots in the interval $X^{(0)}$

Basic iteration scheme: For a particular subinterval (box), $X^{(k)}$, perform root inclusion test:

- **Range test**: Compute an interval extension (bounds on range) for each function in the system: $F(X^{(k)})$
 - If 0 is not in $F(X^{(k)})$, delete the box

- **Interval Newton test**: Compute the image, $N^{(k)}$, of the box by solving the linear interval equation system
 \[F'(X^{(k)})(N^{(k)} - x^{(k)}) = -f(x^{(k)}) \]
 - $x^{(k)}$ is a point in $X^{(k)}$
 - $F'(X^{(k)})$ is the interval extension of the Jacobian matrix of $f(x)$ over the interval $X^{(k)}$
INGB Method: Interval Newton Test

There is no solution in $X^{(k)}$

• There is no solution in $X^{(k)}$
INGB Method: Interval Newton Test

There is a unique solution in $X^{(k)}$ that is also in $N^{(k)}$.

Additional interval-Newton steps will tightly enclose the solution with quadratic convergence.
INGB Method: Interval Newton Test

- Any solutions in $X^{(k)}$ are in $X^{(k)} \cap N^{(k)}$
- If the intersection is sufficiently small, repeat the root inclusion test
- Otherwise, bisect the intersection and apply the root inclusion test to each resulting subinterval
New bisection rule on integer variables

• In a bisection for an integer variable, “cut-off” unnecessary real regions
• For example, if the interval for y is currently [0, 5], and it is bisected, the result will be subintervals [0, 2] and [3, 5] (not [0, 2.5] and [2.5, 5])
• Similarly, if the interval for y is currently [0, 1], and it is bisected, the result will be subintervals [0, 0] and [1, 1]
• In final results, integer variables will be represented by degenerate (tight) intervals, e.g. [1, 1]
INGB with interval branch-and-bound (INGB-BB)

- For a given candidate interval, compute interval bounds on objective function
- If lower bound is greater than known upper bound on global minimum, then delete the candidate interval
- Update of upper bound on the global minimum can be done in several ways, e.g.,
 - Use local NLP solver at intervals for which the integer variables are tight
- Adds computational overhead (computation of bounds on objective and update of upper bound), thus INGB-BB may or may not be more efficient than INGB alone
Some pros and cons

- Easy to apply – just solve KKT conditions
- No need for problem reformulations
- Potential to find all KKT points
- However, the need to solve for Lagrange multipliers means increase in problem dimensionality (but bisection on such variables can have lower priority than real and integer variables)
Examples:

- Six small examples from *Adjiman, et. al., 2000, AIChe J.* were selected for test (DELL 2GHz)

<table>
<thead>
<tr>
<th>Example</th>
<th># of roots</th>
<th>Global minimizer</th>
<th>CPU (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No B&B</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>(x=(1.12,1.31), y=(0,1,1))</td>
<td>0.109</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(x=(0.94194,-2.1), y=1)</td>
<td>5.531</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>(x=(0.2,0.8,1.908), y=(1,1,0,1))</td>
<td>852.844</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>(x=(0.97,0.9925,0.98)) (y=(0,1,1,0,1,1,0))</td>
<td>5.266</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>(y=(3,1))</td>
<td>0.734</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>(x=4, y=1)</td>
<td>0.547</td>
</tr>
</tbody>
</table>

Correct results were obtained in all cases.
Application: VLE Phase Stability Calculation

- Asymmetric modeling for VLE calculation
 - EOS model for vapor phase
 - Activity coefficient model for liquid phase

- Objective function in phase stability analysis (tangent plane distance) has slope discontinuity

- By introducing a binary variable the discontinuity is eliminated, but the VLE phase stability calculation becomes MINLP
VLE Phase Stability Calculation with Asymmetric Model

• Tangent plane distance analysis: minimize $D(x)$

 - $D(x) = g(x) - g_0 - \nabla g(x_0) \cdot (x - x_0)$

• For asymmetric model:

 - $D(x) = \min \{ D^V(x), D^L(x) \}$

• Make $D(x)$ continuous by introducing a binary variable θ

 - $D(x) = \theta \ D^V(x) + (1 - \theta) \ D^L(x)$

 - θ is then determined as part of the optimization problem (MINLP)

Concluding Remarks:

- We have explored the use of INGB for solving MINLP problem;
- Use of branch-and-bound (INGB-BB) improves performance on example problems;
- There are many ways to improve the efficiency of the current algorithm, e.g., constraint propagation using interval Taylor models (Lin & Stadtherr, paper #89b, Monday 12:48pm);
- Future work may be targeted to medium and larger scale mixed-integer nonlinear problems, such as reactor networks, pump networks, heat-exchange networks, etc.
Acknowledgement:

- Invensys/SimSci-Esscor
- Indiana 21st Century Research and Technology Fund
Example 1: Kocis and Grossmann (1988)

\[
\begin{align*}
\min_{x, y} & \quad 2x_1 + 3x_2 + 1.5y_1 + 2y_2 - 0.5y_3 \\
\text{s.t.} & \quad x_1^2 + y_1 = 1.25 \\
& \quad x_2^{1.5} + 1.5y_2 = 3 \\
& \quad x_1 + y_1 \leq 1.6 \\
& \quad 1.333x_2 + y_2 \leq 3 \\
& \quad -y_1 - y_2 + y_3 \leq 0 \\
& \quad x_1, x_2, x_3 \geq 0 \\
& \quad (y_1, y_2, y_3) \in \{0,1\}^3
\end{align*}
\]

\[
\begin{align*}
\min_{x, y} \quad & -0.7y + 5(x_1 - 0.5)^2 + 0.8 \\
\text{s.t.} \quad & -e^{(x_1-0.2)} - x_2 \leq 0 \\
& x_2 + 1.1y \leq -1 \\
& x_1 - 1.2y \leq 0.2 \\
& 0.2 \leq x_1 \leq 1 \\
& -2.22554 \leq x_2 \leq 1 \\
& y \in \{0, 1\}
\end{align*}
\]
Example 3: Yuan et. al. (1988)

\[
\begin{align*}
\min_{x, y} & \quad (y_1 - 1)^2 + (y_2 - 2)^2 + (y_3 - 1)^2 - \ln(y_4 + 1) \\
& \quad + (x_1 - 1)^2 + (x_2 - 2)^2 + (x_3 - 3)^2 \\
\text{s.t.} & \quad y_1 + y_2 + y_3 + x_1 + x_2 + x_3 \leq 5 \\
& \quad y_3^2 + x_1^2 + x_2^2 + x_3^2 \leq 5.5 \\
& \quad y_1 + x_1 \leq 1.2 \\
& \quad y_2 + x_2 \leq 1.8 \\
& \quad y_3 + x_3 \leq 2.5 \\
& \quad y_4 + x_1 \leq 1.2 \\
& \quad y \in \{0, 1\}^4
\end{align*}
\]
Example 4: Berman and Ashrafi (1993)

\[
\begin{align*}
\text{min} & \quad - x_1 x_2 x_3 \\
\text{s.t.} & \quad x_1 + 0.1^{y_1} 0.2^{y_2} 0.15^{y_3} = 1 \\
& \quad x_2 + 0.05^{y_4} 0.2^{y_5} 0.15^{y_6} = 1 \\
& \quad x_3 + 0.02^{y_7} 0.06^{y_8} = 1 \\
& \quad - y_1 - y_2 - y_3 \leq -1 \\
& \quad - y_4 - y_5 - y_6 \leq -1 \\
& \quad - y_7 - y_8 \leq -1 \\
& \quad 3 y_1 + y_2 + 2 y_3 + 3 y_4 + 2 y_5 + y_6 + 3 y_7 + 2 y_8 \leq 10 \\
& \quad 0 \leq x_1, x_2, x_3 \leq 1 \\
& \quad y \in \{0,1\}^8
\end{align*}
\]
Example 5: Pörn et al. (1997)

\[
\begin{align*}
\min_{x, y} & \quad 7y_1 + 10y_2 \\
\text{s.t.} & \quad y_1^{1.2} y_2^{1.7} - 7y_1 - 9y_2 \leq -24 \\
& \quad - y_1 - 2y_2 \leq -5 \\
& \quad -3y_1 + y_2 \leq 1 \\
& \quad 4y_1 - 3y_2 \leq 11 \\
& \quad y_1, y_2 \in [1,5] \cap \mathbb{N}
\end{align*}
\]
Example 6: Pörn et al. (1997)

\[
\begin{align*}
\min_{x, y} & \quad 3y - 5x \\
\text{s.t.} & \quad 2y^2 - 2y^{0.5} - 2x^{0.5}y^2 + 11y + 8x \leq 39 \\
& \quad -y + x \leq 3 \\
& \quad 2y + 3x \leq 24 \\
& \quad 1 \leq x \leq 10 \\
& \quad y \in [1,6] \cap \mathbb{N}
\end{align*}
\]