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Abstract 
 
 A deterministic technique for reliable phase stability analysis is described for the case in which 

asymmetric modeling (different models for vapor and liquid phases) is used.  In comparison to the 

symmetric modeling case, the use of multiple thermodynamic models in the asymmetric case adds an 

additional layer of complexity to the phase stability problem.  To deal with this additional complexity we 

formulate the phase stability problem in terms of a new type of tangent plane distance function, which 

uses a binary variable to account for the presence of different liquid and vapor phase models.  To then 

solve the problem deterministically, we use an approach based on interval analysis, which provides a 

mathematical and computational guarantee that the phase stability problem is correctly solved, and that 

thus the global minimum in the total Gibbs energy is found in the phase equilibrium problem.  The new 

methodology is tested using several examples, involving as many as eight components, with NRTL as the 

liquid phase model and a cubic equation of state as the vapor phase model.  In two cases, published phase 

equilibrium computations were found to be incorrect (not stable). 
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1.  Introduction 

A key step in the computation of multiphase equilibrium is phase stability analysis.  A reliable 

technique for phase stability analysis will assure both that the correct number of phases is found, and that 

the phase split computed corresponds to a global minimum in the total Gibbs energy.  That is, phase 

stability analysis serves as a global optimality test in solving the global optimization problem that 

determines phase equilibrium at constant temperature and pressure.  However, phase stability analysis is 

itself a global optimization problem that can be very difficult to solve reliably.  A standard approach to 

the problem is the use of tangent plane analysis [1], in particular the method implemented by Michelsen 

[2].  However, a very large number of other methods have been proposed, involving a variety of equation 

solving and optimization techniques.  Some methods use local optimization and/or equation solving 

methods, perhaps in connection with some multistart approach, or the use of homotopy-continuation.  

Stochastic global optimization methods (e.g., simulated annealing, genetic algorithms, etc.) have also 

been frequently proposed in this context.  However, none of these techniques is actually guaranteed to 

produce the correct results.  Thus, there has been significant interest in the development of deterministic 

techniques that guarantee the correct solution of the phase stability problem, as reviewed briefly below.  

These efforts have been focused primarily on the case of symmetric models (same thermodynamic model 

used for all phases).  Work on deterministic stability analysis for the asymmetric case (different models 

used for different phases) has been limited to cases involving either an ideal gas vapor phase or a pure 

solid phase.  We will consider here a deterministic method for the more general asymmetric case, 

focusing on the common situation in modeling vapor-liquid equilibrium in which nonidealities are 

represented in the vapor phase by an equation of state and in the liquid phase by an excess Gibbs energy 

model. 

One approach for deterministic phase stability analysis, as demonstrated by McDonald and 

Floudas [3,4,5,6] for symmetric cases in which various excess Gibbs energy models were used, is the use 

of deterministic global optimization techniques, such as GOP [7,8] and branch-and-bound [9].  McDonald 

and Floudas [3,4,5,6] also considered the asymmetric case in which an excess Gibbs energy model was 

used for liquid phases and the vapor was an ideal gas.  A more general branch-and-bound strategy, the α-
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BB method, was applied by Harding and Floudas [10] to symmetric cases in which cubic equation of state 

models were used.  The α-BB approach relies on the use of convex underestimating functions to obtain 

lower bounds on the objective function.  However, whether or not these are valid bounds depends on the 

proper choice of a parameter (α).  Methods exist [11], based on an interval representation of the Hessian 

matrix, that can be used to guarantee a proper value of α, and this approach was applied by Harding and 

Floudas [10]. 

An alternative deterministic procedure for phase stability analysis is the use of an interval-

Newton approach [12].  This has been demonstrated for symmetric cases using excess Gibbs energy 

models by Stadtherr et al. [13], McKinnon et al. [14], and Tessier et al. [15], and for symmetric cases 

using cubic equations of state by Hua et al. [16,17,18].  Recently Xu et al. [19] also applied this approach 

to the symmetric case in which a statistical associating fluid theory (SAFT) model is used.  The interval-

Newton procedure provides a mathematical guarantee that the phase stability problem is correctly solved.  

Moreover, since it uses interval arithmetic throughout, and thus bounds rounding error, the interval-

Newton method also provides a rigorous computational guarantee of global optimality [20].  The 

interval-Newton approach will be applied here to the asymmetric case in which both liquid and vapor 

phases are nonideal. 

In comparison to the symmetric model case, the use of multiple thermodynamic models in the 

asymmetric case adds an additional layer of complexity to the phase stability problem.  To deal with this 

additional complexity we will formulate the phase stability problem in terms of a new type of tangent 

plane distance function, which uses a binary variable to account for the presence of different liquid- and 

vapor-phase models.  To then solve the problem deterministically, we will use an interval-Newton 

approach.  The new methodology is tested using several examples with NRTL as the liquid-phase model 

and a cubic equation of state as the vapor-phase model.  In two cases, published phase equilibrium 

computations were found to be incorrect (not stable).  In should be noted that, as recently demonstrated 

by Burgos-Solórzano et al. [21], procedures for deterministic phase stability analysis, such as described 

here, can be used in connection with any algorithm or software package for computing phase equilibrium, 

to validate the computed results and to provide corrective feedback if needed. 
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2.  Problem Formulation 

The basis for tangent plane analysis for phase stability is the test formulated by Baker et al. [1].  

Assume that the phase to be tested has a composition (mole fraction) vector 0x and that a constant 

temperature T and pressure P have been specified.  Then consider the molar Gibbs energy vs. composition 

(mole fraction) surface g(x) and a hyperplane tangent to g(x) at 0=x x .  If this tangent plane ever crosses 

(goes above) the Gibbs energy surface, then the system being tested is not stable (i.e., it is either unstable 

or metastable).  This condition is often stated in terms of the tangent plane distance function D(x) that 

gives the distance of the Gibbs energy surface above the tangent plane.  This is given by 

 T
0 0 0( ) ( ) ( )D g g= − − −x x s x x , (1) 

where 0 0( )g g= x  and 0 0( )g= ∇s x  are the Gibbs energy function and its gradient evaluated at the feed 

composition 0x .  If D(x) is negative for any value of x, then the phase being tested is not stable.  To 

determine if D is ever negative, its minimum is sought.  If a stationary point (local minimum) of D is 

found for which D < 0, then this indicates that the phase being tested is not stable.  Actually, to show that 

a phase it not stable, it is sufficient to find any point x for which D < 0.  However, stationary points with 

D < 0 are commonly sought since they are useful in providing initial composition estimates for a possible 

new equilibrium phase or phases.  Proof that the phase being tested is stable is obtained if the global 

minimum of D is zero (corresponding to the tangent point at the feed composition 0x ).  Obviously this 

procedure may fail if the global minimum of the tangent plane distance function is not found.  For 

instance, if the optimization algorithm used returns a global minimum of zero, while the true global 

minimum is negative, the conclusion that the phase is stable will be incorrect. 

 The foregoing assumes that there is a single function g(x) that represents all phases that may be 

present in the system (though g(x) may be multivalued if an equation of state model is used and there are 

multiple compressibility roots).  Unlike this symmetric model case, in the asymmetric model case there 

will be different g(x) functions for different types of phases.  We will consider here only the situation in 

which vapor and liquid phases are possible, and use gV(x) to represent the Gibbs energy of a vapor phase 

and gL(x) to represent the Gibbs energy of liquid phases.  Xu et al. [22] and Scurto et al. [23] have 
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described an approach for deterministic phase stability analysis for the asymmetric case of solid-fluid 

equilibrium, in which one model is used for fluid phases, and another for pure solid phases. 

 In tangent plane analysis for phase stability, since the goal in testing a phase is to detect alternate 

states that have a lower Gibbs energy, the Gibbs energy surface that must be used is given by whichever 

of gV(x) and gL(x) is lowest.  That is, in Eq. (1), g(x) = min[gV(x), gL(x)], and evaluations at 0x  must be 

done on the lower of the Gibbs energy surfaces.  Thus, 
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Note that the vapor and liquid tangent plane distance functions, V V T
0 0 0( ) ( ) ( )D g g= − − −x x s x x  and 

L L T
0 0 0( ) ( ) ( )D g g= − − −x x s x x , respectively, are both based on the same values of 0g  and 0s , as 

determined from whichever Gibbs energy surface is lower at 0x .  The minimization problem that then 

must be solved is 
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In order to avoid the difficulties associated with the nondifferentiable objective function, it is 

convenient to reformulate the problem.  We define the “pseudo tangent plane distance” function 

( ) ( ) (1 ) ( )V LD D Dθ θ= + −x x x� , where {0,1}θ ∈  is a binary variable whose value will be determined as 

part of the optimization problem.  Assuming that an equation of state model ( , ) 0f Z =x  is used for the 

vapor phase, and treating the compressibility Z as an independent variable, the minimization  problem that 

must be solved can now be expressed as 
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Using Lagrangian analysis, this optimization problem can also be represented by the equivalent system of 

nonlinear equations 
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Note that the last equation is equivalent to {0,1}θ ∈ .  This is an (n+2) × (n+2) system of nonlinear 

equations that can be solved for the stationary points in the optimization problem.  As noted above, it is 

common to solve the phase stability problem by seeking such stationary points, since they may be useful 

in providing initial composition estimates for a possible new equilibrium phase or phases.  The 

introduction of the binary variable θ is a key feature of this problem formulation, as it provides the 

capability to combine any two different thermodynamic models that might be used in an asymmetric 

model of phase behavior.  While θ appears as a continuous variable in Eq. (5), it will be treated explicitly 

as a binary variable when this system is solved, as explained below. 

 The (reduced) Gibbs energy functions are expressed here relative to the pure components as 

liquids at system temperature and pressure.  For a liquid phase 

 L E

1
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n
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i
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= +∑x x  (6) 

where E ( )g x  is the excess Gibbs energy as given by some appropriate model.  The model used here is 

NRTL, 
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where )exp( ijijijG τα−=  and .ij
ij

A
RT

τ =   In the examples below, the parameters ijA  and ijα  are taken 

from various literature sources.  Though we will use NRTL here, the computational methodology 

described can be applied in connection with any model for the excess Gibbs energy (e.g., UNIQUAC, 

Wilson, etc.).  For a vapor phase, 
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where ˆ ( , )i Zφ x  is the fugacity coefficient of component i in the mixture at system T and P, L
iv  is the 

molar volume of pure i as a liquid at system T (assumed independent of pressure and evaluated at 

saturation), sat
iP  is the vapor pressure of pure i at system T, and sat

iφ  is the fugacity coefficient of pure i as 

a vapor at sat
iP  and system T.  The mixture fugacity coefficients ˆ ( , )i Zφ x  are determined here from a 

cubic equation of state model of the form 
 

 3 2( , ) ( ) ( ) ( ) 0.f Z Z b Z c Z d= + + + =x x x x  (9) 

In the examples below, either the Peng-Robinson (PR) or Soave-Redlich-Kwong (SRK) equation of state 

is used, with standard van der Waals mixing rules.  An equation of state can also be used to determine 

sat
iφ ; however, since sat

iP  is likely to be relatively small, it is often reasonable to assume that sat 1iφ = , and 

that is what is done here.  Sources of data for the vapor-phase model parameters are discussed in the 

examples below. 

3.  Problem Solving Methodology 

For solving Eq. (5), an (n+2) × (n+2) nonlinear system, for the stationary points in the phase 

stability problem, we use a method based on interval mathematics, in particular an interval-Newton 

approach combined with generalized bisection (IN/GB).  This is a deterministic technique that provides a 

mathematical and computational guarantee that all the stationary points are found, and thus that the 

global minimum in the pseudo tangent plane distance function D�  is found.  For general background on 

interval mathematics, including interval arithmetic, computations with intervals, and interval-Newton 

methods, there are several good sources [20,24,25].  Details of the basic IN/GB algorithm employed here 

are given by Schnepper and Stadtherr [12] and Hua et al. [18]. 

An important feature of this approach is that, unlike standard methods for nonlinear equation 

solving and/or optimization that require a point initialization, the IN/GB methodology requires only an 

initial interval, and this interval can be sufficiently large to enclose all feasible results.  Thus, in the case 

of phase stability analysis, all composition variables (mole fractions) xi can be initialized to the interval 
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[0, 1].  For the vapor-phase compressibility factor Z an initial interval of [0.5, 1] is used.  The lower limit 

of 0.5 effectively eliminates any liquid-like compressibility roots (the equation of state is used to 

represent the vapor phase only) and in most circumstances is reasonable for the relatively low pressures at 

which asymmetric models are typically used.  If the pressure was so high that the vapor-phase 

compressibility was less than 0.5, then a symmetric model using an equation of state for both vapor and 

liquid phases would likely be used.  Of course, the initial interval for Z can easily be modified as desired 

to fit other circumstances, as discussed further in Section 4.4 below.  Finally, for the binary variable θ, the 

initial interval is set to [0, 1]. 

Intervals are searched for stationary points using powerful root inclusion tests based on the 

interval-Newton method.  This method can determine with mathematical certainty if an interval contains 

no stationary point or if it contains a unique stationary point.  In the algorithm used here, we first apply 

interval-Newton using the pivoting preconditioner described by Gau and Stadtherr [26].  If necessary, this 

is followed by a root inclusion test using the standard inverse-point preconditioner [12].  If, after both of 

the interval-Newton tests, it cannot be proven that that interval contains a unique stationary point or no 

stationary point, then the interval is bisected and the root inclusion tests applied eventually to each 

subinterval.  For the binary variable θ, a special bisection rule is used.  If θ is chosen by the IN/GB 

algorithm as the variable to be bisected, then it is bisected into the degenerate (thin) intervals [0, 0] and 

[1, 1].  Note that thus θ can be bisected only once.  In this way, θ is treated explicitly as a binary (rather 

than continuous) variable in solving the equation system. 

On completion, the IN/GB algorithm will have determined narrow enclosures of all the stationary 

points of D, including the local and global optima, and thus the global minimum can be readily 

determined.  Alternatively, IN/GB can be applied in connection with a branch-and-bound scheme, which 

will lead directly to the global minimum without finding any of the other stationary points.  However, as 

noted above, if the tested phase is not stable, knowledge of the stationary points can be useful for 

initializing phase split computations. 
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4.  Results and Discussion 

Using this problem solving methodology, together with the concept of pseudo tangent plane 

distance, as introduced above, we now consider several test problems.  In each case, an asymmetric model 

is used, with NRTL for the liquid phase, and a cubic equation of state (PR or SRK) for the vapor phase.  

The first two example problems are very simple and serve to demonstrate the key concepts of the 

methodology. 

4.1  Problem 1 

This problem involves the binary mixture of tetrahydrofuran (component 1) and 2,2,4-

trimethylpentane (component 2).  Du et al. [27] performed vapor-liquid equilibrium measurements for 

this system at P = 101.3 kPa, and then modeled their results using NRTL and SRK.  They determined 

NRTL parameters by fit to experimental data, obtaining A12 = –225.523 cal/mol and A21 = 555.498 

cal/mol, with α12 = α21 fixed at 0.2.  For SRK, they used the pure component properties (critical 

temperature, critical pressure and acentric factor) Tc1 = 540.15 K, Pc1 = 5188 kPa, ω1 = 0.2264, Tc2 = 

543.96 K, Pc2 = 2568 kPa, and ω2 = 0.3031.  The binary interaction parameter was taken to be k12 = 0.  

For this example, we will focus on phase stability at T = 350 K.  At this temperature, from the physical 

property models used by Du et al., the vapor pressure values are sat
1 142.39P =  kPa and sat

2 51.29P =  

kPa, and the saturated liquid molar volumes are L
1 87.89v =  cm3/mol and L

2 176.1v =  cm3/mol. 

For this model, the Gibbs energy surface g for a phase of composition x1 (and x2 = 1 – x1) is 

shown in Figure 1.  Note that this surface is determined from the vapor-phase model gV and liquid-phase 

model gL using g = min[gV, gL].  For an overall (feed) composition of x0,1 = 0.6, the pseudo tangent plane 

distance (PTPD) function D�  is shown in Figure 2.  This shows that there are two stationary points in the 

PTPD, one at x1 = 0.6 and θ = 1 (the feed point; vapor phase) and the other at x1 ≈ 0.33 and θ = 0.  

Because D�  is negative at this latter point, this system is clearly not stable as a single phase.  Since θ = 0 

at the point where D�  is negative, this indicates that the total Gibbs energy can be lowered by introducing 

a liquid phase. 

The interval-Newton methodology outlined above was applied to compute the stationary points 

for several feed compositions for this system, with the results as shown in Table 1.  The values reported 
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here (and in the subsequent tables) for the stationary points are point approximations of very narrow 

intervals that have been proven to contain a unique solution to Eq. (5).  The feed composition of x0,1 = 0.3 

is shown to be stable as a liquid (θ = 0) and x0,1 = 0.9 is shown to be stable as a vapor (θ = 1), since for 

these cases the global minimum of the PTPD is zero (at the feed point).  The feed compositions of  x0,1 = 

0.5, x0,1 = 0.6, and x0,1 = 0.65 are shown to be not stable since they exhibit negative values for the PTPD.  

These results are consistent with the phase diagram computed by Du et al. [27] using the model described 

above.  For each feed point considered, the computation time required to compute all the stationary points 

was approximately 0.01 s.  These times, and all computation times reported below, were determined using 

an Intel Pentium 4 CPU (3.2 GHz). 

4.2  Problem 2 

For this problem we consider the binary mixture of dimethyl carbonate (component 1) and 

cyclohexane (component 2) at T = 298.15 K, the phase behavior of which was measured and modeled by 

Cocero et al. [28].  NRTL parameters were determined from experimental data as A12 = 875.972 cal/mol 

and A21 = 937.397 cal/mol, with α12 = α21 = 0.47.  Vapor-phase nonidealities were modeled using PR, 

with pure component properties Tc1 = 539.0 K, Pc1 = 4630 kPa, ω1 = 0.462, Tc2 = 553.4 K, Pc2 = 4070 kPa, 

and ω2 = 0.212, and binary interaction parameter k12 = 0.  At the system temperature of 298.15 K, the 

vapor pressure values used by Cocero et al. are sat
1 7.190P =  kPa and sat

2 13.014P =  kPa.  Liquid molar 

volumes were taken to be L
1 84.693v =  cm3/mol and L

2 108.747v =  cm3/mol. 

The interval-Newton methodology was applied to compute the stationary points for several feed 

compositions for this system at P = 16.5 kPa (close to a homogeneous azeotrope at about 16.8 kPa), with 

the results as shown in Table 2.  Feeds at x0,1 = 0.125, x0,1 = 0.325, and x0,1 = 0.75 are shown to be stable 

as single-phase liquid, vapor, and liquid, respectively, since in each case the global minimum of the PTPD 

is zero.  For the feeds at x0,1 = 0.275 and x0,1 = 0.45, negative values of the PTPD are observed, so these 

are not stable as a single phase.  These results are all in agreement with the work of Cocero et al. [28].  

For each feed point considered, the computation time required to compute all the stationary points was 

again approximately 0.01 s. 
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4.3  Problem 3 

In this example, the system studied is the binary mixture of 2,3-dimethyl-2-butene (component 1) 

and methanol (component 2).  Experimental vapor-liquid equilibrium measurements were made for this 

system recently by Uusi-Kyyny et al. [29] at atmospheric pressure.  The experimental pressure varied 

slightly, but for most measurements was P = 101.2 kPa, and this is the value used here.  The experimental 

results were modeled by Uusi-Kyyny et al. using SRK as the vapor-phase model, and using NRTL, 

Wilson, and UNIQUAC as different liquid-phase models.  Parameters in each of the liquid-phase models 

were estimated by minimizing the sum of the absolute values of the relative errors between the measured 

activity coefficient and the activity coefficient calculated from the model.  To then test the liquid-phase 

models, Uusi-Kyyny et al. used them to perform bubble-point calculations at each of the liquid-phase 

compositions x1 on the experimental vapor-liquid envelope.  Comparing the computed results for the 

vapor-phase compositions y1 and temperature T to the experimental values showed that the average errors 

were ∆y1 = 0.0059 and ∆T = 0.14 K for the Wilson equation, ∆y1 = 0.0124 and ∆T = 0.41 K for NRTL, 

and ∆y1 = 0.0194 and ∆T = 0.56 K for UNIQUAC.  So the Wilson equation apparently provided the best 

fit, followed by NRTL, and then UNIQUAC. 

We will use the NRTL model here, with the parameters A12/R = 691.87 K and A21/R = 513.14 K 

(α12 = α21 = 0.4), as determined by Uusi-Kyyny et al.  For SRK, the pure component properties used are 

Tc1 = 524.0 K, Pc1 = 3160 kPa, ω1 = 0.2333, Tc2 = 512.6 K, Pc2 = 8096 kPa, and ω2 = 0.5656, and the 

binary interaction parameter used is k12 = 0.  Pure component vapor pressures come from the Antoine 

equation (with sat
iP  in MPa and T in K), 

 sat exp i
i i

i

BP A
T C

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

, (10) 

with A1 = 6.574, B1 = 2500.8, C1 = –64.19, A2 = 9.5334, B2 = 3550.3 and C2 = –37.353.  The liquid molar 

volumes used are L
1 119.643v =  cm3/mol and L

2 40.7v =  cm3/mol.  All the model parameters used here 

are exactly as given by Uusi-Kyyny et al. 

As a test problem for the phase stability analysis procedure described above, we first chose a feed 

composition on the experimental vapor-liquid envelope, namely x0,1 = 0.6233 and T = 325.62 K.  Our 
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expectation was that this feed would either be just slightly outside the phase envelope predicted by 

NRTL/SRK, in which case the feed would test as stable, or it would be just slightly inside the phase 

envelope, in which case the feed would test as unstable, with one stationary point near the experimental 

vapor-phase composition (y1 = 0.4758) showing a negative value of PTPD.  However, what we actually 

computed for this feed composition was quite different, as shown in the first row of results in Table 3.  

This feed tested as not stable, but in addition to a stationary point with negative PTPD near the 

experimental vapor-phase composition, there were also two other stationary points with negative PTPD.  

Using NRTL/SRK to do a bubble-point calculation for this liquid-phase composition (x1 = 0.6233) shows 

that there is a solution to the bubble-point problem at y1 = 0.4684 and T = 325.243 K.  This is very near 

the experimental values of 0.4758 (∆y1 = 0.0074) and 325.62 K (∆T = 0.377 K), and so presumably this is 

the solution obtained by Uusi-Kyyny et al.  Now testing this result for phase stability, with the results 

shown in the second row of data in Table 3, as well as in the PTPD plot in Figure 3, shows that this 

solution to the bubble point problem is in fact not stable.  While this may be a mathematically correct 

solution to the bubble point problem, it is not thermodynamically correct, and it is not a point on the 

vapor-liquid envelope predicted by NRTL/SRK, as was believed by Uusi-Kyyny et al.  In fact, a phase 

split calculation, followed by phase stability analysis of the results (third row of results in Table 3), shows 

that for a feed of x0,1 = 0.6233 at T = 325.243 K, NRTL/SRK predicts liquid-liquid equilibrium, with one 

liquid phase of composition x1 = 0.29703 and another liquid phase with composition x1 = 0.85822. 

In Figure 4, we show the entire phase diagram for this system when calculated from Uusi-Kyyny 

et al.’s SRK/NRTL model, along with the experimental phase equilibrium data.  These calculations were 

validated by using the methodology for phase stability analysis described above.  Stability analysis results 

are given for some selected points in Table 3 (for each feed tested in this table the computation time was 

less than 0.05 s).  Clearly the phase diagram calculated from the model does not closely match the 

experimental data.  Experimentally, a homogeneous azeotrope is observed; however, the model predicts a 

heterogeneous azeotrope (VLLE line).  The model predicts that there should be no liquid phases observed 

with compositions in the range from roughly x1 = 0.298 to x1 = 0.858 (end points on the VLLE line), but 

in fact there are many experimental liquid-phase points seen within this range.  These discrepancies 
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between model and experiment are plainly due to the fact that Uusi-Kyyny et al.’s model predicts a 

liquid-liquid split, while experimentally this apparently does not occur.  The prediction of a liquid-liquid 

split is due solely to the liquid-phase model used, and so it is clear that the NRTL parameters given by 

Uusi-Kyyny et al. are not correct.  Uusi-Kyyny et al. [29] were misled into thinking their NRTL 

parameters were reasonable values because the phase stability procedure they used (if any) was 

apparently not reliable, and thus they did not recognize that their model predicted a liquid-liquid split.  

This does not necessarily mean that NRTL is a poor choice of model for the liquid, only that a poor 

choice of parameters has been made. 

4.4  Problem 4 

This example is based on the work of Kang [30], who did measurements and modeling of vapor-

liquid equilibrium for the system dichlorodifluoromethane (CFC-12) (component 1) and hydrogen 

fluoride (component 2) at T = 303.15 K.  Measurements of equilibrium pressure and average liquid phase 

composition show that this system exhibits a maximum-pressure heterogeneous azeotrope, and a model is 

presented which appears to provide a good prediction of the pressure and the liquid-liquid phase split at 

the azeotrope.  Kang’s model uses NRTL for the liquid phase.  For the vapor phase, the base model is 

Peng-Robinson, but there is an additional contribution to the equation of state to account for the 

association of HF molecules, as described by Łenko and Anderko [31].  For the computations done here, 

we will use the same liquid-phase model (NRTL) as Kang, but for the vapor phase, we will use the base 

PR model only, without the association terms.  Thus we would expect our calculations to match liquid-

liquid phase split results computed by Kang, but not to match Kang’s results for vapor-phase 

compositions or equilibrium pressures.   

For the NRTL model, the parameters obtained by Kang are A12 = 1595.631 cal/mol and A21 = 

1701.751 cal/mol, with α12 = α21  = 0.425.  For PR, the pure component properties used are Tc1 = 385.0 K, 

Pc1 = 4129 kPa, ω1 = 0.179, Tc2 = 461.0 K, Pc2 = 6480 kPa, and ω2 = 0.372, and the binary interaction 

parameter used is k12 = 0.  At the system temperature of 303.15 K, the pure component vapor pressure 

values used by Kang are sat
1 742.73P =  kPa and sat

2 144.0P =  kPa.  Liquid molar volumes were taken to 
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be L
1 95.804v =  cm3/mol and L

2 14.9v =  cm3/mol, from the modified Rackett equation with parameters 

given by Kang.   

Kang computes a maximum-pressure heterogeneous azeotrope (VLLE line) at about 868 kPa, 

with the liquid splitting into one liquid phase with composition x1 ≈ 0.06 and other liquid phase with 

composition x1 ≈ 0.90 (values estimated from a plot).  Since the liquid-phase model (NRTL) is pressure-

independent, the same liquid-liquid split should be observed for pressures above the maximum-pressure 

heterogeneous azeotrope, where there should be liquid-liquid equilibrium only (no vapor).  As an initial 

test point for our phase stability analysis procedure, we chose a pressure (905 kPa) somewhat above the 

heterogeneous azeotrope, and a composition (x0,1 = 0.54) in the middle of the presumed two-phase (liquid-

liquid) region.  Results of applying phase stability analysis for this point are shown in the first row of data 

in Table 4.  This shows that actually this point is a stable liquid (single phase), and not in a two-phase 

region as Kang’s computations would indicate.  Further analysis shows that there is in fact a solution to 

the liquid-liquid equilibrium conditions (equal activity conditions) with x1 = 0.0652 for the first liquid 

phase and x1 = 0.8993 for the second liquid phase.  This is clearly the phase split found by Kang for the 

heterogeneous azeotrope.  Phase stability analysis shows, however, that this is not a stable liquid-liquid 

phase split, as indicated in Table 4 (second row) and in the PTPD plot in Figure 5.  In fact, when Kang’s 

model is correctly solved, by use of the reliable phase stability analysis procedure given here, there are 

two VLLE lines (one a heterogeneous azeotrope) found.  At the heterogeneous azeotrope (slightly lower 

in pressure than Kang’s incorrect azeotrope) and pressures above it, the liquid splits into one liquid phase 

with x1 = 0.5566 and another liquid phase with x1 = 0.9013.  At the other VLLE line (slightly lower in 

pressure than the heterogeneous azeotrope) and pressures above it, the liquid splits into one liquid phase 

with x1 = 0.0647 and another liquid phase with x1 = 0.5360.  Both these phase splits were validated using 

phase stability analysis, as indicated in Table 4 (third and fourth lines) for trial points (905 kPa) 

somewhat above the VLLE pressures.  Since this type of phase behavior is not observed experimentally, 

and the prediction of a liquid-liquid split is due solely to the liquid-phase model used, it is apparent that 

the NRTL parameters determined by Kang are not appropriate.  In a situation similar to that seen in the 

previous example, apparently the phase stability procedure used by Kang (if any) was not reliable, leading 
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to an incorrect liquid-liquid phase split result, and misleading Kang into thinking that his NRTL 

parameters were reasonable. 

Figures 6 and 7 show a phase diagram computed for the pressure range near the three-phase lines.  

These calculations were validated by doing phase stability analysis using the methodology described 

above.  Stability analysis results are given for some selected points in Table 4 (for each feed tested in this 

table the computation time was less than 0.1 s).  It should be re-emphasized that the vapor-phase model 

used for these computations is not the same vapor-phase model used by Kang, and thus pressure and 

vapor-phase composition results are not directly comparable to Kang’s results.  In fact, since Kang’s 

liquid-phase model is poor, as determined above, and our vapor-phase model is poor since it does not 

account for the association of HF, the phase diagram in Figures 6 and 7 is perhaps best regarded as that of 

a “hypothetical” system described by the NRTL/PR model given above. 

Another issue that should be discussed in connection with this problem is the initial interval 

chosen for the vapor-phase compressibility Z.  As discussed above, we generally specify a lower bound of 

0.5 for Z.  For standard cubic equations-of-state, such as PR and SRK, at the low pressures for which 

NRTL or other activity coefficient models are likely to be used, this is a very safe assumption.  However, 

for a strongly associating fluid, such as HF, standard cubic equations of state are inadequate, and the 

vapor-phase compressibility could easily be below 0.5 even at conditions for which Z is close to one for 

most other compounds [31].  Since, in our “hypothetical” model, PR is used without vapor-phase 

association, we were still able to use a lower bound of 0.5.  However, if the Łenko and Anderko model 

[31], which does account for vapor-phase association, was used, we would have needed to use a smaller 

lower bound for Z.  We anticipate that, in most such cases, the modeler will be able to set the lower bound 

on Z based on physical knowledge of the system being modeled.  If this is not possible, then the lower 

bound on Z can simply be set to the lowest feasible value consistent with the EOS being used.  If this is 

done, however, stationary points from the EOS model (θ = 1) might be found that have a liquid-phase, not 

vapor-phase, compressibility.  Since the EOS is intended to model the vapor phase only, these stationary 

points would need to be screened out.  This can be done by solving the EOS for the vapor-phase 
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compressibility at the composition of the stationary point, and then eliminating that stationary point if it 

does not correspond to the vapor phase. 

4.5  Problem 5 

This problem involves the ternary mixture of methyl acetate (component 1), methanol 

(component 2) and water (component 3) at P = 101.3 kPa, the phase behavior of which was measured and 

modeled by Martin and Mato [32].  For the liquid phase, the model used is NRTL-m, a variation of NRTL 

due to Mato et al. [33] in which αij is not an independent parameter but is instead determined from 

 
1

2ij
ij jiG G

α =
+

, (11) 

with Gij as defined above.  NRTL-m parameters were determined by fit to experimental data to be A12/R = 

168.9 K, A21/R = 177.6 K, A13/R = 521.3 K, A31/R = 667.6 K, A23/R = 333.2 K and A32/R = –121.7 K.  For 

the vapor phase, the model used is PR, with pure component properties Tc1 = 506.85 K, Pc1 = 4691 kPa, 

ω1 = 0.327, Tc2 = 512.58 K, Pc2 = 8096 kPa, ω2 = 0.569, Tc3 = 647.35 K, Pc3 = 22119 kPa, ω3 = 0.348, and 

all binary interaction parameters set to zero.  The liquid molar volumes used are L
1 79.914v =  cm3/mol, 

L
2 40.732v =  cm3/mol, and L

3 18.07v =  cm3/mol.  Pure component vapor pressures come from the 

Antoine equation (with sat
iP  in kPa and T in K), with A1 = 14.2533, B1 = 2665.54, C1 = –53.424, A2 = 

15.8733, B2 = 3242.87, C2 = –49.550, A3 = 16.5699, B3 = 3984.92, and C3 = –39.724, as given by Martin 

and Mato (whose expression for the Antoine equation contains a typographical error).   

The interval-Newton methodology was applied to compute the stationary points for several feed 

compositions for this system, with the results as shown in Table 5.  Each feed point tested is one on the 

experimental vapor-liquid envelope, and thus we would expect it to be either just outside or just inside the 

phase envelope predicted by the model.  If the feed is just inside the predicted phase envelope, it should 

test as not stable, with a stationary point having a negative PTPD near the composition of the phase on the 

other side of the experimental tie line; or, if the feed is just outside the predicted phase envelope, then it 

should test as stable.  For each feed point tested, this expectation is met.  For example, an experimental tie 

line at T = 329.05 K connects a liquid phase of composition (0.472, 0.323, 0.205) and a vapor phase of 

composition (0.663, 0.263, 0.074).  Using the liquid phase as the feed point, as shown in the first row of 
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data in Table 5, the stability test indicates that it is not stable, and there is a stationary point with a 

negative PTPD at (0.6543, 0.2719, 0.0739) and θ = 1 (vapor), very near the experimental vapor phase 

composition.  For each feed tested, the computation time was less than 0.2 s. 

4.6  Problem 6 

In this problem, we consider the five-component mixture of n-propanol (component 1), n-butanol 

(component 2), benzene (component 3), ethanol (component 4) and water (component 5).  For the liquid 

phase, NRTL is used with the parameters as given by Tessier et al. [15].  For the vapor phase, PR is used 

with the pure component properties (Tc, Pc and ω) given in Table 6.  Since we are primarily interested in 

this system as a test of computational performance, and not in the accuracy of the model, all binary 

interaction parameters kij are assumed to be zero.  The values of the binary interaction parameters do not 

affect the mathematical form of the equation system to be solved, only the coefficient values, and thus by 

assuming all kij = 0, the problem is not necessarily made any more or less difficult.  Table 6 also provides, 

for each component, the liquid molar volumes used, as well as constants for the Antoine equation (with 
sat

iP  in mmHg and T in K).   

We used the interval-Newton methodology to determine stationary points for several feed 

mixtures for this system.  Table 7 gives selected results, at different T and P, for feeds with composition 

(0.148, 0.052, 0.52, 0.10, 0.18).  The first row of data, for T = 298.15 K and P = 101.325 kPa, 

corresponds to conditions used in one of the test problems given by Tessier et al. [15], who correctly 

assumed that there would be no vapor phase at these conditions.  The liquid-phase stationary point results 

correspond directly to those given by Tessier et al.  Computation time requirements are also given in 

Table 7, and range from 7.3 to 29.9 s, depending primarily on the number of stationary points that exist. 

4.7  Problem 7 

This final example is intended primarily to investigate the computational performance of the 

interval-Newton methodology as problem size (number of components) continues to increase.  

Hypothetical mixtures of up to eight components are used.  The NRTL Aij and αij parameters for these 

mixtures are given in Table 8.  For the vapor phase, PR is used with the critical properties, acentric factor, 
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liquid molar volumes, and Antoine equation coefficients (for sat
iP  in mmHg and T in K) given in Table 6 

for components 1–5, and in Table 9 for components 6–8 (note that though the pure component data used 

for components 1–5 are the same as used in Problem 6, the NRTL parameters used for components 1–5 

are not the same as in Problem 6).  The six component mixture studied involves components 1–6 and has 

a feed composition of (0.148, 0.052, 0.400, 0.100, 0.180, 0.120).  The seven component mixture 

comprises components 1–7 with a feed composition of (0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.100).  

The eight component mixture consists of components 1–8 and has a feed composition of (0.148, 0.052, 

0.300, 0.100, 0.180, 0.120, 0.060, 0.040). 

Table 10 gives results at selected temperatures and pressures for the three feeds and problem sizes 

considered.  These results are representative of the range of computation time requirements encountered 

in solving these problems for several other temperatures and pressures.  For each problem size, 

computation times range over roughly an order of magnitude, with higher computation time not 

necessarily corresponding to a larger number of stationary points.  These results also reflect the 

exponential complexity that may be associated with deterministic global optimization (in general, an NP-

hard problem).  While multi-hour computation times, such as seen in the next to last problem in Table 10 

for the eight component problem, may seem large, at least in this context, this time can be well spent if it 

means avoiding the computation of a phase equilibrium with the wrong number of phases. 

 

5.  Concluding Remarks 

We have addressed here the problem of determining phase stability, in a reliable and 

deterministic way, for the case in which asymmetric modeling (different models for vapor and liquid 

phases) is used.  To do this, we introduced a new type of tangent plane distance function, which uses a 

binary variable to account for the presence of different liquid and vapor phase models.  To then solve the 

problem deterministically, we used an interval-Newton approach, which provides a mathematical and 

computational guarantee that the global minimum, as well as all the stationary points, in the tangent plane 

distance function are found.  The new methodology was successfully tested using several examples, 

involving as many as eight components, with NRTL as the liquid phase model and a cubic equation of 
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state as the vapor phase model.  In two cases, published phase equilibrium computations were found to be 

incorrect (not stable). 

The guarantee that the phase stability problem is correctly solved clearly comes at the expense of 

additional computation time, which may become large as problem sizes become large.  Thus, this 

procedure is not well suited for situations in which it would be used repeatedly inside some other iterative 

calculation, such a process simulator, or a stand-alone code for phase equilibrium.  Instead, the most 

appropriate use for this procedure is as a final validation step, to determine whether the process simulator, 

or stand-alone phase equilibrium code, has in fact reached a correct result.  The use of deterministic phase 

stability analysis in this context has recently been demonstrated by Burgos-Solórzano et al. [21], who also 

show how the stationary point results can be used to provide corrective feedback in the case that a phase 

equilibrium result is determined to be incorrect.  Because of the additional computational expense, a 

modeler may ultimately need to consider the trade-off between the computation time expense and the risk 

of getting the wrong answer to the phase equilibrium problem of interest.  As the example problems 

considered demonstrate, this risk is not insignificant.  The additional computation time used to validate a 

result may be especially well spent in “mission critical” situations, in which errors in the number or 

composition of equilibrium phases present is not tolerable. 
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List of Symbols 

Ai Antoine equation coefficient 

Aij NRTL parameter 

Bi Antoine equation coefficient 

Ci Antoine equation coefficient 

D tangent plane distance 

D�  pseudo tangent plane distance 

g molar Gibbs energy 

Gij NRTL parameter 

kij binary interaction parameter 

n number of components 

P pressure 

R gas constant 

T temperature 

v molar volume 

s gradient of g 

x composition (mole fraction) vector 

Z compressibility 

Greek letters 

αij NRTL parameter 

θ binary variable used to define pseudo tangent plane distance 

τij NRTL parameter 

φ fugacity coefficient 

φ̂  mixture fugacity coefficient 

ω acentric factor 
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Subscript 

c indicates critical property 

0 indicates evaluation at feed composition 

Superscripts 

E indicates an excess property 

L indicates quantity for the liquid phase 

sat indicates evaluation at saturation 

V indicates quantity for the vapor phase 
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Table 1.  Results for selected feed compositions in Problem 1. 

Feed ( 0,1 0,2,x x ) Stationary Pointsa 
(x1, x2); θ ; Z  

 

PTPD ( D~ ) Result 

(0.3, 0.7) (0.3, 0.7); 0 

(0.5696, 0.4304); 1; 0.9641 

0 

0.1224 

Stable (L) 

(0.5, 0.5) (0.5, 0.5); 0 

(0.7229, 0.2771); 1; 0.9684 

0 

–0.04808 

Not Stable 

(0.6, 0.4) (0.6, 0.4); 1; 0.9650 

(0.3336, 0.6664); 0 

0 

–0.08891 

Not Stable 

(0.65, 0.35) (0.65, 0.35); 1; 0.9664 

(0.3953, 0.6047); 0 

0 

–0.03328 

Not Stable 

(0.9, 0.1) (0.9, 0.1); 1; 0.9729 

(0.8110, 0.1890); 0 

0 

0.2358 

Stable (V) 

 
a A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
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Table 2.  Results for selected feed compositions in Problem 2. 

Feed ( 0,1 0,2,x x ) Stationary Pointsa 
(x1, x2); θ ; Z 

 

PTPD ( D~ ) Result 

(0.125, 0.875) (0.125, 0.875); 0 

(0.2680, 0. 0.7320); 1; 0.9917 

0 

0.0102 

Stable (L) 

(0.275, 0.725) (0.275, 0.725); 1; 0.9917 

(0.1351, 0.8649); 0 

0 

–0.005216 

Not Stable 

(0.325, 0.675) (0.325, 0.675); 1; 0.9917 

(0.2789, 0.7211); 0 

0 

0.02073 

Stable (V) 

(0.45, 0.55) (0.45, 0.55); 0  

(0.3474, 0.6526); 1; 0.9917 

0 

–0.01873 

Not Stable 

(0.75, 0.25) (0.75, 0.25); 0 

(0.3927, 0.6073); 1; 0.9917 

0 

0.03095 

Stable (L) 

 
a A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
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Table 3.  Results for selected feed compositions and temperatures in Problem 3. 

Feed ( 0,1 0,2,x x ) 
T (K) 

Stationary Pointsa 
(x1, x2); θ ; Z 

 

PTPD ( D~ ) Result 

(0.6233,0.3767) 
325.62 

 

(0.6233,0.3767); 0 

(0.4678,0.5322); 1; 0.9693 

(0.2923,0.7077); 0 

(0.8551,0.1449); 0 

0 

–0.01439 

–0.006359 

–0.004804 

Not Stable 

(0.6233,0.3767) 
325.243 

 

(0.6233,0.3767); 0 

(0.4684,0.5316); 1; 0.9692 

(0.2914,0.7086); 0 

(0.8559,0.1441); 0 

0 

0 

–0.006428 

–0.004878 

Not Stable 

(0.85822,0.14178) 
325.243 

 

(0.85822,0.14178); 0 

(0.29703,0.70297); 0 

(0.4691,0.5309); 1; 0.9692 

(0.6125,0.3875); 0 

0 

0 

0.005939 

0.005537 

Stable (LL) 

(0.47,0.53) 
325.5 

(0.47,0.53); 1; 0.9692 

(0.3093,0.6907); 0 

(0.5913,0.4087); 0 

(0.8618,0.1382); 0 

0 

0.004763 

0.008723 

0.001917 

Stable (V) 

(0.46,0.54) 
325.5 

(0.46,0.54); 1; 0.9695 

(0.2448,0.7552); 0 

(0.7603,0.2397); 0 

(0.7954,0.2046); 0 

0 

–0.002933 

0.01694 

0.01692 

Not Stable 

(0.48,0.52) 
325.5 

(0.48,0.52); 1; 0.9689 

(0.8845,0.1155); 0 

0 

–0.01404 

Not Stable 

 
a A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
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Table 4.  Results for selected feed compositions and pressures in Problem 4. 

Feed ( 0,1 0,2,x x ) 
P (kPa) 

Stationary Pointsa 
(x1, x2); θ ; Z 

 

PTPD ( D~ ) Result 

(0.54, 0.46) 
905.0 

(0.54, 0.46); 0 
(0.8151, 0.1849); 1; 0.8024 

(0.2247, 0.7753); 0 
(0.0649,0.9351); 0 
(0.7796,0.2204); 0 
(0.8985 ,0.1015); 0 

0 
0.001293 
0.00604 

0.0003998 
0.002569 
0.001201 

Stable (L) 

(0.0652055, 0.9347945) 
905.0 

(0.0652, 0.9348); 0 
(0.8993, 0.1007); 0 

(0.8152, 0.1848); 1; 0.8024 
(0.2228, 0.7772); 0 
(0.5446, 0.4554); 0) 
(0.7762, 0.2238); 0 

0 
0 

0.0001724 
0.005488 

–0.0008581 
0.001485 

Not Stable 

(0.5566258, 0.4433742) 
905.0 

(0.5566, 0.4434); 0 
(0.9013, 0.0987); 0 

(0.8156, 0.1844); 1; 0.8024 
(0.2181, 0.7819); 0 
(0.0659, 0.9341); 0 
(0.7672, 0.2328); 0 

0 
0 

0.0003807 
0.007156 
0.002048 

0.0018 

Stable (LL) 

(0.0646917, 0.9353083) 
905.0 

(0.0647, 0.9353); 0 
(0.5360, 0.4640); 0 

(0.8150, 0.1850); 1; 0.8024 
(0.2264, 0.7736); 0 
(0.7826, 0.2174); 0 
(0.8978, 0.1022); 0 

0 
0 

0.001527 
0.005776 
0.002775 
0.001505 

Stable (LL) 

(0.816, 0.184) 
904.0 

(0.816, 0.184); 1; 0.8027 
(0.2133, 0.7867); 0 
(0.0667, 0.9333); 0 
(0.5700, 0.4300); 0 
(0.7569, 0.2431); 0 
(0.9033, 0.0967); 0 

0 
0.009177 
0.004454 
0.001125 
0.002413 

0.0002516 

Stable (V) 

(0.8, 0.2) 
904.0 

(0.8, 0.2); 1; 0.8021 
(0.0470, 0.9530); 0 

0 
–0.07318 

Not Stable 

 
a A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
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Table 5.  Results for selected feed compositions and temperatures in Problem 5. 

Feed ( 0,1 0,2 0,3, ,x x x ) 
T (K) 

Stationary Pointsa,b 
(x1, x2, x3); θ ; Z 

 

PTPD ( D~ ) Result 

(0.472, 0.323, 0.205) 
329.05 

(0.472, 0.323, 0.205); 0 

(0.6543, 0.2719, 0.0739); 1; 0.9746 

0 

–0.01236 

Not Stable 

(0.101, 0.827, 0.072) 
333.65 

(0.101, 0.827, 0.072); 0 

(0.2601, 0.7144, 0.0255); 1; 0.9789 

0 

0.001998 

Stable (L) 

(0.788, 0.075, 0.137) 
331.05 

(0.788, 0.075, 0.137); 1; 0.9743 

(0.4547, 0.0846, 0.4606); 0 

0 

0.03545 

Stable (V) 

(0.152, 0.433, 0.415) 
334.65 

(0.152, 0.433, 0.415); 0 

(0.4983, 0.3946, 0.1071); 1; 0.9776 

0 

–0.04126 

Not Stable 

(0.762, 0.136, 0.102) 
328.25 

(0.762, 0.136, 0.102); 0 

(0.7750, 0.1546, 0.0704); 1; 0.9731 

0 

–0.005388 

Not Stable 

 
a Mole fractions may not sum precisely to one, due to rounding of computer output during transcription to the table. 
b A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
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Table 6.  Pure component physical property data used in Problem 6.  Antoine equation coefficients are for 
the case of sat

iP  in mmHg and T in K. 

 
 i = 1 i = 2 i = 3 i = 4 i = 5 

Tci (K) 536.9 562.0 562.6 516.25 647.0 

Pci (kPa) 5200.0 4500.0 4924.39 6383.47 22064.0 

ωi 0.5687 0.125 0.209 0.636 0.225 

L
iv (cm3/mol) 75.14 91.97 89.41 58.68 18.07 

Ai 8.37895 7.36366 6.87987 8.11220 8.07131 

Bi 1788.020 1305.198 1196.760 1592.864 1730.630 

Ci 227.438 173.427 219.161 226.184 233.426 
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Table 7.  Results for selected feeds in Problem 6.  The feed composition in each case is (0.148, 0.052, 0.520, 0.100, 0.180). 

 
Feed T (K) 

P (kPa) 
Stationary Pointsa,b 

(x1, x2, x3, x4, x5); θ ; Z 
 

PTPD ( D~ ) CPU timec 
(s) 

Result 

298.15 
101.325 

(0.148, 0.052, 0.520, 0.100, 0.180); 0 

(0.0343, 0.0010, 0.6810, 0.0979, 0.1857); 1; 0.9625 

(0.1625, 0.0532, 0.2706, 0.1284, 0.3854); 0 

(0.1633, 0.0564, 0.3969, 0.1161, 0.2674); 0 

(0.0260, 0.0006, 0.0019, 0.0383, 0.9332); 0 

(0.0796, 0.0263, 0.7840, 0.0577, 0.0524); 0 

0 

1.744 

0.00008219 

–0.0001011 

–0.08658 

–0.001902 

29.9 Not Stable 

348.15 
101.325 

(0.148, 0.052, 0.520, 0.100, 0.180); 1; 0.9751 

(0.3353, 0.2881, 0.2273, 0.0528, 0.0964); 0 

0 

–0.2155 

7.3 Not Stable 

355.15 
101.325 

(0.148, 0.052, 0.520, 0.100, 0.180); 1; 0.9764 

(0.3221, 0.2757, 0.2584, 0.0529, 0.0910); 0 

0 

0.07189 

7.5 Stable (V) 

388.15 
500 

(0.148, 0.052, 0.520, 0.100, 0.180); 0 

(0.0859, 0.0067, 0.4516, 0.1297, 0.3261); 1; 0.9182 

(0.1647, 0.0548, 0.3722, 0.1169, 0.2914); 0 

(0.0502, 0.0030, 0.0081, 0.0542, 0.8845); 0 

0 

–0.03616 

0.000503 

–0.07101 

13.6 Not Stable 

418.15 
900 

(0.148, 0.052, 0.520, 0.100, 0.180); 1; 0.8526 

(01655, 0.1490, 0.6037, 0.0436, 0.0383); 0 

0 

–0.06271 

11.6 Not Stable 

 
a Mole fractions may not sum precisely to one, due to rounding of computer output during transcription to the table. 
b A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
c Intel Pentium 4 CPU (3.2 GHz) 
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Table 8.  NRTL parameters Aij (cal/mol) (top) and αij (bottom) used in Problem 7. 

 

i \ j 1 2 3 4 5 6 7 8 

1  
1282.651 

0.2 

140.3364 

0.3 

2239.606 

0.2 

77.37876 

0.3 

100 

0.2 

150 

0.3 

251 

0.2 

2 
–711.399 

0.2 
 

–57.649 

0.3 

–682.468 

0.2 

–120.713 

0.3 

–100 

0.2 

–150 

0.2 

–200 

0.2 

3 
1196.296 

0.3 

1030.405 

0.3 
 

1097.451 

0.3 

2214.466 

0.2 

–300 

0.3 

–350 

0.2 

–251 

0.3 

4 
–65.0491 

0.2 

689.1509 

0.2 

282.4739 

0.3 
 

–86.8052 

0.2 

1000 

0.3 

1050 

0.3 

851 

0.3 

5 
1374.48 

0.3 

3094.777 

0.3 

3822.878 

0.2 

1290.554 

0.2 
 

500 

0.2 

550 

0.3 

551 

0.2 

6 
1000 

0.2 

1500 

0.2 

2000 

0.3 

–100 

0.3 

–300 

0.2 
 

505 

0.2 

506 

0.2 

7 
1050 

0.3 

1550 

0.2 

2050 

0.2 

–150 

0.3 

–350 

0.3 

–305 

0.2 
 

405.1 

0.3 

8 
2051 

0.2 

2000 

0.2 

1750 

0.3 

–151 

0.3 

–451 

0.2 

–206 

0.2 

–305.1 

0.3 
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Table 9.  Pure component physical property data used in Problem 7.  Antoine equation coefficients are for 
the case of sat

iP  in mmHg and T in K.  Components 1–5 have the same properties as given in Table 6. 

 
 i = 6 i = 7 i = 8 

Tci (K) 600 550 451 

Pci (kPa) 6000 6050 6100 

ωi 0.2 0.2 0.2 

L
iv (cm3/mol) 80.0 85.0 95.1 

Ai 8.0 8.5 7.51 

Bi 1700.0 1700.5 1600.51 

Ci 200.0 250.0 210.1 
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Table 10.  Results for selected problem sizes and feeds in Problem 7.  Feed compositions are given in the text for each problem size. 
 

n Feed T (K) 
P (kPa) 

Stationary Pointsa,b 
x; θ ; Z 

 

PTPD ( D~ ) CPU timec 
(s) 

Result 

6 338.15 
101.325 

(0.148, 0.052, 0.400, 0.100, 0.180, 0.120); 0 
(0.0690, 0.0065, 0.5392, 0.1031, 0.2744, 0.0078); 1; 0.9755 

(0..0404, 0.0026, 0.0026, 0.0366, 0.8153, 0.1024); 0 
(0.0977, 0.0367, 0.6470, 0.0650, 0.0576, 0.0961); 0 

0 
0.0778 

–0.1971 
–0.007142 

106 Not 
Stable 

6 368.15 
101.325 

(0.148, 0.052, 0.400, 0.100, 0.180, 0.120); 1; 0.9787 
(0.0862, 0.0531, 0.0613, 0.0423, 0.1671, 0.5900); 0 

0 
0.1931 

14.8 Stable 
(V) 

7 428.15 
800 

(0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.100); 1; 0.8846 
(0.1092, 0.0709, 0.1369, 0.0599, 0.1480, 0.3959, 0.0793); 0 

0 
0.1225 

295 Stable 
(V) 

7 338.15 
101.325 

(0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.100); 0 
(0.0650, 0.0069, 0.4451, 0.0880, 0.1754, 0.0076, 0.2121); 1; 0.9744 

(0.1323, 0.0504, 0.4246, 0.0880, 0.1083, 0.1099, 0.0866); 0 
(0.0680, 0.0092, 0.0134, 0.0584, 0.5989, 0.1309, 0.1212); 0 

0 
0.0009064 

–0.0006833 
–0.04486 

535 Not 
Stable 

7 368.15 
101.325 

(0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.100); 1; 0.9793 
(0.0763, 0.0438, 0.0338, 0.0389, 0.1873, 0.5971, 0.0227); 0 

0 
0.1836 

1059 Stable 
(V) 

8 418.15 
700 

(0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.060, 0.040); 1; 0.8949 
(0..0733, 0.0480, 0.0834, 0.0520, 0.1753, 0.4010, 0.0215, 0.1455); 0 

0 
–0.1046 

1030 Not 
Stable 

8 388.15 
600 

(0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.060, 0.040); 0 
(0.1071, 0.0140, 0.3890, 0.1110, 0.2247, 0.0175, 0.1306, 0.0060); 1; 0.8927 

(0.1465, 0.0524, 0.3213, 0.0985, 0.1655, 0.1180, 0.0585, 0.0393); 0 
(0.0887, 0.0157, 0.0308, 0.0727, 0.5328, 0.1355, 0.0737, 0.0501); 0 

0 
0.183 

–0.00000385 
–0.01857 

13505 Not 
Stable 

8 418.15 
600 

(0.148, 0.052, 0.300, 0.100, 0.180, 0.120, 0.060, 0.040); 1; 0.9111 
(0.0745, 0.0491, 0.0866, 0.0522, 0.1707, 0.4019, 0.0214, 0.1437); 0 

0 
0.03337 

932 Stable 
(V) 

 
a Mole fractions may not sum precisely to one, due to rounding of computer output during transcription to the table. 
b A value of the compressibility Z is given only for vapor-phase stationary points (θ = 1). 
c Intel Pentium 4 CPU (3.2 GHz) 
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List of Figures and Captions 

Figure 1.  Plot of Gibbs energy surface in Problem 1. 

Figure 2.  Plot of pseudo tangent plane distance (PTPD) function in Problem 1 for feed composition of x0,1 

= 0.6.  This feed is not stable. 

Figure 3.  Plot of pseudo tangent plane distance (PTPD) function in Problem 3 for vapor-liquid 

“equilibrium” apparently computed by Uusi-Kyyny et al. [29].  This is not a stable state.  See text 

for discussion. 

Figure 4.  Phase diagram computed from Uusi-Kyyny et al.’s [29] model in Problem 3, along with their 

experimental data (■ = vapor; ● = liquid).  See text for discussion. 

Figure 5  Plot of pseudo tangent plane distance (PTPD) function in Problem 4 for liquid-liquid phase split 

apparently computed by Kang [30].  This is not a stable state.  See text for discussion. 

Figure 6.  Phase diagram for “hypothetical” system considered in Problem 4.  See Figure 7 for 

enlargement of region around x1 ≈ 0.8.  See text for discussion. 

Figure 7.  Enlargement of region around x1 ≈ 0.8 in Figure 6.  See text for discussion. 
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Figure 1.  Plot of Gibbs energy surface in Problem 1. 
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Figure 2.  Plot of pseudo tangent plane distance (PTPD) function in Problem 1 for feed composition of x0,1 

= 0.6.  This feed is not stable. 
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Figure 3.  Plot of pseudo tangent plane distance (PTPD) function in Problem 3 for vapor-liquid 

“equilibrium” apparently computed by Uusi-Kyyny et al. [29].  This is not a stable state.  See text for 

discussion. 
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Figure 4.  Phase diagram computed from Uusi-Kyyny et al.’s [29] model in Problem 3, along with their 

experimental data (■ = vapor; ● = liquid).  See text for discussion. 
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Figure 5  Plot of pseudo tangent plane distance (PTPD) function in Problem 4 for liquid-liquid phase split 

apparently computed by Kang [30].  This is not a stable state.  See text for discussion. 
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Figure 6.  Phase diagram for “hypothetical” system considered in Problem 4.  See Figure 7 for 

enlargement of region around x1 ≈ 0.8.  See text for discussion. 
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Figure 7.  Enlargement of region around x1 ≈ 0.8 in Figure 6.  See text for discussion. 

 


