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Abstract 

The interval-Newton approach provides the power to solve nonlinear equation solving and global 
optimization problems with complete mathematical and computational certainty.  The primary drawback 
to this approach is that computation time requirements may become quite high.  In this paper, a strategy 
for using linear programming (LP) techniques to improve computational efficiency is considered.  In 
particular, an LP strategy is used to determine exact (within round out) bounds on the solution set of the 
linear interval equation system that must be solved in the context of the interval-Newton method.  The 
strategy is tested using global optimization problems arising in parameter estimation based on the error-
in-variables approach. 
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At the core of many process operations problems is the 
need to solve a nonlinear process model, or to optimize a 
nonlinear function subject to constraints.  In either case, 
there may arise issues with the reliability of the problem-
solving method used.  For example, if there are multiple 
solutions to the model, have all been located?  If there are 
multiple local optima, has the global solution been found?  
Interval mathematics can provide the engineer with the 
tools needed to resolve these issues with mathematical and 
computational certainty, thus providing a degree of 
problem-solving reliability not available when using 
standard methods.  In recent years, it has been shown that 
strategies based on an interval-Newton approach can be 
used to reliably solve a wide variety of nonlinear equation 
solving and optimization problems in chemical process 
engineering (e.g., Gau and Stadtherr, 2000), providing a 
mathematical and computational guarantee either that all 
solutions have been located in an equation solving 
problem or that the global optimum has been found in an 
optimization problem. 

The primary drawback to this approach is the 
potentially high computational cost.  One way to improve 
the efficiency of the interval-Newton approach is to more 
tightly bound the solution set of the linear interval 
equation system that is at the core of this approach.  In this 
paper, we consider a strategy for using linear 
programming (LP) techniques to determine exact (within 
round out) bounds on the solution set of this linear interval 
system.  By providing tight interval bounds on the solution 
set, the goal is to more quickly identify intervals that 
contain a unique solution, and intervals that contain no 
solution, thus leading to an overall improvement in 
computational efficiency. 

Interval Analysis  

Several good introductions to interval computations 
are available (e.g., Kearfott, 1996).  Of particular interest 
here is the interval-Newton method.  Given an n × n 
nonlinear equation system f(x) = 0 with a finite number of 
real roots in some initial interval, this technique provides 



  
 
the capability to enclose all the roots of the system that lie 
within the given initial interval.  For the unconstrained 

optimization problem minxφ(x), a common approach is to 
seek stationary points, that is, to solve the nonlinear 
system f(x) ≡ ∇∇∇∇φ(x) = 0.  The global optimum will be one 
of roots of this nonlinear equation system, but there may 
be other roots as well, representing local optima and 
saddle points.  To identify the global optimum, it is critical 
that none of the roots be missed, and such a guarantee can 
be provided by the interval-Newton approach.  If it is a 
constrained optimization problem, then the interval-
Newton method can be applied to solve the KKT or Fritz-
John conditions. 

Given some initial interval X
 (0)

, the interval-Newton 
solution algorithm is applied to a sequence of subintervals.  
For a subinterval X (k)

 in the sequence, the first step is the 
function range test.  An interval extension F(X (k)

) of the 
function f(x) is calculated, which provides upper and 
lower bounds on the range of values of f(x) in X (k)

.  If 
there is any component of the interval extension F(X (k)

) 
that does not include zero, then the interval can be 
discarded, since no solution of f(x) = 0 can exist in this 
interval.  The next subinterval in the sequence may then be 
considered.  Otherwise, testing of X (k)

 continues. 
For a global minimization problem, the next step is 

the objective range test.  The interval extension Φ(X (k)
), 

containing the range of φ(x) over X (k)
 is computed. If the 

lower bound of Φ(X (k)
) is greater than a known upper 

bound on the global minimum, then X (k)
 can be discarded 

since it cannot contain the global minimum and need not 
be further tested.  In cases that all the stationary points are 
desired rather than just the global minimum, this test step 
can be turned off. 

The next step is the interval-Newton test. The linear 
interval equation system 
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is solved for a new interval N (k)
, where F′(X (k)

) is an 
interval extension of the Jacobian of f(x), and x (k)

 is an 
arbitrary point in X (k)

.  It has been shown that any root 
contained in X (k)

 is also contained in the image N
(k)

.  This 
implies that when X (k)

 ∩ N (k)
 is empty, then no root exists 

in X (k)
, and also suggests the iteration scheme X (k+1)

 = X (k)
 

∩ N (k)
.  In addition, if N

(k)
 ⊂ X (k)

, there is a unique root 
contained in X (k) 

and thus in N
(k)

.  Thus, after computation 
of N (k)

, there are three possibilities:  1. X (k)
 ∩ N (k)

 = ∅, 
meaning there is no root in the current interval X (k)

 and it 
can be discarded;  2. N

(k)
 ⊂ X (k)

, meaning that there is 
exactly one root in the current interval X (k)

.  3. Neither of 
the above, meaning that no conclusion can be drawn.  In 
the last case, if X (k)

 ∩ N (k)
 is sufficiently smaller than X (k)

, 
then the interval-Newton test can be reapplied to the 
resulting intersection.  Otherwise, the intersection is 

bisected, and the resulting two subintervals are added to 
the sequence of subintervals to be tested.  This approach is 
referred to as an interval-Newton/generalized-bisection 
(IN/GB) method.  At termination, when the subintervals in 
the sequence have all been tested, either all the real roots 
of f(x) = 0 have been tightly enclosed or it is determined 
that no roots exist. 

Clearly, the solution of the linear interval system 
given by Eq. (1) is essential to this approach.  To see the 
issues involved in solving such a system, consider the 
general linear interval system Ax = B, where the matrix A 
and the right hand side vector B are interval-valued.  The 
solution set S of this system is defined by S = {x | Ãx = b,  
Ã ∈ A, b ∈ B}.  However, in general this set is not an 
interval and may have a very complex polygonal 
geometry.  Thus to “solve” the linear interval system, one 
instead seeks an interval X containing S.  Computing the 
interval hull (the tightest interval containing S) is NP-hard 
(Rohn and Kreinovich, 1995), but there are several 
methods for determining an interval X that contains but 
overestimates S.  Various interval-Newton methods differ 
in how they solve Eq. (1) for N (k)

 and thus in the tightness 
with which the solution set is enclosed.  By obtaining 
bounds that are as tight as possible, the overall 
performance of the interval-Newton approach can be 
improved since with a smaller N (k)

 it is more likely that 
either X (k)

 ∩ N (k)
 = ∅ or N

(k)
 ⊂ X

 (k) will be satisfied.  Thus, 
intervals that contain no solution or that contain a unique 
solution may be more quickly identified, and the number 
of bisections needed may be reduced. 

Frequently, the N (k)
 is computed component-wise 

using an interval Gauss-Seidel approach, preconditioned 
with an inverse-midpoint matrix.  Though the inverse-
midpoint preconditioner is a good general-purpose 
preconditioner, it is not always the most effective 
approach (Kearfott, 1996).  Recently, a hybrid 
preconditioning scheme (HP/RP) has been proposed to 
obtain more efficient computational performance (Gau and 
Stadtherr, 2002).  It combines a simple pivoting 
preconditioner with the standard inverse-midpoint scheme.  
However, it still cannot yield the tightest enclosure of the 
solution set, which, as noted above, is in general an NP-
hard problem.  In next section, a linear programming 
strategy will be applied to solve the linear interval system, 
Eq. (1), arising in the context of interval-Newton methods.  
Using this approach, exact component-wise bounds on the 
solution set can be calculated, while avoiding exponential 
time complexity.  A similar LP strategy has also been 
proposed for use in the context of certain types of 
constraint satisfaction problems (e.g., Jaulin et al., 2001). 

LP Strategy for Linear Interval System 

Consider again the linear interval system Ax = B.  
Oettli & Prager (1964) show that the solution set S is 
determined by the constraints 



  

BxBx ûˆˆ +∆≤− AA   (2) 

where Â is the component-wise midpoint matrix of the 
interval matrix A, ∆A is the component-wise half-width 
(radius) matrix of A, and similarly B̂  and ∆B are the 
midpoint and radius of B.  Equation (2) is not directly 
useful for computing bounds on the solution set because of 
the absolute value operation on the right-hand side.  In 
general, the solution may lie in all 2n orthants for an n-
dimensional problem.  In each orthant, each component of 
x keeps a constant sign, and thus the absolute value can be 
dropped.  For a given orthant, define the vector αααα by 





=
≤−
≥

= nj
x

x

j

j
j ,,2,1

01

01
ëα . (3) 

Now let Dα be a diagonal matrix whose entries are the 

components of αααα , thus |x| = Dα x and x = Dα |x|.  Equation 
(2) becomes: 

BxBx ∆∆∆∆∆∆∆∆ +≤− αADA ˆˆ   (4) 

That is: 
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where the superscripts U and L indicate upper and lower 
interval bounds.  To then determine the tightest interval 
enclosing the solution set, the set of optimization problems 
max xj and min xj, j= 1,2,…,n, each with the 2n linear 
inequality constraints given by Eq. (5) can be solved for 
each orthant using LP techniques.  In general, there are 2

n
 

orthants and so the solution time complexity will be 
exponential. 

In the context of the interval-Newton method, 
however, the exponential time complexity can be avoided 
by manipulating the selection of the real point in Eq. (1).  
Here x (k)

 is an arbitrary point in X (k)
 typically taken to be 

the midpoint.  If x (k)
 is chosen to be a corner of X (k)

 
instead, then, since it is only the intersection of X (k)

 and 
N

(k)
 that is of interest, we can seek the solution (N (k)

 − x
(k)

) 
of Eq. (1) in just one orthant.  Therefore, to solve the 
linear interval system, only 2n LP subproblems with 2n 
constraints need to be solved. Furthermore, the LP 
subproblems have properties that can be exploited.  First, 
all the 2n subproblems share the same constraints; that is, 
the same feasible region.  Thus, an initial feasible basis for 
the LP subproblems needs to be found only once.  Second, 
the objective function of each subproblem consists of just 
one variable.  This makes the problem much simpler since 
it is not necessary, as it is in the general case, to calculate 

the gain in objective value when choosing variables to 
enter and exit the basis. 

LISS_LP (Linear Interval System Solver by Linear 
Programming) is a procedure that we have developed 
based on the above scheme.  This procedure can be used to 
replace the inverse-midpoint preconditioned Gauss-Seidel 
method for solving Eq. (1).  It can be combined with the 
row basis pivoting preconditioner and optimal real point 
scheme of Gau & Stadtherr (2002) to achieve best 
performance.  The pivoting preconditioner can also help 
LISS_LP to select one of the corners of X (k)

, the choice of 
which may have a significant impact on the overall 
performance of LISS_LP. Since the LP subproblems are 
solved using floating point arithmetic in the current 
implementation of LISS_LP, which may cause rounding 
error concerns, a practical error bound estimator on the 
solution of the linear system was adopted to ensure the 
reliability of the solution. 

Results and Discussion 

In this section, we present the results of numerical 
experiments to test the effectiveness of LISS_LP in 
replacing the inverse-midpoint preconditioned interval 
Gauss-Seidel approach.  To do this we compare LISS_LP 
to the HP/RP method of Gau and Stadtherr (2002).  Three 
error-in-variables (EIV) parameter estimation test 
problems were used.  The problem sources and other 
details can be found in Gau and Stadtherr (2000). Tests 
were on a Sun Blade 1000 model 1600 workstation. 

Problem 1:  Parameter Estimation in VLE Modeling 

This is a parameter estimation problem using the EIV 
approach to estimate parameters in the van Laar equation 
for activity coefficients.  These two parameters are 
estimated from binary VLE data for the binary system of 
methanol and 1,2-dichloroethane.  The experimental data 
consist of five experimental data points for four measured 
state variables, namely pressure, temperature, and liquid- 
and vapor-phase mole fraction of methanol.  The problem 
is formulated as an unconstrained global optimization 
problem with 12 variables, as explained by Gau and 
Stadtherr (2000). 

This global optimization problem was solved 
successfully, with computational performance results 
shown in Table 1, where the number of interval-Newton 
(I-N) tests performed, and the CPU time in seconds are 
given.  When LISS_LP is applied, the number of I-N tests 
is substantially reduced, indicating the effectiveness of 
LISS_LP in reducing the number of intervals that must be 
tested in comparison to when the inverse-midpoint 
preconditioned Gauss-Seidel approach is used.  
Essentially, by reducing the size of N (k), LISS_LP is able 
to more quickly identify and discard intervals that contain 
no solution. 

 



  
 

Table 1. Performance on Problem 1 

 I-N tests CPU time (s) 
HP/RP 303,589 664.4 

LISS_LP 156,182 496.7 

Problem 2: Parameter Estimation in Reactor Modeling 

This is a parameter estimation problem using the EIV 
approach to estimate kinetic parameters for an irreversible, 
first-order reaction A → B, using data from an adiabatic 
CSTR, with 10 data points for 5 measured state variables. 
The problem is formulated as an unconstrained global 
optimization problem with 22 variables, as explained by 
Gau and Stadtherr (2000). 

This global optimization problem was successfully 
solved, with the results for computational performance 
shown in Table 2. Again there was a large reduction in the 
number of I-N tests required. However, in this problem 
and in Problem 1, the percent reduction in overall CPU 
time is less than the percent reduction in I-N tests.  This 
occurs due to the overhead in solving the LP subproblems. 

Table 2. Performance on Problem 2 

 I-N tests CPU time (s) 
HP/RP 9,505 24.0 

LISS_LP 2,004 19.2 

Problem 3: Parameter Estimation in Batch Reaction 
Kinetics Modeling  

This problem is a parameter estimation problem using 
the EIV approach to estimate the kinetic parameters for an 
isothermal batch reactor.  There are two sets of data for 
this problem.  The first data set consists of 15 data points 
and the optimization problem has 32 independent 
variables.  The second data set consists of 7 data points 
and 16 independent variables.  For the second data set, 
some of the data points are suspicious, and, to investigate, 
Gau and Stadtherr (2000) turned off the objective range 
test to obtain all of the stationary points, not just the global 
optimum.  We will do likewise here. 

The optimization problems were solved successfully 
and the performance results are shown in Table 3 and 
Table 4.  In first data set, although the number of interval-
Newton tests has been reduced by a factor of about four 
when using LISS_LP, the CPU time is almost the same for 
both methods.  In this and the other problems, the 
relatively high overhead in solving the LP subproblems is 
due to a large extent to the fact that dense linear algebra is 
used currently in LISS_LP, and it is quite inefficient, 
especially as the problem size becomes larger.  In the 
second data set, two stationary points are found, including 
the global optimum.  Again there is a significant reduction 
in I-N tests, but the CPU time is not proportionately 
reduced due to the overhead in solving LP subproblems. 

Table 3. Performance on Problem 3: first data set 

 I-N tests CPU time (s) 
HP/RP 144,833 976.2 

LISS_LP 30,560 992.6 

Table 4. Performance on Problem 3: second data set 

 I-N tests CPU time 
(s) 

No. Stationary 
points 

HP/RP 69,421 91.8 2 
LISS_LP 18,715 68.0 2 

Concluding Remarks 

We have described here a LP-based method to solve 
the linear interval system arising in the context of the 
interval-Newton approach for nonlinear equation solving 
and global optimization.  The method can obtain tighter 
bounds on the solution set than the standard inverse-
midpoint preconditioned Gauss-Seidel method, and thus 
leads to a large reduction in the number of subintervals 
that must be tested during the interval-Newton procedure.  
However, as seen especially on the largest problem 
considered here (first data set of Problem 3), the overhead 
required to solve the LP subproblems may lead to 
relatively smaller, or even no, improvements in overall 
computation time.  Since this is due to a large extent to the 
use of inefficient dense linear algebra routines in the 
current implementation of LISS_LP, it is clear that an 
implementation that exploits problem sparsity is needed. 
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