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Abstract

A new approach is described for the rigorous global optimization of dynamic systems subject to

inequality path constraints (IPCs). This method employs the sequential (control parameterization)

approach and is based on techniques developed for the verified solution of parametric systems of

ordinary differential equations. These techniques provide rigorous interval bounds on the state

variables, and thus on the path constraints and objective function in the dynamic optimization

problem. These techniques also provide explicit analytic representations (Taylor models) of these

bounds in terms of the decision variables in the optimization problem. This facilitates the use

of constraint propagation techniques that can greatly reduce the domain to be searched for the

global optimum. Since IPCs are often related to safety concerns, we adopt a conservative, inner-

approximation approach to constraint satisfaction. Through this approach, the search for the

global optimum is restricted to a space in which continuous satisfaction of the IPCs is rigorously

guaranteed, and an ǫ-global optimum within this space is determined. Examples are presented that

demonstrate the potential and computational performance of this approach.

Keywords: Global optimization; Dynamic systems; Path constraints; Verified computing; Taylor

models; Constraint propagation



1 Introduction

Optimization problems involving dynamic systems arise in many application areas in engineering

and science. In practice it is often required that dynamic processes be operated to satisfy certain

safety and/or quality control concerns over their entire operating time. Optimization problems

in such systems are thus subject to appropriate inequality path constraints, which state that the

operating trajectory may never enter regions of the state space that could cause process safety,

product quality, or other problems. We will describe here a new approach for the rigorous global

optimization of dynamic systems with inequality path constraints.

In optimization problems for dynamic systems, one or more of the decision variables may be a

continuous function of time, resulting in essentially infinite-dimensional problems. To address this,

there are in general two categories of methods. The classical indirect methods are based on solving

Pontryagin’s necessary conditions.1,2 This often results in a two-point boundary value problem,

and this may be as difficult to solve as the original optimization problem. In the other category

are direct methods, which are based on problem formulations that use discretization to reduce the

infinite-dimensional problem to a finite-dimensional one. There are two main approaches to the

discretization, the sequential approach, in which only the decision variables (control parameters)

are discretized,3–8 and the simultaneous approach, in which both decision and state variables are

discretized.9–13 Direct methods enable easy incorporation of powerful numerical integration routines

for systems of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs)

and of nonlinear programming (NLP) routines for optimization. Thus both the sequential and

simultaneous approaches have been successfully applied to a wide range of problems, and both are

in active use. Recently, for example, the optimization of periodic adsorption processes has been

considered by Vetukuri et al.14 using the sequential approach and by Agarwal et al.15,16 using the

simultaneous approach. Features of the two approaches can also be combined into a quasi-sequential

approach.17,18 In this paper, only the sequential approach will be considered.

The rigorous solution of dynamic optimization problems with inequality path constraints is

challenging for two primary reasons. First, the presence of nonconvexities may lead to multiple

local optima. This may become an issue for both constrained and unconstrained problems, and

arises even in relatively simple problems.19 Second, the inequality path constraints are continuously

imposed; that is, they must be satisfied at all points in time, not just at discrete points. However,

current methods (sequential or simultaneous) directly enforce the constraints only at the level of the
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discretization used in the problem formulation or in the numerical routines used. Thus, rigorous,

continuous satisfaction of the inequality path constraints remains an issue.

To handle the issue of multiple local optima, one approach is to use stochastic global opti-

mization methods. For example, Banga et al.20 have addressed constrained dynamic optimization

problems using various stochastic global optimization methods, as well as a hybrid method that

uses a stochastic approach globally with a gradient-based method locally, and this approach has

been implemented in the MATLAB toolbox DOTcvp.21 However, stochastic methods provide no

theoretical guarantee of finding the global optimum. Thus there has also been significant recent

interest, focused so far on unconstrained problems, in deterministic global optimization (DGO)

methods designed to offer some such guarantee. An excellent review of DGO methods, covering

many applications, has recently been provided by Floudas and Gounaris.22 DGO methods are usu-

ally constructed on a branch-and-bound framework; thus, the rigor and efficiency (computational

cost and bound tightness) of the bounding step has become a core issue, determining the overall

performance of DGO methods. Convex relaxation methods for the bounding step have been de-

scribed by Chachuat and Latifi,23 Papamichail and Adjiman,24,25 and Esposito and Floudas.26,27

Both Chachuat and Latifi,23 and Papamichail and Adjiman24,25 obtain a theoretical guarantee of

ǫ-global optimality, though at a very high computational cost. Singer and Barton8 developed an

approach, based on use of convex and concave relaxations to bound the state trajectories, that

achieves ǫ-global optimality at significantly lower cost. Other recent ideas28–31 for constructing

convex and concave bounds of the states also may become important in the context of dynamic

optimization. Lin and Stadtherr32,33 developed a DGO algorithm based on using interval analysis

and Taylor models to determine the state bounds.34 Using this approach it is possible to obtain a

rigorous guarantee of either exact global optimality or ǫ-global optimality.32 The former requires

the use of interval-Newton methods applied to the sensitivity equations. Either type of guarantee

can be obtained at a computational cost that is often much less than that required by the approach

of Singer and Barton.8 The DGO methods discussed above are focused on unconstrained prob-

lems. In the work described below, we extend the DGO approach of Lin and Stadtherr to problems

involving IPCs.

For addressing the satisfaction of IPCs in dynamic systems, most existing methods use certain

types of transformations of the original problem. For example, a penalty function35,36 may be

introduced, either added directly to the objective function, or used to determine a set of end

point constraints. Another approach is to introduce squared slack variables37,38 to transform the
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inequality constraints into equalities. The interior point approach transforms the continuous IPCs

into a series of discrete point constraints.6,39 Hybrid interior point and penalty function approaches

have also been proposed.40,41 Feehery and Barton7,42 have developed a type of active set strategy,

which detects dynamically whether the IPC is active or inactive, and solves either the appropriate

unconstrained or equality constrained problem. With any of these approaches, there is no assurance

that the IPC will be satisfied between discretization points, which may occur directly in the problem

formulation (e.g., interior point approach) and/or in the numerical integration routines used to solve

the underlying ODE or DAE problems. In the method described below, we will deal with this issue

and present an approach that rigorously guarantees continuous, not just discrete, satisfaction of

the IPCs.

In this study, we describe a new method for the rigorous global optimization of dynamic systems

subject to inequality path constraints. This method employs the sequential approach and is based

on the use of techniques34 developed for the verified solution of parametric ODE systems. These

techniques provide rigorous interval bounds on the state variables, and thus on the IPCs and

objective function in the dynamic optimization problem. Furthermore, these techniques provide

explicit analytic representations (Taylor models) of these bounds in terms of the decision variables

in the optimization problem. This facilitates the use of constraint propagation techniques that

can greatly reduce the space to be searched for the global optimum. Through this approach, the

search for the global optimum is restricted to a space in which continuous satisfaction of the IPCs

is rigorously guaranteed, and an ǫ-global optimum within this space is determined. The potential

of this approach is demonstrated, and its performance studied, through the use of a number of

computational examples.

The rest of this paper is structured as follows. In the next section we will formulate the

problem to be solved. Then, in section 3, we will provide some background on interval analysis,

Taylor models, and use of Taylor models in constraint propagation. In section 4, we will review

verified solution methods for systems of parametric ODEs, and then in section 5 we will describe

the new algorithm for rigorous global optimization of dynamic systems subject to IPCs. In section

6, the results of some numerical experiments will be presented and discussed, and finally in section

7 we will provide concluding remarks about the algorithm.
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2 Problem Statement

In this section, the mathematical formulation of the optimization problem to be considered is

given. Assume that the system to be optimized is described by an initial value problem (IVP) with

the nonlinear ODE model ẋ = f(x,θ) and initial state x(t0) = x0(θ). Here x is the vector of

state variables (length n) and θ is a vector (length p) of adjustable parameters. The final state is

denoted as xf = x(tf). The parameter vector θ includes parameters that appear in the equations

for ẋ and that appear in the statement of initial conditions (e.g., one or more of the initial states

may be an adjustable parameter). For the example problems to be considered below, the initial

states will be fixed and the parameter vector will result from the parameterization of a control

profile θ(t). The model is expressed in autonomous form; a non-autonomous system can readily

be converted to autonomous form by treating the independent variable (t) as an additional state

variable. Systems described by DAE models will be considered elsewhere.

The optimization problem to be considered is

min
θ,xη

φ = φ [x(tη,θ),θ; η = 0, 1, . . . , r] (1)

s.t. 0 ≥ g(x,θ)

ẋ = f(x,θ)

x(t0) = x0(θ)

t ∈ [t0, tr] = [t0, tf ]

θ ∈ Θ.

Throughout this paper, boldface is used to indicate vector-valued quantities and uppercase is used

to denote interval-valued quantities, unless noted otherwise. The objective φ is expressed in terms

of the adjustable parameters θ and the state values at discrete points tη, η = 0, 1, . . . , r. These

discrete points may be specified in the problem formulation, or may arise in the numerical solution

of the ODE model. If the objective function involves an integral, it can be eliminated using an

appropriate quadrature variable. The IPCs are given by the function vector g (length m). It is

assumed that f is (κ − 1)-times continuously differentiable with respect to the state variables x,

and (q + 1)-times continuously differentiable with respect to the parameters θ. It is also assumed

that φ and g are (q + 1)-times continuously differentiable with respect to θ. Here κ is the order

of the truncation error in the interval Taylor series (ITS) method to be used in the integration

procedure (to be discussed in section 4), and q is the order of the Taylor model to be used to
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represent parameter dependence (to be discussed in section 3.2). When the sequential approach

is applied, a numerical ODE solver will provide values of xη = x(tη,θ), η = 1, . . . , r for specified

values of θ, thus effectively eliminating xη, η = 0, . . . , r and leaving only the adjustable parameters

θ as decision variables. Θ is a vector of interval bounds on the decision variables, thus defining the

space to be searched for the global optimum. The feasible region, denoted as G, is a subset of Θ,

given by G = {θ ∈ Θ | 0 ≥ g(x,θ), ∀t ∈ [t0, tf ]}.

We will use a branch-and-bound approach to address the problem stated above. To assure

convergence in a finite number of steps, deterministic global optimization algorithms using this

approach are typically terminated at a solution point that is within some specified tolerance of the

true global minimum. For constrained problems, it is customary to use two such tolerances: 1. The

value of the objective function at the solution point may not exceed the true global minimum value

by more than some tolerance, usually denoted as ǫ; 2. The solution point may not lie outside of the

feasible region by more than some tolerance. That is, the feasible region G is approximated by an

outer approximation G+ ⊃ G that never differs from G by more than the tolerated amount. Using

an outer approximation of the feasible region to determine constraint satisfaction has the advantage

that all of G will be searched for the global minimum, but the disadvantage that the final solution

point may in fact be outside of G. In many contexts, such a small constraint violation is tolerable.

However, it is not uncommon for IPCs to be safety related, thus dictating a more conservative

approach to constraint satisfaction in this context. We thus choose to approximate the feasible

region using an inner approximation G− ⊂ G that approaches G to within some tolerance. This has

the advantage that the final solution point is guaranteed to be feasible, but the disadvantage that

there may be very small regions of G that are not conclusively searched for an ǫ-global minimum.

In choosing the inner-approximation approach, the search for the global minimum is restricted to

the space G− in which constraint satisfaction is rigorously guaranteed, and we seek to determine an

ǫ-global optimum within this space. We will also bound the potential improvement in the global

minimum that might occur if the search was expanded to G+.

3 Background

The approach presented here uses interval analysis, Taylor models, and constraint propagation

with Taylor models. As background, a brief introduction to these topics is provided.

5



3.1 Interval analysis

A real interval X =
[
X,X

]
is defined by X =

{
x ∈ ℜ | X ≤ x ≤ X

}
. Here an underline is

used to indicate the lower bound of an interval and an overline is used to indicate the upper

bound. The width of an interval X is defined by w(X) = X − X. A real interval vector X =

(Xi) = (X1,X2, · · · ,Xn)
T has n real interval components and can be interpreted geometrically

as an n-dimensional rectangle. The width of an interval vector X is the width of its widest

element; that is, w(X) = maxi w(Xi). Basic arithmetic operations with intervals are defined by

X op Y = {x op y | x ∈ X, y ∈ Y }, op ∈ {+,−,×,÷}, with division in the case of 0 ∈ Y allowed

only in extensions of interval arithmetic.43 Interval versions of the elementary functions are similarly

defined. The endpoints of an interval are computed with a directed (outward) rounding; that is, the

lower bound is rounded down and the upper bound is rounded up. In this way, interval operations

are guaranteed to produce bounds that are rigorous both mathematically and computationally. A

number of good introductions to interval analysis and computing with intervals are available.43–47

For a real function f(x), the interval extension F (X) encloses the range of f(x) for x ∈X. A

simple way to compute bounds on the range of f(x) is to substitute the given interval X into the

expression for f(x) and then to evaluate with interval arithmetic. However, the tightness of the

bounds in this “natural” interval extension depends on the form of the expression used to evaluate

f(x). If this is a single-use expression, in which no variable appears more than once, then the exact

function range will be obtained (within roundout). However, if any variable appears more than

once, then overestimation of the range may occur. Such overestimation is due to the “dependency”

problem of interval arithmetic. While a variable may take on any value within its interval, it must

take on the same value each time it occurs in an expression. However, this type of dependency is

not detected when the natural interval extension is computed. Another source of overestimation

that may occur in the use of interval methods is the “wrapping” effect. This occurs when an interval

is used to enclose (wrap) a set of results that is not an interval. One approach that can be used to

address both the dependency problem and the wrapping effect is the use of Taylor models.

3.2 Taylor models

Makino and Berz48,49 have described a remainder differential algebra (RDA) approach for

bounding function ranges and controlling the dependency problem of interval arithmetic. In this

method, a function is represented by a model consisting of a Taylor polynomial expression and an

interval remainder bound.
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One way of forming a Taylor model of a function is by using the Taylor theorem. Consider a

real function f(x) that is (q + 1) times partially differentiable for x ∈ X and let x0 ∈ X. The

Taylor theorem states that for each x ∈X, there exists a real ζ with 0 < ζ < 1 such that

f(x) = pf (x− x0) + rf (x− x0, ζ), (2)

where pf is a q-th order polynomial (truncated Taylor series) in (x−x0) and rf is a remainder, which

can be quantitatively bounded over 0 < ζ < 1 and x ∈X using interval arithmetic or other methods

to obtain an interval remainder bound Rf . A q-th order Taylor model Tf (x) = pf (x − x0) + Rf

for f(x) over X then consists of the polynomial expression pf and the interval remainder bound

Rf and is denoted by Tf = (pf , Rf ). The expression f(x) can now be bounded for x ∈ X by

seeking bounds on the Taylor model Tf (x) for x ∈ X. This could be done using the natural

interval extension Tf (X), but usually tighter bounds can be obtained using other methods.34,50–52

Following Lin and Stadtherr,34 we use an approach in which the sum of all linear and diagonal

quadratic terms is bounded exactly, with the remaining terms bounded using interval arithmetic.

In practice, it is more useful to compute Taylor models of functions by performing Taylor model

operations. Arithmetic operations with Taylor models can be done using RDA operations,48,49,53

which include addition, multiplication, reciprocal and intrinsic functions. Using these operations, it

is possible to begin with simple functions such as the constant f(x) = k, for which Tf = (k, [0, 0]),

and the identity f(xi) = xi, for which Tf = (xi0 + (xi − xi0), [0, 0]), and to then compute Taylor

models for more complicated functions. It has been reported that, compared to other rigorous

range-bounding techniques, the use of Taylor models often provides tighter enclosures for functions

with modest to complicated dependencies.48,49,52 The applications and limitations of Taylor models

are discussed in more detail elsewhere.52

3.3 Constraint propagation with Taylor models

The scheme34 used in the bounding of Taylor models can be exploited in performing constraint

propagation with Taylor models. Information provided by a constraint can be used to eliminate

incompatible values from the domain of its variables. This domain reduction can then be propagated

to all constraints on that variable, where it may be used to further reduce the domains of other

variables. This is the process known as constraint propagation.43,44,54 It is widely used in various

forms in connection with interval methods. It has been shown previously how efficient constraint

propagation schemes, based on hull consistency and using Taylor models, can be developed for
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inequality constraints,32 bound constraints,55 and equality constraints.56 In the method described

below, we use the procedure given by Lin and Stadtherr32 for constraint propagation with Taylor

models on an inequality constraint c(x) ≤ 0, with x ∈ X. Using this constraint propagation

procedure (CPP) with a Taylor model Tc of the constraint, a region Xnf ⊆ X that is guaranteed

not to satisfy the constraint may be identified and removed from X to obtain an updated X;

that is, X ← X \ Xnf = {x ∈ X | x /∈ Xnf}. The region Xnf is not necessarily an interval, but

a set of intervals generated in such a way that X \ Xnf is an interval or an empty set. If the

reduction in the size of X is sufficient (more than 10% reduction in volume is the heuristic used

in our implementation), then the CPP is repeated. In repeating the CPP, we could use VSPODE

to recompute the Taylor model of the constraint over the smaller X; however, in our experience,

this additional expense is usually not justified, as useful domain reduction may be obtained by

continuing to use the initial Taylor model. The final outcome of the CPP may be that X is

completely eliminated (becomes an empty set), or that X is reduced in size, or that X is not

changed at all.

4 Bounding State Variables

When a standard sequential approach is applied to the dynamic optimization problem, the

objective function φ [x(tη,θ),θ; η = 0, 1, . . . , r] is evaluated, for a given value of θ, by applying

an ODE solver to the constraints to eliminate x(tη,θ), η = 1, . . . , r. In the deterministic global

optimization algorithm described here, we will use a branch-and-bound approach that requires the

evaluation of bounds on φ, given some bounds θ ∈ Θ on the adjustable parameters. Thus, as

emphasized above, a key step is the determination of bounds on the states x(tη,θ), η = 1, . . . , r

for θ ∈ Θ. For this purpose, we will use the method described by Lin and Stadtherr,34 and

implemented in a code called VSPODE. This is an interval method57,58 (such methods are also

called validated or verified methods) and also uses Taylor models. It is capable of determining

mathematically and computationally guaranteed bounds on the state variables for nonlinear ODE

systems with interval-valued parameters and/or initial states. We will briefly described the method

here. Another interesting approach using Taylor models for state bounding has been described

recently by Sahlodin and Chachuat.31

Focusing on the ODE constraint ẋ = f(x,θ), x0 = x0(θ), the goal is to determine bounds

on the state variables x for θ ∈ Θ and x0 ∈ X0(Θ). We denote by x(t; tj ,Xj ,Θ) the set of

8



solutions x(t; tj ,Xj ,Θ) = {x(t; tj ,xj,θ) | xj ∈Xj ,θ ∈ Θ} , where x(t; tj ,xj ,θ) denotes a solution

of ẋ = f(x,θ) for the initial condition x = xj at tj. As one outcome of the method outlined here,

we will determine enclosures Xj of the state variables at a series of time steps j = 1, . . . , r, such

that x(tj ; t0,X0,Θ) ⊆Xj.

4.1 Phase one

Assume that at tj we have an enclosure Xj of x(tj; t0,X0,Θ), and that we want to carry out

an integration step with stepsize hj = tj+1 − tj to compute the next enclosure Xj+1. Then, in the

first phase (verification phase) of the method, the goal is to find an a priori enclosure X̃j of the

solution such that a unique solution x(t; tj ,xj,θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj , tj+1],

all xj ∈Xj , and all θ ∈ Θ. This is done with a high-order interval Taylor series (ITS) with respect

to time, using the Picard-Lindelöf operator and Banach fixed-point theorem. That is, we determine

X̃j such that for Xj ⊆ X̃
0

j ,

X̃j =
κ−1∑

i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

κF [κ](X̃
0

j ,Θ) ⊆ X̃
0

j . (3)

Here κ denotes the order of the truncation error, X̃
0

j is an initial estimate of X̃j, and the coefficients

F [i] are interval extensions of the Taylor coefficients f [i] of x(t) with respect to time, which can be

obtained recursively in terms of ẋ(t) = f(x,θ) using automatic differentiation. This is an extension

to parametric ODEs of the approach used in the popular VNODE method57,59 for verified solution

of ODEs. Satisfaction of eq. (3) verifies that there exists a unique solution x(t; tj ,xj ,θ) ∈ X̃j for

all t ∈ [tj , tj+1], all xj ∈Xj, and all θ ∈ Θ.

Note that X̃j rigorously encloses all the possible values of the state variables during an entire

integration step, not only at tj+1. We will use this enclosure in the optimization algorithm described

below to enforce continuous satisfaction of the IPCs. In the usual VSPODE implementation34 of this

method, there are multiple options for the stepsize. An automatic stepsize adjustment procedure57

is provided that will attempt to use a relatively large hj . Alternatively, a fixed stepsize h can be

specified by the user. However, this stepsize will be accepted as hj at time tj only if it results

in satisfaction of eq. (3). Otherwise, VSPODE can be set either to continue with automatic

adjustment, which will shrink the stepsize but still try to find a stepsize as large as possible, or to

start over using a stepsize that has been reduced by some user-specified fraction. For the application

of interest here, however, we find it useful to treat the stepsize adjustment procedure externally as

part of the optimization algorithm; thus VSPODE will not adjust the stepsize and it is possible (if
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hj , Xj or Θ is too large) for the verification stage to fail (eq. (3) cannot be satisfied). If such a

failure occurs, it is dealt with in the optimization algorithm.

4.2 Phase two

In the second phase of the method, a tighter enclosure Xj+1 ⊆ X̃j is computed, such that

x(tj+1; t0,X0,Θ) ⊆Xj+1. This is done by using an ITS approach to compute a Taylor model T xj+1

of xj+1 in terms of the parameters θ. To do this, the parameters are first expressed as a Taylor

model identity function T θ. Then, Taylor models T
f [i] of the interval Taylor series coefficients

f [i](xj ,θ) can be determined by using RDA operations to compute T
f [i] = f [i](T xj

,T θ). Using an

interval Taylor series for xj+1 with coefficients given by T
f [i], and using the mean value theorem,

one can obtain a result for T xj+1 in terms of the parameters θ. In this process, the wrapping effect

is reduced by using a new type of Taylor model that uses a parallelepiped (rather than interval)

remainder bound. The resulting Taylor model T xj+1(θ) can then be bounded34 over θ ∈ Θ to

obtain Xj+1. Complete details of the computation of T xj+1 are given by Lin and Stadtherr.34

4.3 Performance

As seen in eq. (3) for the phase one enclosure X̃j, the parameter interval Θ and the stepsize

interval [0, hj ] appear repeatedly in expressions that must be evaluated using interval arithmetic

during execution of the VSPODE algorithm. Thus, overestimation of bounds resulting from the

dependency problem (section 3.1) of interval arithmetic is inevitable. In the case of a relatively

large parameter interval and/or a coarse stepsize, the propagation from time step to time step

of relatively loose state enclosures may ultimately lead to verification failure in the first phase

(eq. (3) can no longer be satisfied or requires a stepsize hj that is impractically small). In the

global optimization application, the parameter interval represents the decision variable space to be

searched, and this may initially be quite large. However, since we will use a branch-and-bound

framework for the global optimization algorithm, resulting in repeated subdivision of the search

domain, the parameter intervals that must be considered will quickly reach a manageable size. Even

if the parameter interval has zero width, some overestimation of the state bounds will still occur

due to the stepsize interval. While, as discussed above, there are automatic stepsize adjustment

procedures available in VSPODE, we prefer, for purposes of the constrained optimization problem

considered here, to take more direct control of the stepsize. To do this, we will select a fixed stepsize

h based on the ability to achieve a user-specified resolution in the constraint values. This process
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will be implemented as part of an optional “autotuning” procedure for the optimization algorithm,

to be discussed in section 5.5.

Two other settings in VSPODE that will affect performance of the optimization procedure are

the ITS truncation order κ and the polynomial order q of the Taylor models used. In general,

use of a relatively high κ will provide a smaller truncation error and thus permit the use of a

larger stepsize in satisfying eq. (3). However, the computational cost of phase one is roughly

proportional to κ, so there is also motivation to use a κ that is not unnecessarily large. The use

of Taylor models to propagate the state enclosures from one time step to the next allows many of

the necessary operations to be performed on the symbolic part of the Taylor model, rather than on

intervals, thereby significantly reducing overestimation due to interval dependency and wrapping.

Thus, a larger Taylor model order q (more symbolic terms) may lead to reduced propagation of

overestimation from time step to time step. This is important since it may delay, or even prevent,

the accumulation of bound overestimates that may lead to verification failure, thus extending the

time over which the problem can be successfully integrated. However, the computational cost of

computing with Taylor models increases significantly with increasing q due to the increasing number

of terms in the polynomial part of the Taylor model. For example, if there are p = 4 parameters

and q = 3, then the number of polynomial terms is 35, but for q = 5 this increases to 126 terms

(the number of terms in a polynomial of order q in p variables is (q + p)!/(q!p!)). As part of the

autotuning procedure, we will use a relatively large κ and q while determining the stepsize h. Then,

once h has been determined, we will try to reduce κ and q while maintaining satisfaction of the

user-specified constraint resolution.

5 Global Optimization Algorithm

In this section, we present a new method for the rigorous global optimization of dynamic systems

subject to IPCs. As noted previously, when a sequential approach is used, the state variables are

effectively eliminated from the objective function using the ODE constraints, leaving a constrained

minimization of φ(θ) with respect to the adjustable parameters (decision variables) θ. The new

global optimization algorithm is constructed on a branch-and-bound framework with domain reduc-

tion using constraint propagation with Taylor models. Branch-and-bound with domain reduction

is sometimes referred to as a branch-and-reduce approach.60

As discussed in section 2, our goal is to determine an ǫ-global minimum of φ(θ) within an inner
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approximation G− of the feasible region G. Specifically, the feasible region will be approximated,

as needed, by an inner subpaving of precision δ. An inner subpaving G− is a set of nonoverlapping

subintervals, all of which can be rigorously proven to belong to the feasible region G, and which

excludes all subintervals that can be proven not be in G and all subintervals for which membership

in G cannot be decided. An outer subpaving G+ contains G− and those subintervals for which

membership in G cannot be decided. The subpaving precision δ is the width of the largest undecided

subinterval. As δ is reduced, G− will more closely approach G, with δ providing a measure, in terms

of the decision variables, of the closeness of approach. The concept of subpavings is described in

detail, with several examples, by Jaulin et al.44 An entire inner subpaving for the feasible region

rarely needs to be generated since many subintervals are eliminated from the search domain based

on their objective function values. In the procedure described below, the subpaving precision δ can

be specified directly by the user, or it can be tuned (section 5.5) based on a specified constraint

resolution parameter ω. In effect, ω will provide an approximate measure, in terms of the constraint

values, of the closeness with which G− must approach G.

5.1 Initialization

In a branch-and-bound procedure, a key issue is how to initialize φ̂, an upper bound on the

global minimum. This is often done by evaluating φ(θ) at some feasible point θ̂. One simple

approach for selecting an appropriate θ̂ is to evaluate φ(θ) at one or more feasible θ points, and

to designate the best (lowest φ value) as θ̂. However, finding and verifying a feasible point may

be nontrivial. An alternative approach is to use available local optimization and stochastic global

optimization tools to determine a θ̂. In general, we would expect the latter approach to be prefer-

able (this is shown computationally in section 6.1). For this purpose we use the MATLAB toolbox

DOTcvp,21 which solves constrained optimal control problems using a sequential approach. This

toolbox provides a variety of local, stochastic global, and hybrid optimization methods together

with initial value problem (IVP) solvers from SUNDIALS61 for integration of the ODE constraints.

SUNDIALS includes the Adams-Moulton formulas for nonstiff problems and backward differenti-

ation formulas for stiff problems. Gradient information for use in the optimization can also be

obtained from SUNDIALS either by finite difference or by using the sensitivity equations. We use

the default method in DOTcvp for optimization, namely FMINCON62 with a sequential quadratic

programming algorithm, thus obtaining a result for θ̂. It has been our experience, however, that the

DOTcvp result may, in some cases, have slight violations of the path constraints (even when using
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very tight error tolerances in the underlying numerical routines). This is apparently due to the use

in DOTcvp of IVP solvers that are not rigorously guaranteed. Such constraint violations can be

confirmed using VSPODE, which is a rigorously guaranteed IVP solver. This issue can easily be

dealt with by systematically making small changes in the DOTcvp result until its feasibility can

be confirmed using VSPODE. To evaluate φ(θ̂) rigorously, we use a procedure described in Section

5.3 that results in interval bounds on φ. The upper bound of this interval is then used as the initial

φ̂.

An additional initialization step is to establish a work list (stack) L. The work list L will contain

a sequence of subintervals (boxes) that need to be tested, as described below, and initially L = {Θ},

the entire specified parameter (decision variable) space. Each subinterval in L has a status flag

that can have a value of TRUE, indicating a box that is rigorously guaranteed to satisfy the IPCs

and may contain an ǫ-global minimum, a value of UNDECIDED, indicating a box that may satisfy

the IPCs and may contain an ǫ-global minimum, or a value of FALSE, indicating that the box is

rigorously guaranteed either not to satisfy the IPCs or not to contain an ǫ-global minimum. Once

a box is marked FALSE it can be removed from L and is no longer tested. The initial element of

L is marked UNDECIDED.

We also establish a list L+, initially empty, which will contain boxes in which testing for an

ǫ-global minimum is terminated at an incomplete stage, together with objective function bounds

over each such box. These are boxes of width less than the subpaving tolerance δ that belong to the

outer subpaving G+, but not the inner subpaving G− within which an ǫ-global minimum is sought.

By saving these boxes, we can later establish a bound on the improvement in φ that is possible if

G+ is used to approximate the feasible region instead of G−.

Finally, we set the convergence tolerance ǫ for the objective function, the subpaving precision

δ for the feasible region, and the parameters used by VSPODE, namely the stepsize h, the ITS

truncation order κ and the Taylor model order q. The subpaving precision and VSPODE parameters

can be set by using an optional “autotuning” procedure based on the (user-specified) IPC resolution

parameter ω. We will defer explanation of the optional autotuning procedure until after the details

of the optimization algorithm are presented.

5.2 Rigorous IPC test

At the k-th iteration of the overall algorithm (to be discussed in section 5.4), a subinterval is

removed from the front of L for testing. This subinterval is denoted Θ(k). The purpose of the
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test procedure described in this section is to determine rigorously whether all θ ∈ Θ(k) lead to

states that satisfy the IPCs for all t ∈ [t0, tf ], and, if not, to try to shrink Θ(k) by using constraint

propagation. Only boxes flagged as UNDECIDED undergo this test. If a box is already marked

TRUE, then it has already been proven that all θ ∈ Θ(k) lead to states that satisfy the IPCs for

all t ∈ [t0, tf ] and so this test need not be performed again.

Since we will assume that the specified initial states satisfy the IPCs, the subinterval Θ(k) is

first given a status of TRUE as of t = t0. We then begin carrying out integration time steps using

information obtained from VSPODE. Consider the time step beginning at t = tj. Recall that in the

first phase (verification phase) of VSPODE, rigorous interval bounds X̃
(k)

j on the state variables can

be obtained that are valid for all θ ∈ Θ(k) and for all t ∈ [tj , tj+1], that is, for the entire integration

time step, not just the endpoint tj+1. Then, using interval arithmetic, the corresponding bounds

G̃
(k)

j = g(X̃
(k)

j ,Θ(k)) on the IPCs can be computed, and these are also valid over the entire time

step. However, the bounds X̃
(k)

j are often only relatively loose bounds, which may lead to poor

performance in bounding the IPCs. To improve X̃
(k)

j , we will use an idea suggested by Lin and

Stadtherr,63 based on the observation that over a small time step it is likely that most, if not all, of

the state trajectories will increase or decrease monotonically with time. This leads to the following

procedure:

1. Compute X̃
(k)

j using the first phase of VSPODE. If the verification step fails (eq. (3) can-

not be satisfied) then integration with VSPODE cannot continue; thus Θ(k) is marked as

UNDECIDED and the IPC test terminates (this is only likely to occur in early iterations,

when Θ(k) may be relatively large). Otherwise continue with computation of X
(k)
j+1 using the

second phase of VSPODE.

2. For each variable i = 1, . . . , n, compute bounds on ẋi = fi(x,θ) over the current time step

by determining F
(k)
i = fi(X̃

(k)

j ,Θ(k)) using interval arithmetic. If F
(k)
i ≥ 0 or F

(k)
i ≤ 0 (xi

monotonically increases or decreases with respect to time), then the interval hull of X
(k)
j,i and

X
(k)
j+1,i can be taken as the improved (tightened) X̃

(k)
j,i . This is done component by component

until the entire improved X̃
(k)

j is obtained.

This improved X̃
(k)

j is now used to compute the IPC bounds G̃
(k)

j . By examining G̃
(k)

j , Θ(k)

can be put into one of three categories:

1. If, for some IPC l, G̃
(k)
j,l > 0, then this is rigorous proof that the IPC gl ≤ 0 cannot be satisfied

by any point θ ∈ Θ(k). Thus, we can flag Θ(k) as FALSE and stop the IPC test.
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2. If G̃
(k)

j ≤ 0 and Θ(k) was TRUE at time tj , then this is rigorous proof that, up to time tj+1,

all θ ∈ Θ(k) satisfy all of the constraints. Thus, we can flag Θ(k) as TRUE as of time tj+1,

and proceed to the next integration time step. Note that a box maintains TRUE status only

if constraint satisfaction is rigorously guaranteed for all θ ∈ Θ(k) for all previous time steps in

addition to the current one; that is, constraint satisfaction is guaranteed for all t ∈ [t0, tj+1].

3. Otherwise, we flag Θ(k) as UNDECIDED, and proceed with additional testing based on

information obtained in the second phase of VSPODE.

From the second phase of VSPODE, we can obtain a Taylor model T
(k)
xj+1(θ) giving the states

xj+1 at tj+1 in terms of the parameters (decision variables) θ. Using Taylor model arithmetic, we

can then compute T
(k)
gj+1

(θ) = gj+1(T
(k)
xj+1 ,T θ), a Taylor model of the IPCs at tj+1 in terms of θ.

By now bounding34 T
(k)
gj+1

(θ) over θ ∈ Θ(k), we obtain interval bounds G
(k)
j+1 on the IPCs at tj+1.

These bounds may be significantly tighter than G̃
(k)

j , but are valid only at t = tj+1 (G̃
(k)

j gives

bounds valid for t ∈ [tj , tj+1]). Based on this information, there are three cases to consider:

1. If for some IPC l, G
(k)
j+1,l > 0, then this is rigorous proof that at t = tj+1 the constraint gl ≤ 0

is violated at all points θ ∈ Θ(k). Thus, we can flag Θ(k) as FALSE and stop the IPC test.

2. If G
(k)
j+1 ≤ 0, this shows that all the constraints hold for θ ∈ Θ(k) at t = tj+1. But since

we require constraint satisfaction at all points in time, not just at the discrete time-step

endpoints, we will leave the UNDECIDED flag on Θ(k), and continue to the next integration

time step.

3. Otherwise, use the IPC Taylor model T
(k)
gj+1

(θ) in a constraint propagation procedure (CPP)

based on the constraint gj+1 ≤ 0, as discussed in section 3.3. The CPP will attempt to shrink,

or perhaps completely eliminate, Θ(k) by removing regions from it for which it is impossible

to satisfy the IPCs. If Θ(k) is completely eliminated then it is marked FALSE and the IPC

test terminates. Otherwise, the updated (possibly smaller) Θ(k) retains the UNDECIDED

flag, and we continue to the next integration time step. If T
(k)
gj+1

(θ) depends on only some

of the components of θ, then this can be used to reduce the computational effort needed to

apply the CPP.

The IPC test procedure described above is applied to Θ(k) beginning with tj = t0. Possible

overall outcomes are:

15



1. Integration terminates early due to failure in the verification phase of VSPODE. In this

case, Θ(k) will have a status of UNDECIDED, and will be bisected upon return to the main

algorithm.

2. Integration terminates early due to proof that no θ ∈ Θ(k) can satisfy the IPCs. In this

case, Θ(k) will have a status of FALSE and will not be further tested. On return to the main

algorithm, a new subinterval will be taken from the front of L for testing.

3. Integration terminates at the specified final time tf and Θ(k) has a status of TRUE. This is

rigorous proof that all the IPCs are satisfied for all θ ∈ Θ(k) and for all t ∈ [t0, tf ] (not just

for discrete points between t0 and tf). On return to the main algorithm this box will be sent

to the objective test.

4. Integration terminates at the specified final time tf and Θ(k) has a status of UNDECIDED.

In this case, Θ(k) may contain some values of θ that satisfy the IPCs and some that do not.

It is also possible that all θ ∈ Θ(k) satisfy the constraints, or that all θ ∈ Θ(k) do not satisfy

the constraints, but that this could not be rigorously verified due to the overestimation of

bounds. On return to the main algorithm this box will be sent to the objective test.

5.3 Objective test

The purpose of the test procedure described in this section is to determine rigorously whether

the tested interval Θ(k) contains any points θ at which φ̂, the current upper bound on the global

minimum, may be improved by more than the tolerance ǫ. If possible, we will also seek to improve

the value of φ̂ and to shrink Θ(k) by using constraint propagation.

By running VSPODE we can obtain Taylor models of the state variables over Θ(k) at all times

needed to evaluate the objective function (if possible we will use VSPODE results obtained during

the IPC test). Using Taylor model arithmetic, we can then compute T
(k)
φ (θ), a Taylor model over

Θ(k) of the objective function in terms of the decision variables θ. By now bounding34 T
(k)
φ (θ)

over θ ∈ Θ(k), we obtain interval bounds Φ(k) on the objective function over Θ(k). Based on these

bounds, we proceed as follows:

1. If (φ̂ − Φ(k)) ≤ ǫ then the current Θ(k) does not contain any points at which φ̂ can be

improved by more than the tolerance ǫ. Thus, Θ(k) is marked as FALSE and the objective

test is stopped.
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2. If Θ(k) is TRUE at this point, then it may contain feasible points that can be used to improve

φ̂ by more than ǫ. Therefore, we apply a local optimization procedure over Θ(k) to try to

determine a better θ̂. For this purpose, we use the bound-constrained quasi-Newton method

L-BFGS-B64 for local optimization, and DDASSL65 as the integration routine to be called

by L-BFGS-B. If a better θ̂ is found, then we proceed to evaluate φ̂ rigorously at the new θ̂.

To do this, we run VSPODE on the degenerate interval input Θ̂ = [θ̂, θ̂] and use the results

to determine a Taylor model for φ over Θ̂. Bounding this Taylor model yields the interval

Φ̂ (this is nonzero width because it bounds truncation error in the ODE solver and because

of outward rounding in the bounding process). Then, if Φ̂ < φ̂, a new upper bound on the

global minimum is set as φ̂ = Φ̂. Since Φ(k) usually will be somewhat less than the true lower

bound on φ over Θ(k), performing a local optimization in a TRUE box whenever φ̂−Φ(k) > ǫ,

as done here, will lead to some unsuccessful attempts to improve φ̂. An alternative approach

is to perform a local optimization only when Φ(k) < φ̂, which guarantees that an improved φ̂

will be found. While the latter approach avoids futile attempts to improve φ̂, the tradeoff is

that the former approach is likely to find improved φ̂ values more often, potentially leading

to the elimination of some subintervals at an earlier point in the branch-and-bound process.

At least for the example problems considered here, the former approach is usually somewhat

more efficient.

3. Use the objective function Taylor model T
(k)
φ (θ) in a CPP based on the constraint φ−φ̂+ǫ ≤ 0,

which must be satisfied for any point θ to be a candidate for the global minimum. The CPP

will try to reduce Θ(k) by removing regions from it for which it is not possible to satisfy this

constraint. It is also possible, since the CPP involves a recursive process in which the Φ(k)

interval is tightened as Θ(k) is reduced, for the entire Θ(k) to be eliminated. In this case,

Θ(k) is marked FALSE.

For a tested subinterval Θ(k), the potential overall outcomes of the objective test are:

1. The subinterval is marked FALSE because it has been shown rigorously to contain no points

for which the possibly updated φ̂ can be improved by more than the tolerance ǫ.

2. The subinterval has been reduced in size without change in status (still either TRUE or

UNDECIDED).

3. No change in the subinterval or its status has occurred.
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5.4 Overall optimization algorithm

The overall global optimization algorithm proceeds as follows:

1. Initialize (section 5.1).

2. Set iteration counter k = 0 and (optional) perform automatic tuning (section 5.5).

3. Remove from the front of L a subinterval Θ(k) for testing . This subinterval may have status

of either UNDECIDED or TRUE.

4. If Θ(k) has status UNDECIDED, then send it to the IPC test (section 5.2). Otherwise, run

VSPODE and proceed directly to step 5.

(a) If the IPC test terminates due to failure of the verification phase in VSPODE, go to step

6 (bisection).

(b) If Θ(k) returns from the IPC test with status FALSE, go to step 7.

(c) Otherwise, proceed to step 5.

5. Send Θ(k) to the objective test (section 5.3).

(a) If Θ(k) returns from the objective test with status FALSE, go to step 7.

(b) If Θ(k) returns from the objective test with status UNDECIDED and its width is less

than the subpaving precision δ, then Θ(k) belongs to the outer approximation (sub-

paving) G+ but not to the inner approximation (subpaving) G− in which an ǫ-global

minimum is sought. Thus, no further testing of Θ(k) is done, and Θ(k) and Φ(k) are

added together to the list L+ of boxes belonging to G+ in which testing for an ǫ-global

minimum was incomplete. Go to step 7.

(c) IfΘ(k) returns from the objective test with its volume reduced by 70% or more (compared

to its volume at the beginning of step 4), then put the reduced Θ(k) at the front of L,

increment k by one, and go to step 3. The threshold of 70% volume reduction is a

heuristic and may be adjusted if desired.

(d) Otherwise, proceed to step 6.

6. Bisect Θ(k) using the component with the largest relative width. The resulting subintervals

retain the status flag of the parent subintervalΘ(k) and are placed at the front of L. Increment

k by one and go to step 3.
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7. If L is empty, proceed to step 8. Otherwise, increment k by one and return to step 3.

8. Examine objective bounds saved in L+ to determine the overall lower bound φ+ = min
Φ(i)∈L+

Φ(i)

on φ over boxes in L+. Terminate.

A flowchart of the overall algorithm is given in Fig. 1. At the termination of this procedure, L

is empty and the final φ̂ is an ǫ-global minimum φ∗ of the dynamic optimization problem subject

to IPCs. The corresponding ǫ-global minimizer θ∗ is the final θ̂. In step 8, we analyze the list L+

of boxes, saved in step 5(b), not completely tested for an ǫ-global minimum because they belong

to G+ but not to G−. Interval bounds on φ in each of these boxes have been generated previously

in the objective test and saved in step 5(b). These bounds can be used to establish a lower bound

φ+ on the φ values possible over all boxes in L+. This provides a bound, φ∗ − φ+ = ǫ+ on the

objective function improvement that is possible if G+ is used to approximate the feasible region

instead of G−. It is possible, if the boxes in L+ were put there before the final φ̂ value is reached,

that ǫ+ ≤ ǫ, meaning that φ∗ is an ǫ-global minimum in both G− and G+. If ǫ+ > ǫ, then φ∗ is an

ǫ-global minimum in G− and an ǫ+-global minimum in G+. Should the global minimum in G+ be of

interest (for reasons explained previously we are interested primarily in G−) and ǫ+ is unacceptably

large, then the appropriate boxes in L+ can be further processed, by applying the algorithm with

smaller values of δ and using higher precision (smaller h) in VSPODE.

Note that the algorithm is constructed in a way that intertwines testing for IPC satisfaction

and ǫ-global optimality. This is much more efficient than an approach in which one first identifies

the domain that satisfies the IPCs and then searches that domain for the global optimum. By

intertwining the use of the IPC test and the objective test we greatly reduce the need for state

bounding and eliminate much redundant work. The algorithm uses a standard depth-first search

approach. It is possible that a different approach for ordering the search process could be more

efficient.

5.5 Tuning procedure

The parameters that must be set before executing the algorithm described above are the con-

vergence tolerance ǫ for the optimization problem, the stepsize h, the ITS truncation order κ and

Taylor model order q used in VSPODE, and the subpaving precision δ. In this subsection we will

describe an optional procedure for automatic tuning of h, κ, q and δ, based on user-specified val-

ues of ǫ and of ω, a constraint resolution parameter. This constraint resolution parameter is used
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only for the purpose of this autotuning procedure. The goal is to find a stepsize h and subpaving

precision δ such that the smallest boxes investigated in the optimization algorithm are likely to

cover an interval of IPC values within the resolution ω and an interval of objective function values

within the tolerance ǫ. Also, to reduce the computational cost, we try to reduce κ and q (from

their heuristic default values of κ = 9 and q = 5), while maintaining satisfaction of the ω and ǫ

conditions. For doing all this, we use the heuristic procedure outlined below.

The procedure used is based on a random sample of σ points θs, s = 1, . . . , σ, from the search

domain Θ. By adjusting the number of sample points, the user can decide whether to invest more

or less computational effort in this tuning process. Because the computational cost of finding a

rigorous ǫ-global minimum can become quite large as the number of decision variables increases, we

are willing in general to devote a significant computational effort to achieve a reasonable tuning.

However, in our experience on the example problems considered below, a relatively small sample

of σ = 5 points is adequate.

In the tuning procedure, first h is adjusted, then δ and finally κ and q, as follows:

1. (Stepsize) As discussed in section 4.3, because of the dependency problem of interval arith-

metic, using too large a value of the stepsize h can lead to excessive overestimation of the

state bounds and thus of the IPC bounds. We would like to choose h so that, on average,

the width of the IPC bounds (including overestimation) does not exceed the specified IPC

resolution parameter ω. To do this we will use an iterative process in which VSPODE is

run at each iteration using each sampled θs value, treated as a zero-width interval. By using

zero-width parameter intervals we are able to focus on the effect of h alone on overestimation.

At the u-th iteration the time step will be h(u) and the total number of time steps will be

τ (u) = (tf − t0)/h
(u) (assumed to be an integer). After each iteration, the stepsize is reduced

by a factor of 10, so h(u+1) = h(u)/10 and τ (u+1) = 10τ (u).

The iterative process is:

(a) Initialize iteration counter u = 0 and set h(u) (user specified).

(b) Run VSPODE with fixed stepsize h = h(u) for each sampled point θs, s = 1, . . . , σ, thus

obtaining for the time step beginning at tj, j = 0, . . . , τ (u) − 1 the state bounds X̃
(u)

j,s .

If verification failure occurs in phase one of VSPODE at any time step, then go to (f).

(c) Compute the corresponding IPC bounds G̃
(u)

j,s = g(X̃
(u)

j,s ,θs) and determine the average

20



IPC width (over all samples and time steps)

ŵ(G̃
(u)

) =

σ∑
s=1

τ (u)−1∑
j=0

w(G̃
(u)

j,s )

στ (u)
(4)

(d) If ŵ(G̃
(u)

) ≤ ω, stop iterating and accept the current stepsize h(u) as h.

(e) If u = 0, go to (f). Otherwise we compare the average IPC width at the current iteration

with the average IPC width over the same time interval during the previous iteration.

This is done to provide a measure of the sensitivity of the average IPC width to reduction

in the stepsize. The time interval of one time step in the previous iteration corresponds

to ten time steps in the current iteration. Thus we must take the IPC bounds in the

current iteration and unite them ten at a time, corresponding to the time steps in the

previous iteration. This can be expressed by

Γ̃
(u)

l,s =

10l+9⋃

j=10l

G̃
(u)

j,s (5)

where l = 0, . . . , τ (u−1)− 1. Then the average IPC width for comparison to the previous

iteration is

ŵ(Γ̃
(u)

) =

σ∑
s=1

τ (u−1)−1∑
l=0

w(Γ̃
(u)

l,s )

στ (u−1)
. (6)

If there has been relatively little improvement in the average IPC width, say less than

half of the tolerance ω,

ŵ(G̃
(u−1)

)− ŵ(Γ̃
(u)

) ≤
ω

2
, (7)

then we stop iterating and use the stepsize h(u−1) from the previous iteration as h, since

using the larger stepsize will save computational effort with relatively little difference

in IPC bound quality. If there has been somewhat greater improvement in the average

IPC width, say
ω

2
≤ ŵ(G̃

(u−1)
)− ŵ(Γ̃

(u)
) ≤ ω, (8)

then stop iterating and accept the current stepsize h(u) as h. Otherwise, continue.

(f) Set h(u+1) = h(u)/10 and τ (u+1) = 10τ (u).

(g) Increment u by one and return to (b).
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2. (Subpaving precision) In the second tuning step we adjust the subpaving precision δ. Here we

try to account for overestimation of the state bounds, and thus the objective and IPC bounds,

due to parameter interval width (see section 4.3). We would like to choose δ to be sufficiently

small so that, on average, the width of the objective interval (including overestimation) does

not exceed the objective tolerance ǫ and the width of the IPC interval (including overestima-

tion) does not exceed the IPC resolution parameter ω. To do this we will use an iterative

process in which VSPODE is run at each iteration using a small parameter box, centered on

each sampled θs value, s = 1, . . . , σ. At the u-th iteration the small box width will be δ(u).

The small parameter boxes used are then Θ
(u)
s = θs + [−δ(u)/2, δ(u)/2], s = 1, . . . , σ. After

each iteration the small box width will be reduced by a factor of 10, so δ(u+1) = δ(u)/10. The

stepsize h used is the value determined in the previous tuning step, and the corresponding

number of time steps is τ . The iterative process is:

(a) Initialize iteration counter u = 0 and set δ(u) (user specified).

(b) Run VSPODE with fixed stepsize h for each small parameter box Θ
(u)
s , s = 1, . . . , σ,

thus obtaining for the time step beginning at tj, j = 0, . . . , τ − 1 the state bounds X̃
(u)

j,s .

If verification failure occurs in phase one of VSPODE at any time step, then go to (e).

(c) Based on these state bounds compute the corresponding IPC bounds G̃
(u)

j,s and objective

bounds Φ
(u)
s using interval arithmetic. Determine the average IPC width ŵ(G̃

(u)
) using

eq. (4) (with τ (u) = τ), and the average objective width from

ŵ(Φ(u)) =

σ∑
s=1

w(Φ
(u)
s )

σ
. (9)

(d) If ŵ(Φ(u)) ≤ ǫ and ŵ(G̃
(u)

) ≤ ω, stop iterating and accept the current small box tolerance

δ(u) as δ. Otherwise, continue.

(e) Set δ(u+1) = δ(u)/10.

(f) Increment u by one and return to (b).

3. (ITS truncation order and Taylor model order) Finally, to reduce the computational expense

in running VSPODE, we try to reduce the ITS truncation order κ and the Taylor model

order q, while still maintaining satisfaction of the conditions used to establish the values for

h and δ in the previous two tuning steps. We start by reducing to κ = 5 and q = 3, the

minimum values that, in our experience,34 lead to good performance. For these trial values
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of κ and q, we then repeat tuning steps 1 and 2 and check whether the criteria for accepting

the established h and δ are still met. If so, the trial values of κ and q are accepted. Otherwise

we systematically increase first q and then κ until these criteria are satisfied.

There certainly may be other ways to tune the algorithm settings. We have found this heuristic

procedure useful to identify and control, before actually attempting the global optimization pro-

cedure, the impact of bound overestimation on a specific optimization problem. The autotuning

procedure described is relatively expensive computationally, but is still reasonable in this context

since the cost of finding a rigorous ǫ-global minimum may become quite large. While this tuning

procedure can be considered optional, we recommend its use. In the next section, we will study

the computational performance of the ǫ-global optimization algorithm described here.

6 Computational studies

In this section, we apply the algorithm outlined above to three semi-batch reactor problems,

each adapted from systems studied by Srinivasan et al.66 We use these examples to demonstrate the

effectiveness of the approach proposed above, as well as to study various aspects of the algorithm.

In all cases, there is an active IPC at the globally optimal solution. The first example involves

feed rate optimization for a second-order exothermic reaction in an isothermal semi-batch reactor.

We also use this problem to consider the effect of the initialization for φ̂. The second problem

involves temperature optimization for an exothermic series reaction in a nonisothermal semi-batch

reactor. This problem is also used to consider the effects of the IPC resolution parameter ω and

stepsize parameter h. The third problem considers feed rate optimization for parallel reactions in

an isothermal semi-batch reactor. This example is also used to study the effect of using different

values for the ITS truncation order κ and Taylor model order q. All the example problems were

solved on a single 2.6 GHz dual-core AMD Opteron CPU running Red Hat Linux. All reported

CPU times are rounded to three significant digits. The entire algorithm was implemented in C++.

6.1 Example 1: Second-order exothermic reaction in an isothermal semi-batch

reactor

In this section, we consider a feed rate optimization problem involving a second-order exothermic

reaction in an isothermal semi-batch reactor. There are two IPCs, one a cooling-failure safety
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constraint and the other a maximum volume constraint. We solved two versions of the problem:

the first with the safety constraint only and the second with both the safety and volume constraints.

Consider the reaction

A + B
k
−→ C

occurring in an isothermal semi-batch reactor fed a stream containing B, and operating at temper-

ature T . For the problem specification considered here, B is the limiting reactant. The objective

is to maximize the amount of product C at the final time tf by manipulating the volumetric flow

rate θ(t) of the feed stream, which contains B at concentration xB,in. The problem is formulated

as follows:

min
θ(t)

φ = xA(tf)V (tf)− xA0V0 (10)

IPC(a) Tfail(t) = T + xB(t)

(
−∆H

ρcp

)
≤ Tmax

IPC(b) V (t) ≤ Vmax

s.t. ẋA = −kxAxB −
θ

V
xA

ẋB = −kxAxB +
θ

V
(xB,in − xB)

V̇ = θ

θ ∈ [0, 30] mL/h = [0, 0.03] L/h

t ∈ [t0, tf ] = [0, 20] h.

Here the state variables are xA(t) and xB(t), the concentrations of A and B, respectively, and the

volume V (t). Other model parameters are defined, and values given, in Table 1, which also gives

values of the initial states. In IPC(a), Tfail is the temperature that could be reached in the case

of a cooling failure (assuming an adiabatic operation after failure). If a cooling failure were to

occur, the feed of B could be stopped immediately but the B already in the reactor would continue

to react, thus raising the temperature. To guarantee safe operation, Tfail must not be allowed to

exceed a specified Tmax.

Following the sequential (control parameterization) approach, the flow rate θ(t) was parame-

terized as a piecewise constant profile with p equal time intervals. For example, if p = 3, then

there are three decision variables, θ1, θ2, and θ3, representing the flow rates over the time intervals

[0, tf/3], [tf/3, 2tf/3], and [2tf/3, tf ], respectively. For both versions of the problem considered, we

solved several different optimization problems, corresponding to different values of p (from p = 1
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to p = 7). All problems were solved to an absolute objective tolerance of ǫ = 10−4 mol, using an

IPC resolution of ω = 10−3 [K for IPC(a); L for IPC(b)]. Based on the tuning procedure described

above, we used δ = 10−6 L/h, h = 0.1 h, κ = 5 and q = 3.

For initializing φ̂, an upper bound on the global minimum, the two approaches noted in section

5.1 were used. In one approach, we randomly sampled points from the search space until a feasible

point was found. The value of φ at that first feasible point was then used as φ̂. In the other

approach, we obtained φ̂ using the local solver DOTcvp, with small adjustments of the DOTcvp

result as needed to guarantee evaluation of φ at a feasible point (see section 5.1).

We first considered the version of this problem in which only the safety constraint is imposed.

Results for the ǫ-global minimum φ∗ (rounded to the nearest 10−5 mol) and the corresponding

ǫ-global minimizer θ∗ (rounded to the nearest 10−6 L/h) are shown in Table 2 for the case of

initialization by random sampling and in Table 3 for the case of initialization by the local solver.

As expected, it is clearly more efficient to initialize by using the local solver; for this case we solved

problems as large as p = 7. For these problems the local solver always provided a better (smaller)

φ̂ than random sampling, thus allowing earlier elimination of more of the search domain. However,

there is no guarantee that this will always be the case, as a local solver could converge to a poor

local minimum. Results of the optimization from the different initializations differ slightly, but

are the same within the absolute tolerance of ǫ = 10−4 mol. Such differences arise because use

of different initial φ̂ values will result in the search domain being processed through bisection and

constraint propagation in a different order.

We then considered the version of this problem in which both the safety and volume IPCs are

imposed. The results obtained are shown in Tables 4 and 5 for the two different initialization

methods used, and are similar, in terms of trends in computational performance, to those seen

for the case of the single IPC. The presence of the additional constraint has little impact on the

computational cost, which clearly depends strongly on p, the number of decision variables. The

eventual worst-case exponential complexity with respect to p seen in these results, as well as those

in Tables 2 and 3, reflects the fact that rigorous global optimization for nonlinear problems is in

general an NP-hard problem.

The computation times reported in Tables 2–5 do not include the time spent in the autotuning

procedure. In both versions of this problem, and with all the values of p considered, we applied this

procedure starting with δ = 10−5 L/h, h = 1.0 h, κ = 9 and q = 5 and, using σ = 5 sample points,

arrived at the tuned values of δ = 10−6 L/h, h = 0.1 h, κ = 5 and q = 3. The computation times
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for autotuning ranged from about 30 s for p = 1 to about 950 s for p = 7. This suggests that use

of this tuning procedure when solving relatively small problems may not be warranted. However,

for the type of study considered here, in which optimization is done for increasingly fine control

parameterizations, it appears that it is possible to do the tuning for one or two small values of p

and then use the results in solving the much more difficult problems with larger p. The impact of

the tuned parameters on computational performance is considered in more detail in the next two

examples. In the 22 problems considered here, ǫ+ exceeded ǫ = 10−4 mol in five cases, with largest

value being ǫ+ = 1.0042 × 10−4 mol (for the p = 3 case from Table 4).

6.2 Example 2: Exothermic series reaction in a nonisothermal semi-batch re-

actor

In this section, we consider a temperature optimization problem involving an exothermic series

reaction in a nonisothermal semi-batch reactor. The reactor is jacketed and rapid temperature

adjustments can be made. However, the cooling capacity is limited, leading to an IPC on the rate

of heat generation in the reactor.

Consider the series reaction

A + B
k1−→ C

k2−→ D

occurring in a nonisothermal semi-batch reactor fed a stream containing B, and operated with a

temperature profile T (t). The objective is to maximize the concentration of the product C at the

final time tf by manipulation of the temperature T (t). The problem formulation is:

min
θ(t)

φ = −xC(tf) (11)

IPC qrx(t) = −∆H1k1xA(t)xB(t)V (t)−∆H2k2xC(t)V (t) ≤ qrx,max

s.t. ẋA = −k1xAxB −
u

V
xA

ẋB = −k1xAxB +
u

V
(xB,in − xB)

ẋC = k1xAxB − k2xC −
u

V
xC

V̇ = u

ki = ki,0 exp(
−Ei

RT
) = ki,0 exp(

−Eiθ

R
), i = 1, 2

T ∈ [293.15, 323.15] K

θ ∈ [3.095, 3.411] × 10−3 K−1

t ∈ [t0, tf ] = [0, 0.5] h
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Here the state variables are xA(t), xB(t) and xC(t), the concentrations of A, B and C respectively,

and the volume V (t). We find it convenient to use the reciprocal temperature θ(t) = 1/T (t) as the

manipulated variable. Other model parameters are defined, with values given, in Table 6, which

also gives the initial states. In the IPC, qrx is the rate of heat generation in the reactor. Because

of limited cooling capacity, this must not exceed a specified qrx,max.

The reciprocal temperature θ(t) was parameterized with a piecewise constant control profile

on an equally spaced mesh with the number of time intervals varying from p = 1 to p = 3. The

problem was solved to an absolute objective tolerance of ǫ = 10−4 mol/L. We will use this example

to consider the effect on performance of using different values of the IPC resolution parameter ω

and stepsize h. Since ω is used only in the autotuning procedure, in part to determine h, in effect

we will study the impact of the stepsize h on the performance of the global optimization algorithm.

For an IPC resolution of ω = 1 kJ/h, the tuning procedure gave h = 10−3 h, and for ω = 0.1 kJ/h

the result was h = 10−4 h. We will also consider the case of h = 10−5 h. Other parameters were

autotuned to δ = 10−7 K−1, κ = 5 and q = 3. For the case of one time interval (p = 1), random

sampling was used to initialize φ̂, with the same value used for all stepsizes. For p > 1, we used

the adjusted DOTcvp result from the p = 1 case for the initialization, again with the same value

used for all stepsizes. We initialized φ̂ in this way so that these values were not “too good”; this

means an increased computational effort, making the effect of using different stepsize values easier

to observe.

Results for the ǫ-global minimum φ∗ (rounded to the nearest 10−5 mol/L), for the corresponding

ǫ-global minimizer θ∗ (rounded to the nearest 10−8 K−1), and for ǫ+ are shown in Table 7 for the

different values of h considered. We make the following observations:

1. Comparing the results for ω = 1 kJ/h (h = 10−3 h) and ω = 0.1 kJ/h (h = 10−4 h), we see

that the results for φ∗ differ by more than the tolerance ǫ. The subpaving tolerance δ is the

same in both cases, but with the greater constraint resolution (tighter constraint bounding)

in the ω = 0.1 kJ/h (h = 10−4 h) case, there are many fewer boxes of width less than δ that

remain undecided. That is, more of the search domain can be assigned to G− and removed

from G+. Thus, in the h = 10−4 h case, there is a slightly larger G− over which continuous

satisfaction of the IPC can be rigorously guaranteed, and so a slightly better value of φ∗ can

be found. In using an even smaller h = 10−5 h, no further improvements in φ∗ are noted

(differences are within the ǫ tolerance).
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2. For the lowest resolution case of ω = 1 kJ/h (h = 10−3 h), the values of ǫ+ are significantly

larger than ǫ, but, for the higher resolution cases, ǫ+ is less than or only slightly larger than ǫ.

As just explained, higher resolution (smaller h) results in a somewhat larger G− and somewhat

smaller G+. That is, as h is reduced, G− and G+ approach each other (both become better

approximations of G). Thus, as h is reduced, an ǫ-global minimum in G− is more likely to

also be an ǫ-global minimum in G+.

3. Reducing overestimation of the IPC bounds and objective bounds by reducing the stepsize

makes it easier to rigorously eliminate boxes in the IPC test and objective test. This reduces

the number of iterations required (number of boxes that must be tested). However, there is

a tradeoff—using a smaller stepsize will reduce the number of iterations, but each iteration

will require more computation time.

4. When the autotuning option is used, and a specified IPC resolution parameter ω is used

to tune h, the use of too loose a resolution (such as in the ω = 1 kJ/h case) can increase

the computation cost. This may seem counterintuitive, but can be understood in terms of

bound overestimation. Toleration of too much overestimation can have a negative effect on

computational performance.

6.3 Example 3: Parallel reactions in an isothermal semi-batch reactor

In this section, we consider a feed rate optimization problem involving the parallel reactions

A + B
k1−→ C

2B
k2−→ D

occurring in an isothermal semi-batch reactor fed a stream containing B, and operating at temper-

ature T . For safety reasons, the concentration of B in the reactor must not be allowed to exceed

a specified maximum value. This constraint also helps maintain selectivity to the desired product

C. The objective is to maximize the amount of product C at the final time tf by manipulating the

volumetric flow rate θ(t) of the feed stream, which contains B at concentration xB,in. The problem
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formulation is as follows:

min
θ(t)

φ = xA(tf)V (tf)− xA0V0 (12)

IPC xB(t) ≤ xB,max

s.t. ẋA = −k1xAxB −
θ

V
xA

ẋB = −k1xAxB − 2k2xB
2 +

θ

V
(xB,in − xB)

V̇ = θ

θ ∈ [0, 1000] µL/min = [0, 0.001] L/min

t ∈ [t0, tf ] = [0, 250] min

Here the state variables are xA(t) and xB(t), the concentrations of A and B, respectively, and the

volume V (t). Other model parameters are defined, and values given, in Table 8, which also gives

values of the initial states. The flow rate θ(t) was parameterized as a piecewise constant profile

with p equal time intervals. The problem was solved to an absolute objective tolerance of ǫ = 10−4

mol, using an IPC resolution of ω = 10−4 mol/L. Using steps 1 and 2 of the autotuning procedure,

a stepsize of h = 1.0 min and a subpaving precision of δ = 10−7 L/min were obtained. We will

use this example to study the effect on performance of the tuning parameters κ and q. Adjusted

results from DOTcvp are used to initialize φ̂ in all cases.

We first fixed the ITS truncation order at κ = 17 and considered different Taylor model orders q,

with results for the ǫ-global minimum φ∗ (rounded to the nearest 10−5 mol/L) and the corresponding

ǫ-global minimizer θ∗ (rounded to the nearest 10−7 L/min) shown in Table 9 for p ≤ 4. We then

fixed the Taylor model order at q = 3 and considered different ITS truncation orders κ, with results

shown in Table 10, again for p ≤ 4. The ranges of the κ and q values used covers values that we

have found useful in various other applications33,34,55,56,63 involving VSPODE. For each value of p,

the ǫ-global optimum found is the same, within the ǫ tolerance, for all the combinations of κ and

q values. We make the following observations:

1. Increasing either q or κ increases the computational expense. This is consistent with the

expected VSPODE performance, as discussed in section 4.3.

2. Changing either q or κ has little effect on the number of iterations. In general, we would

expect that use of a relatively high κ would permit the use of a larger stepsize in satisfying

eq. (3) in the first phase of VSPODE. However, in this case, we have already tuned the

stepsize to meet a specified IPC tolerance, and thus the stepsize is already sufficiently small
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that increasing κ is not worthwhile. Similarly, by fixing a sufficiently small stepsize, we have

effectively enabled use of a small value of q.

Finally, using q = 3 and κ = 5, we solved larger versions of this problem, with up to p = 8 decision

variables. These results are presented in Table 11. Again we see that rigorous global optimization

for nonlinear problems is in general an NP-hard problem. For the p = 4 cases (Tables 9 and 10)

and for p ≥ 6 (Table 11), ǫ+ exceeded ǫ = 10−4 mol, with largest value being ǫ+ = 1.272 × 10−4

mol in the p = 6 case.

7 Concluding remarks

We have demonstrated here a new approach for the rigorous, deterministic global optimization

of dynamic systems subject to IPCs. While various methods have been proposed for the determin-

istic global optimization of unconstrained dynamic systems, the approach presented here appears

to be the first to address this constrained problem. The method employs a branch-and-reduce ap-

proach based on use of interval analysis and Taylor models. Unlike previous optimization methods

for problems with IPCs, which enforce the IPCs only at the level of the discretization used in the

problem formulation or in the numerical routines used, in this new approach the IPCs are guaran-

teed to be satisfied continuously, rather than just at discrete points in time. Since the IPCs may

be safety related, a conservative approach is followed in which the search for the global optimum

is restricted to a space in which continuous satisfaction of the IPCs is rigorously guaranteed, and

an ǫ-global optimum within this space is determined.

A technique for the automatic tuning of the algorithm parameters was also suggested. This

method is based on a stochastic sampling of the search domain and determines parameter values

that are then applied over this entire domain. We anticipate that the computational performance of

the global optimization algorithm can be improved by using an adaptive tuning, in which algorithm

parameters may differ in different parts of the search domain, based perhaps on local sampling or

current search box size.
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(12) Biegler, L. T.; Cervantes, A. M.; Wächter, A. Advances in simultaneous strategies for dynamic

process optimization. Chem. Eng. Sci. 2002, 57, 575–593.

31



(13) Toumi, A.; Engell, S.; Diehl, M.; Bock, H. G.; Schlöder, J. Efficient optimization of simulated
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Table 1: Model parameters for Example 1.

Parameter Description Value Units

k Reaction rate constant 0.0482 L/(mol h)

xA0 Initial concentration of A 2 mol/L

xB0 Initial concentration of B 0.5 mol/L

V0 Initial volume 0.7 L

Vmax Maximum volume 1.1 L

xB,in Inlet concentration of B 2 mol/L

T Reactor temperature 343.15 K

Tmax Maximum allowable temperature 353.15 K

cp Heat capacity 4.2 J/(g K)

∆H Heat of reaction −60000 J/mol

ρ Density 900 g/L

Table 2: Results for Example 1 with safety constraint only, and initialization of φ̂ with random
sampling.

p φ∗ (mol) θ∗ (L/h)× 102 CPU time (s) Iterations

1 −0.58445 (2.4648) 3.35 32

2 −0.60786 (3.0000, 2.1002) 3.60 30

3 −0.60930 (3.0000, 2.7349, 1.9238) 906 8183

4 −0.61060 (3.0000, 3.0000, 2.3578, 1.8789) 1370 10353
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Table 3: Results for Example 1 with safety constraint only, and initialization of φ̂ with adjusted
DOTcvp results.

p φ∗ (mol) θ∗ (L/h)× 102 CPU time (s) Iterations

1 −0.58444 (2.4647) 0.87 9

2 −0.60785 (3.0000, 2.0997) 1.81 17

3 −0.60934 (3.0000, 2.7349, 1.9279) 21.9 195

4 −0.61055 (3.0000, 3.0000, 2.3578, 1.8706) 37.9 286

5 −0.61128 (3.0000, 3.0000, 2.8649, 2.0941, 493 3214

1.8516)

6 −0.61128 (3.0000, 3.0000, 3.0000, 2.5084, 1830 8671

2.0331, 1.8219)

7 −0.61176 (3.0000, 3.0000, 3.0000, 2.9744, 32600 107719

2.1658, 1.9910, 1.7925)

Table 4: Results for Example 1 with both safety and volume constraints, and initialization of φ̂
with random sampling.

p φ∗ (mol) θ∗ (L/h)× 102 CPU time (s) Iterations

1 −0.54380 (2.0000) 0.60 6

2 −0.58356 (3.0000, 1.0000) 4.25 37

3 −0.59276 (3.0000, 2.7349, 0.2558) 33.4 284

4 −0.59432 (3.0000, 3.0000, 1.9965, 0.0029) 97.2 701
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Table 5: Results for Example 1 with both safety and volume constraints, and initialization of φ̂
with adjusted DOTcvp results.

p φ∗ (mol) θ∗ (L/h)× 102 CPU time (s) Iterations

1 −0.54372 (1.9991) 0.26 3

2 −0.58356 (3.0000, 1.0000) 2.59 24

3 −0.59278 (3.0000, 2.7349, 0.2574) 24.7 218

4 −0.59432 (3.0000, 3.0000, 1.9966, 0.0029) 49.4 369

5 −0.59460 (3.0000, 3.0000, 2.8649, 1.1309, 532 3342

0.0014)

6 −0.59536 (3.0000, 3.0000, 3.0000, 2.5084, 3320 14685

0.4835, 0.0046)

7 −0.59633 (3.0000, 3.0000, 3.0000, 2.9530, 40093 126243

2.0437, 0.0029, 0.0004)
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Table 6: Model parameters for Example 2.

Parameter Description Value Units

k1,0 Pre-exponential factor 4 L/(mol h)

k2,0 Pre-exponential factor 800 h−1

E1 Activation energy 6× 103 J/mol

E2 Activation energy 20× 103 J/mol

R Gas constant 8.3145 J/(mol K)

∆H1 Reaction enthalpy −30 kJ/mol

∆H2 Reaction enthalpy −10 kJ/mol

xA0 Initial concentration of A 10 mol/L

xB0 Initial concentration of B 0.0 mol/L

xC0 Initial concentration of C 0.0 mol/L

V0 Initial volume 1.0 L

xB,in Inlet concentration of B 20 mol/L

qrx,max Maximum heat generation rate 150 kJ/h

u Feed rate of B 0.35 L/h
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Table 7: Results for Example 2.

ω & h p φ∗ (mol/L) θ∗ (K−1) ×103 ǫ+ (mol/L) CPU time (s) Iterations

ω = 1 kJ/h 1 −1.35686 (3.26923) 9.04×10−4 61.2 121

h = 10−3 h 2 −1.37487 (3.09504, 3.23517) 5.81×10−4 1330 1687

3 −1.38568 (3.09504, 3.09504, 3.21285) 3.20×10−4 17500 26250

ω = 0.1 kJ/h 1 −1.35766 (3.26691) 1.051×10−4 151 39

h = 10−4 h 2 −1.37536 (3.09504, 3.23329) < ǫ 540 103

3 −1.38594 (3.09502, 3.09502, 3.21152) < ǫ 1140 120

1 −1.35770 (3.26679) < ǫ 1850 43

h = 10−5 h 2 −1.37541 (3.09502, 3.23311) < ǫ 2670 67

3 −1.38596 (3.09504, 3.09504, 3.21145) < ǫ 8700 95

Table 8: Model parameters for Example 3.

Parameter Description Value Units

k1 Reaction rate constant 0.053 L/(mol min)

k2 Reaction rate constant 0.128 L/(mol min)

xA0 Initial concentration of A 0.72 mol/L

xB0 Initial concentration of B 0.05 mol/L

V0 Initial volume 1.0 L

xB,in Inlet concentration of B 5 mol/L

xB,max Maximum concentration of B 0.06 mol/L
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Table 9: Results for Example 3 with fixed ITS truncation order κ = 17 and different Taylor model
orders q.

q p φ∗ (mol/L) θ∗ (L/min)× 104 CPU time (s) Iterations

3 1 −0.36074 (4.526) 11.3 25

2 −0.37835 (5.371, 4.424) 21.5 45

3 −0.38447 (5.749, 4.976, 4.379) 562 1090

4 −0.38741 (5.970, 5.301, 4.786, 4.355) 894 1488

5 1 −0.36074 (4.526) 17.4 31

2 −0.37831 (5.370, 4.422) 70.4 99

3 −0.38442 (5.748, 4.9751, 4.383) 844 815

4 −0.38742 (5.963, 5.310, 4.785, 4.355) 2500 1374

7 1 −0.36074 (4.526) 22.2 31

2 −0.37828 (5.370, 4.421) 109 102

3 −0.38446 (5.748, 4.976, 4.378) 1640 672

4 −0.38741 (5.960, 5.311, 4.785, 4.355) 8150 1266
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Table 10: Results for Example 3 with fixed Taylor model order q = 3 and different ITS truncation
orders κ.

κ p φ∗ (mol/L) θ∗ (L/min)× 104 CPU time (s) Iterations

5 1 −0.36074 (4.526) 3.46 25

2 −0.37828 (5.371, 4.420) 15.0 100

3 −0.38446 (5.749, 4.976, 4.380) 157 981

4 −0.38741 (5.970, 5.306, 4.779, 4.355) 247 1393

11 1 −0.36074 (4.526) 6.53 25

2 −0.37834 (5.370, 4.424) 27.6 92

3 −0.38445 (5.748, 4.976, 4.379) 252 845

4 −0.38741 (5.970, 5.301, 4.786, 4.353) 393 1154

17 1 −0.36074 (4.526) 11.3 25

2 −0.37835 (5.371, 4.424) 21.5 45

3 −0.38447 (5.749, 4.976, 4.379) 562 1090

4 −0.38741 (5.970, 5.301, 4.786, 4.355) 894 1488

Table 11: Results for Example 3 with κ = 5 and q = 3.

p φ∗ (mol/L) θ∗ (L/min)× 104 CPU time (s) Iterations

5 −0.38919 (6.123, 5.531, 5.067, 4.667, 791 3562

4.333)

6 −0.39022 (6.246, 5.686, 5.271, 4.908, 5510 17757

4.594, 4.297)

7 −0.39100 (6.353, 5.799, 5.423, 5.096, 20200 47523

4.800, 4.538, 4.292)

8 −0.39156 (6.449, 5.886, 5.550, 5.245 107000 182508

4.958, 4.721, 4.498, 4.295)
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Figure 1: Overall algorithm flowchart. For clarity, step 4(a) (section 5.4), which occurs only in
cases of verification failure in VSPODE, is omitted.
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