Multifrontal Techniques for Chemical Process
Simulation on Supercomputers

S. E. Zitney”, J. Mallya ?, T. A. Davis®, and M. A. Stadtherr”t

1) Cray Research, Inc.; 655 E. Lone Oak Drive, Eagan, MN 55121, USA
2) Department of Chemical Engineering, University of Illinois,
600 S. Mathews Avenue, Urbana, 11, 61801, USA
3) Computer and Information Sciences Department, University of Florida,
Gainesville, FL. 32611, USA :

- ABSTRACT

A critical computational step in large-scale process simulation using rigorous equation-based models
is the solution of a sparse linear equation system. Traditional sparse solvers based on indirect addressing are
not effective on supercomptiters because they do not vectorize well. By relying on vectorized dense matrix
kernels, the multifrontal and frontal methods provide much better performance, as demonstrated using several
examples. On problems with good initial matrix orderings the frontal method is most effective, while without
a good initial ordering the multifrontal method is attractive.

INTRODUCTION

Steady-state or dynamic simulation tools are widely
used in the design, optimization, and operation of chemical
processes.  Increasingly - these tools are being used
industrially in very large-scale, plant-wide studies based on
rigorous physical and chemical models. These trends have
been made possible by impressive gains in computer
performance and advances in numerical methods. Leading
the way, modern-supercomputers offer vector and parallel

processing architectures for solving problems that, until

now, could not be solved with other computational tools.
Today, this leading-edge technology is increasingly seen at
price levels that make it more widely available to process
systems engineers. - Thus, the use of supercomputer
technology in process simulation is more practicable than
ever before, and provides opportunities to solve larger-scale
and more realistic plant models than ever before. However,
since most current methods for solving process simulation
problems were developed for use on conventional serial
machines, they usually do not effectively take advantage of
the vector and parallel processing architecture of
supercomputers.  Thus, to exploit' supercomputing - (as
opposed to just using a supercomputer) requires the
rethinking - of the solution strategies used in process
simulation. ' In this paper, we consider the sparse linear
_equation solving strategies used in this context.
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BACKGROUND

In large-scale process simulation using rigorous
equation-based models, the key computational - step,
representing as much as 90% of the computation time on
industrial problems, is often the solution of a large sparse
system of linear equations. Process simulation matrices,
however, do not have any of the desirable structural or
numerical - properties, such as symmetry, positive
definiteness, diagonal dominance, and bandedness, often
associated with sparse matrices, and usually exploited in
developing efficient algorithms for vector and parallel
computation. Recent work (Zitney, 1992; Zitney and
Stadtherr, 1993a,b; Zitney et al., 1993) has demonstrated
the potential of the frontal method as a sparse linear
equation solver for process simulation problems. In fact, an
implementation of the frontal method (FAMP), developed
at the University of Illinois and Cray Research, Inc., has
now been incorporated in Cray Research versions of
commercially ‘used tools - such as ASPEN PLUS,
BATCHFRAC, . RATEFRAC, and SPEEDUP. (Aspen
Technology, Inc.).

The frontal method is effective because, unlike
traditional general-purpose sparse matrix solvers such as
MAZ28 (Harwell) and LUISOL (University of Illinois) that
rely on . indirect addressing, it makes use of -easily
vectorizable full matrix operations performed on a series of
frontal matrices.. However, for process simulation problems
the frontal matrices are often relatively large and sparse.



Thus, while a high computational rate can be achieved
when operating on the frontal matrices, a large number of
unnecessary operations on zeros are performed, thus
lowering overall performance.

In this paper we consider the multifrontal method as
an alternative to the frontal method. The multifrontal
method is a generalization of the frontal method, and was
originally developed for symmetric systems. Like the
frontal method, it also exploits low-level parallelism and
vectorization through the use of dense matrix kernels on
frontal matrices (e.g., Amestoy and Duff, 1989). However,
the frontal matrices are generally smaller and denser than
in the frontal method. Furthermore the multifrontal method
offers more opportunities for exploiting a higher level of
parallelism than the frontal method. Though this classical
" multifrontal approach can be applied to unsymmetric
systems (Duff and Reid, 1984), this has met with only
limited success, as noted by Liu (1992) in his review of
work on the symmetric. problem. - Recently a ‘new

unsymmetric-pattern multifrontal algorithm has  been

described by Davis and Duff (1993). In the new algorithm,
unlike the classical multifrontal approach, frontal matrices
are permitted to be rectangular and the unsymmetric
structure is accounted for explicitly through the use of a
directed acyclic graph. The performance of this new
multifrontal method in process simulation problems on a
CRAY Y-MP supercomputer is compared here with the that
of the frontal method (FAMP), as well as that of the
conventional code MA28.

FRONTAL METHOD

The use of the frontal method is demonstrated in a’

simple example given by Zitney and Stadtherr (1993a).
The basic idea is to restrict elimination operations to a
frontal matrix, on which dense matrix operations are
performed. Beginning with row 1, equations are assembled
(added) into the frontal matrix until some variable or
variables become fully summed (i.e., all their nonzero
elements appear in the frontal matrix). Partial pivoting is

then applied, the fully summed variable or variables are

eliminated, and the pivot row(s) and column(s) removed
from the frontal matrix. The assembly process then begins
again and the method proceeds to alternate between
assembly and elimination phases until the matrix
_ factorization is complete. To implement the frontal method,
we use here the code FAMP, which originated at. the
University of Illinois (Zitney and Stadtherr, 1993a) and was
later extended at Cray Research to include the use of
BLAS2 and BLAS3 dense matrix kernels, as well as an out-
of-core option for solving very large-scale problems, and
separate analyze-factorize, factorize, and solve options.

MULTIFRONTAL METHOD

The unsymmetric-pattern multifrontal method factors
a sparse, unsymmetric matrix with a sequence of dense
frontal matrices, each of which corresponds to one or more
steps of the overall LU factorization. To demonstrate the

basic idea in the unsymmetric-pattern multifrontal method
we use the example shown in Figure 1.
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Figure 1. Matrix used in example.

An initial pivot element is chosen, say element'(1,1). The
first frontal matrix is then started with this pivot row and
column and all contributions to them.  This leads to the
matrix shown in Figure 2(a).
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Figure 2. First frontal matrix in multifrontal method if first
pivot is (1,1). (a) Before factorization; (b) After
factorization.

The pivot operation is then performed using a dense matrix
kernel. As shown in Figure 2(b), this computes a row of U
and a column of L, as well as a contribution block (in the
nonpivot rows and columns) that is saved for later use.
Another pivot is now selected and a new frontal matrix
begun. Say element (3,2) is selected, and note that this
implies an unsymmetric permutation of the matrix. The
frontal matrix is started with row 3 and column 2; all
contributions to this row and column must now be



assembled, both those from the original matrix elements and
those from the contribution block of the previous frontal
matrix. This leads to the matrix shown in Figure 3(a).
Note that since all contributions to row 4 and column 3 can
also be assembled into this frontal matrix, an additional

pivot (4,3) can be performed, resulting in Figure 3(b). The

search for additional pivots that can be performed within a
frontal matrix, or that can be performed with only a small
growth of the frontal matrix is significant since it allows the
use of BLAS3 as opposed to BLAS2 kernels.
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Figure' 3. Next frontal matrix if (3,2) is the next pivot.
Note that pivoting on (4,3) can also be done in this frontal
matrix. (a) Before factorization of pivot block; (b) After
factorization. '

Frontal matrices continue to be assembled and pivot
operations performed in them until the L and U factors are
completed. In the next section we focus on the
implementation of the multifrontal method and how: it
differs from the frontal method.

MULTIFRONTAL VS. FRONTAL METHOD

We discuss here only the sequential implementation

of the unsymmetric-pattern multifrontal method of Davis
and Duff (1993), as embodied in the UMFPACK library
(Davis, 1993). A copy of UMFPACK may be obtained via
anonymmous ftp to ftp.cis.ufl.edu:pub/umfpack (it is free for
non-commercial use only).

In the frontal method, the pivot order of the columns
is dependent on the row ordering, and the pivot order of the
rows can vary only within certain constraints. A row can
become pivotal any time between the time it is entered into
the frontal matrix and the end of the factorization. - Rows
are entered into the frontal matrix in a predefined order.
The pivot column ordering depends solely on the initial
preordering of the rows. Unlike the frontal method,
UMFPACK finds both a row and column pivot ordering as
the matrix is factorized. - No preordering, or partial
preordering, is used.

At the start of the factorization, no frontal matrix
exists. - 'UMFPACK starts a new frontal matrix with a
global Markowitz-style pivot search. Suppose row i and
column j are selected as the k-th pivot row and column. A
new ¢; x r; frontal matrix is formed in an working array of
size (G- ¢) x (G*r), where the column degree ¢; and row
degree r; are the number of nonzeros in column j and row
i of the partially-factorized submatrix, and G2 1 is a
parameter controlling frontal matrix growth.  The pivot row
and column, some of the entries of the original matrix, and

- some of the updates from previous frontal matrices are

assembled (added) into the current frontal matrix. Not all
original . entries or previous frontal updates can be
assembled into the current frontal matrix (unless the current
frontal matrix is as large as the (n - k) x (n - k) submatrix
yet to be factorized). The approximate degree update phase

. determines upper and lower bounds on the number of
‘nonzeros in the c; rows and r; columns affected by this

frontal matrix. These bounds are used for subsequent pivot
searches (it is too costly to maintain the true degrees of
each row and column).

The frontal matrix is augmented with additional
pivots, using a local pivot search of rows and columns
within the frontal matrix. Augmentation continues until a
subsequent pivot would cause the size of the frontal matrix
(including all of its pivot rows and columns) to become
larger than the working array. Figure 4 shows the frontal
matrix E, for steps k through k+g, -1 of the LU
factorization, where g, is the number of pivots factorized
within E,.

Figure 4.

The frontal matrix is labeled with the ordered sets R,” and
C,’ (the g, pivot rows and columns, respectively), and with
the sets R,” and C,” (the non-pivotal rows and columns that
contain entries updated by the g, pivots). Contributions to
the matrices F,, B,, and T, must be fully assembled;
however, D, may hold only a partial summation of the
original matrix elements and contributions from previous
frontal matrices. The pivot block F, is now factored (F, =
L’U/), thus computing the block-column L,” of L and
block-row U,” of U, and replacing D, with the Schur
complement D, = D, - L”U,”. Fig. 5 shows the factorized
frontal matrix, where the notation L\U,” indicates two
matrices packed in the same array.
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' Figure 5.

The goal of multifrontal methods is to replace indirect
addressing in innermost loops with dense matrix kernels
such as the Level-3 BLAS (Dongarra et al., 1990). A
frontal matrix E, can be factorized with the Level-3 BLAS
if g, is greater than one. :

The method generates a directed acyclic graph (a
dag) during factorization that describes the assembly
process and precedence between the frontal matrices.. This
dag is referred to as the assembly dag, since it functions in
a similar role as the assembly tree in: the classical,
symmetric-pattern multifrontal method (MA37) (Duff and

Reid, 1984). In contrast, the assembly dag for the frontal -

method would simply be a linear chain, although the frontal
method does not make use of such a dag. These dags or
trees also express the parallelism inherent in the method, if
each frontal matrix factorization is considered a separate
task. Thus, the frontal method cannot exploit parallelism
between the tasks, whereas the multifrontal methods can.
UMFPACK is better suited to unsymmetric matrices than
MA37, and simulations show comparable levels of
exploitable parallelism in the two methods (Hadfield and
Davis, 1992).

The frontal method only stores the D, term in its
single working array, writing the pivot rows and columns
into a separate data structure for the LU factors. The
multifrontal method stores all of E, until the factorization

of E, is complete. Thus, if the assembly dag in UMFPACK -

were forced to be a linear chain (as in the frontal method),
UMFPACK would still require more than one frontal matrix
(unless the single frontal matrix is n x n, which defeats the

purpose).

RESULTS AND DISCUSSION

Table 1 presents results for the comparison of
UMFPACK, FAMP, and MA28. All times are given in cpu
seconds on one processor of a CRAY Y-MP system. The
analyze/factor (AF) time is that required to determine a
pivot sequence and factor the matrix; the factor (F) time is
that required to factor the matrix given a pivot sequence;
and the solution (S) time is that required to obtain a
solution given the LU factors and a right-hand-side vector.
The memory figures reported (in megawords) represent the
minimum required; more memory was actually used in
these runs. Attempting to use the minimum memory would

significantly lengthen factorization times. Two memory

figures for FAMP are given: oc refers to use of the out-of-
core option and ic to the memory that would have been
required to keep the problem in core, as is done in the other
two methods. The number of nonzeros in-the LU factors is
provided as a measure of the amount of numerical
computation performed by each method. In MA28 and
UMFPACK, the relative threshold pivot tolerance used was
0:1; FAMP uses partial pivoting. The growth factor G in
UMFPACK was set at 3. No a priori reordering of the
matrices was performed outside the packages used. Cases
marked NS were not solved due to excessive computational
requirement. ’

Results for six process simulation problems are
shown. - Rdistl- is a reactive distillation problem described
by Zitney (1992), hydrlc and extr1b are dynamic simulation
problems described by Zitney et al. (1993), and the hr
problems are extensions of the light hydrocarbon recovery
process described by Zitney and Stadtherr (1993a). © On
these problems, both the frontal (FAMP) and multifrontal
(UMFPACK) methods are significantly faster than MA28,
reflecting the use of vectorized dense matrix kernels. Also,
on these problems, the frontal method outperforms- the
multifrontal method. This is due to the presence of a good
initial row ordering in these matrices. The performance of
the frontal method depends strongly on the initial row
ordering; thus in general some a priori reordering step is
required;. though there appears to be no consistently good
technique for doing this on unsymmetric: problems. - The
time to perform this reordering would have to be added to
the' frontal method’s AF time. No such reordering is
needed in the muitifrontal method. - It was fortuitous in
these cases that the matrices had a good (though probably
not optimal) initial ordering. Such a good ordering is not
uncommon if the equations describing each unit (or
equilibrium stage) in a process are kept together, and if
adjacent units and streams are numbered consecutively, thus
resulting in a nearly block-banded matrix corresponding to
the unit-stream nature of the problem. Whether or not this
will occur depends on the simulation software that
generates the matrix and on the unit and stream numbers
assigned by the user in the input to the simulation package:
Some problems, such as the ones used here, that primarily
involve separation columns, are especially likely. to have a
good initial ordering. However, good initial orderings
cannot be guaranteed; thus there is a need either for a
priori  reordering schemes, or - techniques, like the
multifrontal method, that do not require them.

To seethe effect of not having such a good initial
ordering, five additional problems were considered (see
Davis and Duff (1993) for the sources of these problems).
These are two circuit simulation problems (add32 and
mem+), an electrical power system problem (gematll), a
computational fluid dynamics problem (Ins_3937), and a
reservoir  simulation problem (sherman5). On these
problems the potential of the multifrontal method can be
seen. On one problem (mem+), the frontal method is not
even competitive, due to the extremely large frontal matrix
required to factor the matrix. The performance of the
frontal method could be improved using an a priori



Table 1. Comparison of sparse matrix solvers.. All times are in cpu seconds. Memory is in megawords. See text
for discussion and further definition of terms.

Matrix ,
Name rdistl} hydrle| extrlbi- lhr_4k Ihr_17k Ihr_70k|Ins_3937| sherman5 add32| mem+ gematll
Order 4134 . 5308] 2836 4101} 17576] 70304 3937 3312} 4960 17758] = 4929
Nonzeros 94408| 25276| 12094| 82682| 381975|1528092| 25407 20793} 19848} 99147} 33108
AT Time ‘ ‘ k
MA28 10479  7.06} 4.74] 52.81] 522.01 | NS| 2087 6.40] 033} 2.05 0.75
UMFPACK 178} - 1.43| 067 473} 1654 73.06 3.24 1.40{ 0.58] - 3.10 0.66
FAMP 0.43 0.23 ‘0.09 0.46 2.14 8.00 5.63] 1.90 0.67 NS 048
F Time | T
MA28 5.21 025 0.12| 231} 27.67| NS 2.30 0.76{  0.14; 0381 0.23
UMFPACK | 056{ 031 0.15 0.71 3.14  13.67 1.07 ;0.50 0.21 0.96 0.24
FAMP 042 020 0.08] 044 1.99 137 5.57 1.87) 0.59 NS 0.44
S Time
MAZ28 0.035) 0.025{ 0.013} 0.026; 0.135 NS 0.027’ 0.016} 0.024| 0.087f{ - 0.027
UMFPACK 0.022} 0.026| 0.014} - 0.023 0.101 0.415 0.030 0.016} 0.023] 0.094] 0.020
FAMP 0.021]  0.019] 0.010f 0.023] = 0.096{ 0.369 0.052 0.021} 0.016f  NS| 0.019
NZ in LU
MA28 841900 73954| 37541| 459626{3445027 NS| 423305} -167256|23914{ 126150f - 51727
UMFPACK | 573287} 121901| 65062 495503|2225140|9667709f 761194| - 426616| 46953| 202888 ~ 97195
FAMP 624140| 133399} 51735} 517004/ 1937363 7181471| 2268987 799907} 31388 NS| 257346
Memory ;
MA28 2.166f 0.250| 0.134] 1.232| 7.866 Ns| 1.130| - 0.464| 0.156| 0.681] 0219
UMFPACK | 1.185} 0.395| 0.233] 1217} 4.238] 16431 1.558 0.864| 0.287) 1316/ 0.394
FAMP-ic 1412} 0391} 0.152f 1250 4.756| 16.922| 4.644 1.458| 4.779 NS| 0.891
-0c 0.166] 0.126] 0.053] 0.218] 0.885 ‘,/'?/‘:563 2.383 0.663] 4.760 NS} 0.637

reordering scheme, but unless this can be done cost
effectively, the multifrontal approach may still be more

attractive.

Finally it should be noted that all runs reported here
were made on a single vector processor.

Thus, while

vectorization was exploited, there are still higher levels of
parallelism that have not been exploited. 'As discussed

above, the multifrontal method is better suited than the

frontal method to exploiting parallelism at the task level.
Looking to the future, it is this feature of the multifrontal
method that may make it especially useful in solving
process simulation and other problems on supercomputess.
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