
1. More examples

Example 1. Find the slope of the tangent line at (3,9) to the curve y = x2.

P = (3,9). So Q = (3 +∆x,9 +∆y).

9 +∆y = (3 +∆x)2 = (9 + 6∆x + (∆x)2.

Thus, we have

∆y

∆x
= 6 +∆x.

If we let ∆ go to zero, we get

lim
∆x→0

∆y

∆x
= 6 + 0 = 6.

Thus, the slope of the tangent line at (3,9) is 6.

Let’s consider a more abstract example.

Example 2. Find the slope of the tangent line at an arbitrary point P = (x, y) on
the curve y = x2.

Again, P = (x, y), and Q = (x + ∆x, y + ∆y), where y + ∆y = (x + ∆x)2 =
x2
+ 2x∆x + (∆x)2. So we get,

∆y

∆x
= 2x +∆x.

Letting ∆x go to zero, we get

lim
∆x→0

∆y

∆x
= 2x + 0 = 2x.

Thus, the slope of the tangent line at an arbitrary point (x, y) is 2x.

Example 3. Find the slope of the tangent line at an arbitrary point P = (x, y) on
the curve y = ax3, where a is a real number.

Q = (x +∆x, y +∆y). We get,
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y +∆y = a(x +∆x)3 = a(x3
+ 3x2∆x + 3x(∆x)2 + (∆x)3).

After simplifying we have,

∆y

∆x
= 3ax2

+ 3xa∆x + a(∆x)2.

Letting ∆x go to 0 we conclude,

mP = lim
x→0

∆y

∆x
= 3ax2

+ 0 + 0 = 3ax2.

Thus, the slope of the tangent line at a point (x, y) is mP = 3ax2.

Example 4. Find the slope of the tangent line at an arbitrary point P = (x, y) on
the curve y =mx + b.

The curve is a line. We expect the tangent line to have slope m. y + ∆y =
m(x∆x) + b =mx +m∆x + b. After simplifying, we get

∆y

∆x
=m.

Thus, lim
∆x→0

∆y

∆x
=m, which confirms our expectations.

Example 5. Find the slope of the tangent line at an arbitrary point P = (x, y) on
the curve x = y2.

Here we have, x+∆x = (y +∆y)2 = y2
+ 2y∆y +(∆y)2. After simplifying, we get

∆x = 2y∆y + (∆y)2 =∆y(2y +∆y).

This give us,

∆y

∆x
=

1

2y +∆y
.

As ∆x goes to 0, notice that ∆y goes to 0 as well. Thus, we get
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lim
∆x→0

∆y

∆x
=

1

2y
.

Thus, the slope of the tangent line at (x, y) is 1
2y or 1

2
√

x
.

2. Derivatives

Let f(x) be a function and let P = (x, f(x)) be a point on its graph. Let
Q = (x +∆x, f(x +∆x)) be another point on the graph near P . As we did in the
last couple sections, we will push Q closer to P . Recall that we defined the slope
of the tangent line at P to be

mx = lim
∆x→0

f(x +∆x) − f(x)

∆x
.

We define the derivative of f(x) to be the function f ′(x) given by the rule,

f ′(x) =mx.

Again, mx is the slope of the tangent to the graph at a point (x, f(x)).

Once more, for good measure, for a function f(x), the derivative of f(x) is
defined as

f ′(x) = lim
∆x→0

f(x +∆x) − f(x)

∆x
.

Notice that if y = f(x), we have that f(x+∆x)−f(x) = y∆y. So f ′(x) is precisely
the slope of the tangent line at (x, f(x)). Let’s consider a familiar example.

Example 6. Let f(x) = x2. Find f ′(2).

By definition,

f ′(x) = lim∆x→0
f(2+∆x)−f(2)

∆x

So we have lim∆x→0
4+4∆x+(∆x)2−4

∆x = lim∆x→0
4∆x+(∆x)2

∆x = lim∆x→0 2+∆x = 4. Thus,
the slope of the tangent line at (2,4) is 4 as we expected.

Example 7. Let f(x) = x2. Find f ′(x) for arbitrary x.

By going through the same process as above, we’ll get f ′(x) = 2x.



4

3. Power rule

The definition of the derivative is a beautiful thing. However, it can be a little
cumbersome if we have to go through the limiting process every time we would
like to find the derivative of a function. Fortunately, there are many shortcuts,
called differentiation rules, that make the process go by much more effectively. Of
course, we can’t just use them without exploring where they come from. The first
such rule is the power rule, and in this section we will give the proof for positive
rational powers.

Theorem 3.1 (Power rule for derivatives). Let f(x) = xr where r is a real number.
Thenf ′(x) = rxr−1.

Proof. First let’s go through the proof for when f(x) = xn for n a positive integer.
Let’s begin with the definition of the derivative. Remember Pascal’s triangle and
how it seemed completely unrelated to functions? Well, we’re going to use it here.

lim
∆x→0

f(x +∆x) − f(x)

∆x
= lim∆x→0

(x+∆x)n−xn

∆x

We need to expand (x+∆x)n. Fortunately, we have Pascal’s triangle and New-
ton’s binomial theorem. So we know that

(x +∆x)n = (n0)x
n
+ (

n
1
)xn−1∆x +⋯ + (nn)(∆x)n.

= xn
+ nxn−1∆x + (∆x)2( stuff ).

Above, we pulled (∆x)2 out of all but the first two terms. Notice that we can do
this. We write “stuff” because these terms will disappear very soon. Continuing
on from above, we have the following :

lim
∆x→0

(x +∆x)n − xn

∆x

= lim
∆x→0

xn
+ nxn−1∆x + (∆x)2( stuff ) − xn

∆

= lim
∆x→0

nxn−1∆x + (∆x)2( stuff )

∆x

= lim
∆x→0

nxn−1
+ (∆x)( stuff )

= nxn−1

.
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So we have proved the power rule for n an integer. Let’s consider the proof for
positive rationals. That is, f(x) = xp/q. Let y = xp/q. Then we have yq = xp. Thus,
(y +∆y)q = (x +∆x)p. Now consider the following :

(y +∆y)q = (x +∆x)p

yq + qyq−1∆y + (∆y)2(stuff) = xp
+ pxp−1∆x + (∆x)2(stuff)

qyq−1∆y + (∆y)2(stuff) = pxp−1∆x + (∆x)2(stuff)

∆y(qyq−1
+ (∆y)(stuff)) = ∆x(pxp−1

+ (∆x)(stuff))

∆y

∆x
=

pxp−1
+ (∆x)(stuff)

qyq−1
+ (∆y)(stuff)

lim
∆x→0

∆y

∆x
=

pxp−1

qyq−1

=

pxp−1

q(x
p
q )
(q−1)

=

pxp−1

qxp− p
q

=

p

q
xp−1−(p− p

q
)

=

p

q
x

p
q
−1.

We should make a few quick notes about the process above. First, when we
expanded (y +∆y)q and (x +∆x)p, we again used Newton’s binomial theorem as
in the earlier case. After we took the limit as ∆x went to 0, we replaced y with
xp/q. From there, we simply used algebra to get what we needed.

We should also prove the power rule for f(x) = x−n for a positive integer n. The
proof is a slightly harder version of xn. We will leave it as an exercise for the reader.
To prove the power rule for irrational numbers, we just use the continuity for
power functions. This sentence most likely does not make sense to most beginning
calculus students. Do not worry about it; we include it only for the sake of
completion. You’ll see it again if you ever take a real analysis course. �

Example 8. Let f(x) = x35/4. Find f ′(x).



6

From the power rule, we have that f ′(x) = 35
4 x

35/4−1
=

35
4 x

31/4.

We should notice something nice about the power rule. If f(x) = xr, to find
f ′(x), all we need to do is move the exponent down and subtract 1 from the
exponent. That is f ′(x) = rxr−1.


