1. Properties of ellipses

Recall that given two foci F_{1} and F_{2}, and a number $k \geq F_{1} F_{2}$, the set of points P such that $P F_{1}+P F_{2}=k$, is a conic section called an ellipse. Last time we saw that for an ellipse centered at the origen with foci $(-e, 0)$ and $(e, 0)$, its corresponding equation is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

where $a=\frac{k}{2}$ and $b=\sqrt{a^{2}-e^{2}}$. We will look at some of the basic properties of the ellipse with reference to the cartesian plane.

By setting $y=0$, we see that $x^{2}=a^{2}$, or $x= \pm a$. So the x-intercepts for an ellipse are $(-a, 0)$ and $(a, 0)$. Again, if $e=a$, we have the the foci are the endpoints for the line segment created. Therefore, we see that the length of the major axis is $2 a$.

By setting $x=0$, we get $y^{2}=b^{2}$, or $y= \pm b$. So the y-intercepts for an ellipse are $(0,-b)$ and $(0, b)$. This means that the length of the minor axis is $2 b$.

Suppose that $e=0$. This means that the foci are both at the origen $(0,0)$. This also means that $b=\sqrt{a^{2}-0}=a$. So the lengths of the major and minor axes are the same, meaning that our ellipse is a circle of radius $a=k / 2$.

The number e, which is the distance between the origen and either focus, is called the linear eccentricity of the ellipse. Refer to figure 4.28 in your text. Since $b^{2}=a^{2}-e^{2}$ or $a^{2}=b^{2}+e^{2}$, by the Pythagorean theorem, we have that the length from a focal point to either $(0,-b)$ or $(0, b)$ is a. We call the ratio

$$
\varepsilon=\frac{\text { linear eccentricity }}{\text { semimajor axis }}=\frac{e}{a}
$$

is called the astronomical eccentricity. Since $a \geq e$, it follows that $0 \leq \varepsilon \leq 1$.

Figure 1
1

We can think of ε as a measurement of the "flatness" of an ellipse. Suppose, $e=0$. We know that this gives us a circle. Also notice that $\varepsilon=0$, which means the circle has "no flatness." Now suppose that $a=e$. We know that this is just the line segment between $(-e, 0)$ and $(e, 0)$. Also notice that $\varepsilon=1$, which means the line as "maximum flatness." Most ellipses have astronomical eccentricity between 0 and 1 , which will yield an oval shape. What we can take from this is that if an ellipse is close to being a circle, then b is close to a. If the ellipse is very flat, then b is relatively small compared to a.

Example 1. Show that the graph of $9 x^{2}+16 y^{2}=144$ is an ellipse.
Divide both sides of the equation by 144 to get,

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 .
$$

This is an equation for an ellipse with $a=4$ and $b=3$. Thus, $e=\sqrt{a^{2}-b^{2}}=\sqrt{7}$. So it is an ellipse with foci $(-\sqrt{7}, 0)$ and $(\sqrt{7}, 0), x$-intercepts $(-4,0)$ and $(4,0)$, and y-intercepts $(0,-3)$ and $(0,3)$. Furthermore, the astronomical eccentricity is $\frac{\sqrt{7}}{4} \approx 0.66$.

2. Cavalieri's principle

Suppose you have two regions on the plane with areas C and D. Place them above the x-axis as picture in figure 3 below or figure 4.29 in your text. Further, suppose that for every x, the vertical cross sectional that cuts through C is the same as the one that cuts through D. That is, $c_{x}=d_{x}$ for all x. Then we have that $C=D$. The intuition behind this can be obtained by thinking of splitting the regions into very small strips. If for every vertical strip in C, the corresponding strip in D has the same area, then the total areas C and D will be the same. Figure 2 gives another view of this idea.

Instead, suppose that for each $x, d_{x}=2 c_{x}$. Then it makes sense to conclude that $D=2 C$. If $d_{x}=1,000 c_{x}$, then it should be the case that $D=1,000 C$. It should not be difficult to convince yourself of the following proposition :

Proposition 2.1 (Cavalieri's Principle). For a positive number k, if $d_{x}=k c_{x}$ for all x, then $D=k C$.

Figure 2

Figure 3

