Math. 103 - Processes of Mathematical Thought Quiz No. 3
 April 24, 1996

1. ($\mathbf{1 4}$ pts.) Consider the two drawings shown below.

"A River Runs Through It." The larger island has a lake, with a smaller island inside it.

Nisix = Water. Cross each bridge exactly once.

Math. 103 - Processes of Mathematical Thought Quiz No. 3
 April 24, 1996

1. (25 pts.) Consider the two drawings shown below.

"A River Runs Through It." The larger island has a
lake, with a smaller island inside it.

$0 \times 5 \times$ Water. Cross each bridge exactly once.
A. (8 pts.) For each of the two drawings, draw the corresponding one-dimensional network.
B. (6 pts.) For each network, tell the number of odd vertices.
C. (4 pts.) One of the two networks is Eulerian, the other isn't. Decide which is which. Explain the reason for your answer.
D. (7 pts.) For that network which IS Eulerian, show in the corresponding drawing a Eulerian path.
2. (15 pts.) Draw :
A. (5 pts.) A one-piece Eulerian network with no even vertices.
B. (5 pts.) A one-piece non-Eulerian network with no even vertices.
C. (5 pts.) A one-piece non-Eulerian network with no odd vertices.
3. (25 pts.) For each of the two solids shown below:

A. (10 pts.) Draw the corresponding planar network..
B. (8 pts.) State how many triangles, quadrilaterals, pentagons, etc. constitute the faces of each solid.
C. (7 pts.) Verify Euler's formula, by counting vertices, edges and faces.
4. (24 pts.) Consider the three solids described below. Draw the planar network of each one of the three solids, if possible.
A. (8 pts.) The faces consist of four triangles, three quadrilaterals, two pentagons.
B. (8 pts.) The faces consist of five triangles, three quadrilaterals, one pentagon.
C. (8 pts.) The faces consist of four triangles, two quadrilaterals, one septagon (7-sided.)
5. (11 points) Do ONLY ONE of the following two problems.
A. Two one-dimensional networks \mathbf{M} and \mathbf{N} are identical copies of each other. Network \mathbf{P} is obtained from \mathbf{N} by adding one edge joining two existing vertices A and B of \mathbf{N}. It is known that \mathbf{P} is eulerian and that \mathbf{N} is not. How many odd vertices does \mathbf{M} have? Justify your answer as completely as possible.
B. A one-dimensional network is called "complete" if every vertex is joined to every other vertex by exactly one edge. (4 pts.) Draw the complete network with 6 (six) vertices. Is it Eulerian? (6 pts.) Is the complete network with 28 vertices Eulerian? What about the complete network with 31 vertices, is it Eulerian? Justify your answers.
6. (15 pts.) Consider the three solids described below. Draw the planar network of each one of the three solids, if possible.
A. (5 pts.) The faces consist of five triangles, three quadrilaterals, one pentagon.
B. (5 pts.) The faces consist of five triangles, three quadrilaterals, one hexagon.
C. (5 pts.) The faces consist of five triangles, two quadrilaterals, one septagon (7-sided.)
7. (11 points) Do ONLY ONE of the following two problems.
A. Two one-dimensional networks \mathbf{M} and \mathbf{N} are identical copies of one and the same network. Network \mathbf{P} is obtained from \mathbf{N} by adding one edge joining two existing vertices A and B of \mathbf{N}. It is known that \mathbf{P} is not eulerian and that \mathbf{N} is. How many odd vertices does \mathbf{M} have? Justify your answer as completely as possible.
B. A one-dimensional network is called "complete" if every vertex is joined to every other vertex by exactly one edge. (4 pts.) Draw the complete network with 5 (six) vertices. Is it Eulerian? (6 pts.) Is the complete network with 27 vertices Eulerian? What about the complete network with 24 vertices, is it Eulerian? Justify your answers.
