NAME (Please PRINT) \qquad

MATH. 103 - PROCESSES OF MATHEMATICAL THOUGHT. - SPRING 1997

 INSTRUCTOR: \qquadFINAL EXAMINATION - MAY 5, 1997

NOTE: This is an OPEN BOOK exam, but pocket calculators are not allowed, nor is collaboration among students.

You are under the University's Honor Code.

READ CAREFULLY:

1. Make sure you have 3 (three) distinct pages of questions (EXCLUDING this cover page.)
2. Write (PRINT) your name above and sign your name in the Attendance sheet.
3. Fill in (PRINT) the Instructor's name.
4. Write (PRINT) your name on the blue book cover.
5. Hand in this cover sheet and the three pages (please do NOT unstaple) inside the blue book.
6. Following correctly the five instructions given above is worth 5 (five) points.
7. Questions A and B of this part $\mathbf{1}$ refer to the nine-button toy we have considered in class, with the buttons numbered in the usual manner shown below

1	2	3
4	5	6
7	8	9

A. (6 pts.) This question refers to the usual wiring of the toy, the one we studied first. Assume that in the initial configuration the buttons which are lit are exactly buttons \# 2, 4 and 9 . Your target configuration is the usual one, in which all buttons but \# 5 are lit. Write down a sequence of buttons, without repetitions, which will take you from the initial to the target configuration.
B. (8 pts.) In this question the wiring of the toy is described as follows:

- the wiring is symmetric on the square.
- button \# 1 acts on buttons \# 1,2,3,4,7
- button \# 2 acts on buttons \# 4,6,7,8,9
- button \# 5 acts on buttons \# 1,3,5,7,9

Set up the system whose solution gives the needed answers for this game. (Do NOT attempt to solve the system.)
C. (8 pts.) Tell me how to modify the toy of question \mathbf{B} so that the 'modulus' changes from 2 to 7 . Then show me the first step in solving the system you set up previously, with this new modulus of 7 .
D. (8 pts.) Suppose you are told that, for the toy of question C , the target is so bad that it takes at least the maximum number of pushes to get it. How many pushes is that? (Explain your answer)

Math. 103 - Spring 1997 -

1. Questions A and B of this part $\mathbf{1}$ refer to the nine-button toy we have con-sidered in class, with the buttons numbered in the usual manner shown below

1	2	3
4	5	6
	8	9

A. (6 pts.) This question refers to the usual wiring of the toy, the one we studied first. Assume that in the initial configuration the buttons which are lit are exactly buttons \# 1,6 and 8. Your target configuration is the usual one, in which all buttons but \# 5 are lit. Write down a sequence of buttons, without repetitions, which will take you from the initial to the target configuration.
B. (8 pts.) In this question the wiring of the toy is described as follows:

- the wiring is symmetric on the square.
- button \# 1 acts on buttons \# 1,2,4,5,9
- button \# 2 acts on buttons \# 1,3,4,5,6
- button \#5 acts on buttons \# 1,3,5,7,9

Set up the system whose solution gives the needed answers for this game. (Do NOT attempt to solve the system.)
C. (8 pts.) Tell me how to modify the toy of question \mathbf{B} so that the 'modulus' changes from 2 to 6 . Then show me the first step in solving the system you set up previously, with this new modulus of 6 .
D. (8 pts.) Suppose you are told that, for the toy of question C , the target is so bad that it takes the maximum number of pushes to get it. How many pushes is that? (Explain your answer)
2. Shown below are two configurations of the "roadtoy."

A. (10 pts.) State how many pivots are needed to alphabetize Configuration no. 1. Explain your answer and identify precisely the first pivot you plan to use.
B. (15 pts.) State how many pivots are needed to alphabetize Configuration no. 2 . Explain your answer and identify precisely the last eight pivots you plan to use.
3. Let Peter and Sam be two arbitrary permutations on eight symbols. Identify each of the statements below as TRUE or FALSE. In each case explain your answer.
A. (6 pts.) Peter \bullet Peter is always an even permutation.
B. (6 pts.) Sam•Sam•Sam is always an odd permutation.
C. (6 pts.) Peter•Sam \bullet Peter and Sam always have different parities.
D. (6 pts.) Sam \bullet Peter can always be written using disjoint cycles.
E. (6 pts.) Sam \cdot Peter can always be written using at most seven transpositions
4. \quad Let Vanessa $=(3519687)(75126439)(123487965)$
A. (6 pts.) Is Vanessa even or odd? Explain your answer.
B. (8 pts.) Write Vanessa as a product of disjoint cycles.
C. (6 pts.) Write Vanessa in the two-row format, that is, fill the blanks on the next page:

Math. 103 - Spring 1997 -

Math. 103 - Spring 1997 -
2. Show below are two configurations of the "roadtoy."

A. (10 pts.) State how many pivots are needed to alphabetize Configuration no. 1. Explain your answer and identify precisely the first pivot you plan to use.
B. ($\mathbf{1 5} \mathrm{pts}$.$) State how many pivots are needed to alphabetize Configuration no. 2$. Explain your answer and identify precisely the last eight pivots you plan to use.
3. Let Peter and Sam be two arbitrary permutations on eight symbols. Identify each of the statements below as TRUE or FALSE. In each case explain your answer.
A. (6 pts.$)$ Peter•Peter is always an even permutation.
B. (6 pts.) Sam•Sam•Sam is always an odd permutation.
C. (6 pts.) Peter \cdot Sam \bullet Peter and Sam always have the same parity.
D. (6 pts.) Sam•Peter can always be written using disjoint cycles.
E. (6 pts.) Sam • Peter can always be written using at most seven transpositions
4. Let Vanessa $=(35176984)(75126439)(123487965)$
A. (5 pts.) Is Vanessa even or odd? Explain your answer.
B. (7 pts.$)$ Write Vanessa as a product of disjoint cycles.
C. (5 pts .) Write Vanessa in the two-row format, that is, fill the blanks on the next page:
Vanessa $=\left|\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ - & - & - & - & - & - & - & - & -\end{array}\right|$
5. "My home has exactly three doors leading outside, and no room in my home has more than two doors. At night I am able to walk from room to room (and outside), locking each door as I go through it, then go to bed." Given that the preceding statement in quotes is true, which one(s) among the following four conclusions must necessarily follow? Explain each of your answers, (for every statement, tell me why it need not follow, or it must follow the premise.)
A. (6 pts.) Every room in my home has exactly two doors.
B. (6 pts.) My bedroom has exactly one door.
C. (6 pts.) I start my nightly walk in my bedroom.
D. (6 pts.) I start my nightly walk outdoors.
6. Only one of the four planar networks below exists. Decide which is which and explain your anwers. For the one which does exist, draw it.
A. (6 pts.) The faces in the planar network are exactly
one octagon (8 sides), four triangles.
B. (6 pts.) The faces in the planar network are exactly one octagon (8 sides), three triangles, one quadrilateral
C. (6 pts.) The faces in the planar network are exactly
one octagon (8 sides), two triangles, one quadrilateral
D. (6 pts.) The faces in the planar network are exactly
one octagon (8 sides), two triangles, one hexagon (6 sides).

