# Math. 103 - Processes of Mathematical Thought Prof. Mario Borelli 

 Final Examination - Thursday, May 7, 1998NOTE: This is an OPEN book exam. This means you MAY use any notes, books, pocket calculators or any other learning aids you have brought with you. What you MAY NOT use is the brain of people sitting around you. You are under the University's Honor Code, and therefore are pledged to hand in work which is entirely your own. Speaking of work, make sure you show all of your work, since questions will be graded with the possibility of earning partial credit; in addition, the instructor tends to look incredulously at correct answers without any work showing how they have been obtained. Finally, WRITE ALL OF YOUR ANSWERS IN THE BLUE BOOKLET(S)

> Make sure you have four (4) pages of questions, excluding this cover sheet.
> The exam has six (VI) questions.
I. (25 pts.) This question deals with the game shown below, where each "button" can have one of three colors, Aqua (a pale blue), Buff (a brownish yellow) and Crimson (a fiery red.) With the buttons numbered as shown the game works as follows:


- The colors on each button change by following the sequence

$$
\text { Aqua } \rightarrow \text { Buff } \longrightarrow \text { Crimson } \longrightarrow(\text { back to }) \text { Aqua }
$$

- The action of each button is as follows:


## Action Table

| button no. 1 | advances button no. 1 advances button no. 3 | two steps in the sequence one step in the sequence |
| :---: | :---: | :---: |
| button no. 2 | advances button no. 1 advances button no. 3 advances button no. 4 | one steps in the sequence two steps in the sequence one steps in the sequence |
| button no. 3 | advances button no. 1 advances button no. 2 advances button no. 4 | one steps in the sequence one steps in the sequence two step in the sequence |
| button no. 4 | advances button no. 1 <br> advances button no. 4 | one step in the sequence one step in the sequence |

(A) (5 pts.) Set up the system needed to solve the game.
(B) (12 pts.) Use the Gauss-Jordan elimination method to obtain the solutions of the game.
(C) (8 pts.) Apply the solutions you found to determine which buttons are to be pushed (no button more than twice) to turn all buttons Crimson, starting from
page 2


$$
\begin{aligned}
& \square=\text { Aqua } \\
& \text { = Buff } \\
& \text { = Crimson }
\end{aligned}
$$

II. (25 pts.) This question deals with the toy shown below, consisting of five tiles, numbered as shown for your convenience.


You can perform the following operations:

- Rotate any three distinct tiles, provided tile no. 3 is one of them, as often as you please.
(1) (5 pts.) Using the numbering shown above, list the six rotations you can perform.
(2) (10 pts.) Your starting configuration is:


If one can reach the target from the start, using ONLY the given rotations, do it.
If one cannot, explain why not.
(NOTE: You don't need too many computations.)
(3) (10 pts.) Your starting configuration is:

and your target is


If one can reach the target from the start, using ONLY the given rotations, do it.
If one cannot, explain why not.
(NOTE: You don't need too many computations.)
III. (25 pts.) Let $\mathbf{P}$ and $\mathbf{Q}$ be the permutations shown below in the two-row notation.

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{llllllllll}
A & B & C & D & E & F & G & H & I & J \\
G & I & F & E & A & B & H & J & C & D
\end{array}\right) \\
& \mathbf{Q}=\left(\begin{array}{cccccccccc}
A & B & C & D & E & F & G & H & I & J \\
H & G & I & F & B & D & A & C & J & E
\end{array}\right)
\end{aligned}
$$

(A) (6 pts.) Write $\mathbf{Q}$ as the product of disjoint cycles.
(B) (9 pts.) Write $\mathbf{Q P Q}$ as the product of disjoint cycles.
(C) (10 pts.) Determine the parity of $\mathbf{Q}, \mathbf{P Q P}$ (think!) and PQPQ (think!) respectively.
IV. (25 pts.) Let $\mathbf{N}$ be a one piece non-Eulerian 1-network which is known to have exactly five vertices.
(A) (12 pts.) Show that one can always add exactly one edge to $\mathbf{N}$ and obtain a one piece Eulerian 1-network M.
(B) (13 pts.) Show an example in which one CANNOT delete exactly one edge from $\mathbf{N}$ and obtain a one piece Eulerian 1-network $\mathbf{M}$.
V. (25 pts.) For each one of the solids defined below, either draw its planar representation or explain why it cannot be done.
(A) (8 pts.) The faces of the solid consist exactly of four triangles and four pentagons.
(B) (8 pts.) The solid has exactly 12 vertices, each vertex belongs to exactly three faces, the faces consist only of quadrilaterals and hexagons.
(C) (8 pts.) The solid has exactly 10 vertices, each vertex belongs to exactly three faces, the faces consist only of triangles and quadrilaterals.
VI. (25 pts.) Here are three ballots on four candidates Adams, Brummels, Collins and Diethers. Decide which two ballots are the closest....:
(A) (12 pts.) ...when you compute the distance as the sum of the absolute values of the individual differences.
(B) (13 pts.) ...when you compute the distance as the sum of the squares of the individual differences.

| Candidates | Ballot No. I | Ballot No. II | Ballot No. III |
| :---: | :---: | :---: | :---: |
| Adams | 2 | 1 | 4 |
| Brummels | 2 | 2 | 3 |
| Collins | 3 | 1 | 2 |
| Diethers | 3 | 2 | 3 |

## Good luck to all of you! I have enjoyed this semester with you. Have a happy, profitable and dsafe summer!

