1. A track and field team of 10 athletes needs to be divided into a group of 4 for relay, a group of 4 for 100-m dash, and a group of two for hurdles. How many different choices can the coach make?
a. $\frac{10!}{4!4!2!}$
b. $C(10,4) \cdot C(10,4) \cdot C(10,2)$
c. $10^{4} \cdot 10^{4} \cdot 10^{2}$
d. $P(10,4) \cdot P(10,4) \cdot P(10,2)$
e. $\frac{10!}{4!4!2!3!}$
2. The following table gives the possible outcomes of an experiment with their respective probabilities. Given the events $E=\left\{s_{1}, s_{2}\right\}$ and $F=\left\{s_{2}, s_{3}\right\}$ compute $\operatorname{Pr}\left((E \leftrightarrow F)^{\prime}\right)$.

outcome	Probability
s_{1}	.2
$\mathrm{~s}_{2}$.3
$\mathrm{~s}_{3}$.1
$\mathrm{~s}_{4}$.4

a. 0.5
b. . 3
c. . 6
d. . 4
e. . 7
3. The odds in favor of the U.S. winning the next soccer world championships are 5 to 95 . What is the probability that the U.S. will lose?
a. . 005
b. .95
c. $\frac{1}{19}$
d. $\frac{18}{19}$
e. . 9
4. A drawer contains 8 pairs of socks, 5 pairs are blue and 3 pairs are black. A person picks at random two socks out of the drawer. What is the probability that the two socks are of the same color?
a. $\frac{5}{8}$
b. $\frac{3}{64}$
c. $\frac{37}{60}$
d. $\frac{1}{2}$
e. $\frac{13}{16}$
5. An urn contains 5 red balls and 3 green balls. A sample of 3 balls is selected. What is the probability of having balls of two different colors?
a. $\frac{90}{336}$
b. $\frac{26}{56}$
c. $\frac{45}{56}$
d. $\frac{11}{56}$
e. $\frac{1}{4}$
6. In a class of 120 people all but 20 will leave during Spring Break. 70 will go to Florida while 90 have purchased a plane ticket to go some where. What is the probability that a randomly chosen student in this class is flying to Florida?
a. $\frac{7}{12}$
b. $\frac{1}{2}$
c. $\frac{7}{12} \cdot \frac{9}{12}$
d. $\frac{3}{4}$
e. $\frac{1}{6}$
7. Given that $\operatorname{Pr}(E)=.5, \operatorname{Pr}(F)=.4$ and $\operatorname{Pr}(E \leftrightarrow F)=.3$, find $\operatorname{Pr}\left(E \leftrightarrow F^{\prime}\right)$.
a. . 3
b. . 1
c. . 2
d. . 9
e. . 7
8. A die is rolled 3 times. Compute the probability that all three outcomes are even numbers.
a. $\frac{7}{8}$
b. $\frac{1}{2}$
c. $\frac{1}{24}$
d. $\frac{\binom{6}{3}}{6^{3}}$
e. $\frac{1}{8}$
9. Given that $\operatorname{Pr}(E)=.3$ and $\operatorname{Pr}(E \leftrightarrow F)=.06$, what is $\operatorname{Pr}(F)$ if E and F are independent events?
a. . 3
b. . 02
c. . 018
d. . 2
e. . 06
10. A student signing up for Math 104 has the same probability of being assigned to one of the 3 sections. Of the people in the $8: 00$ class 96% pass while 97% pass in the 11:15 class and 95% pass in the $1: 15$ class. What is the probability that a student who failed was in the 11:15 class?
a. . 3
b. . 1
c. $\frac{1}{4}$
d. $\frac{2}{5}$
e. $\frac{3}{10}$
11. A fair coin and a coin with two tails are in a box. One of them is randomly selected and tossed twice. What is the probability that the fair coin was selected if both the outcomes are tails?
a. $\frac{1}{5}$
b. $\frac{1}{4}$
c. $\frac{1}{2}$
d. $\frac{3}{4}$
e. $\frac{1}{8}$
12. The probability of developing chronic bronchitis is .3 among smokers and $\frac{1}{9}$ among non smokers. Knowing that only 10% of the undergraduate population at Notre Dame smoke, what is the probability that an undergraduate with chronic bronchitis smokes?
a. $\frac{3}{4}$
b. 0.03
c. 0.1
d. $\frac{3}{13}$
e. $\frac{1}{4}$
13. What is the probability that among three people chosen randomly, exactly two are born on the same day of the week?
a. $\frac{19}{49}$
b. $\frac{18}{49}$
c. $\frac{30}{49}$
d. $\frac{6}{49}$
e.
14. A box contains ten light bulbs, 4 bad and 6 good. Two bulbs are selected at random. One of them is tested and found to be good. What is the probability that the other one is also good?
a. $\frac{\binom{6}{2}}{\binom{10}{2}-\binom{4}{2}}$
b. $\frac{1}{2}$
c. $\frac{\binom{6}{2}}{\binom{10}{2}}$
d. $1-\frac{\binom{4}{2}}{\binom{10}{2}}$ e. $\frac{5}{9}$
15. A random variable X has the following probability distribution

K	$\operatorname{Pr}(\mathrm{X}=\mathrm{k})$
0	.4
2	.4
-2	.2

Find the probability distribution of the variable $(X+1)^{2}$
a. $\mathrm{k} \quad \operatorname{Pr}(\mathrm{X}=\mathrm{k})$
$1 \quad 0.4$
$5 \quad 0.6$
b. k $\quad \operatorname{Pr}(X=k)$ c. $k \quad \operatorname{Pr}(X=k)$
$\begin{array}{ccccc}1 & .4 & 0 & .4 & \\ 9 & .6 & 1 & .4 & \\ & & & -1 & .2\end{array}$
d. $\quad \mathrm{k} \quad \operatorname{Pr}(\mathrm{X}=\mathrm{k})$
1.6
$9 \quad .4$
e. $k \quad \operatorname{Pr}(X=k)$
$0 \quad .4$
1 . 6
16. When you print a document from the personal computer in your room, through the network, your document will be printed by one of the printers in one of the 4 clusters. The following table gives you the probability that your document will be printed in a cluster, and the probability that a document printed in this cluster is printed on a laser printer.

Cluster Prob. Your Document is Printed Here Prob. of being printed on Laser Printer
0.2

2
. 6
0.8

3
. 2
0.5

4
. 1
0.6

What is the probability that your document was printed in cluster 4 if it was printed by a laser printer?
a. $\frac{3}{20}$
b. 0.06
c. $\frac{1}{10}$
d. $\frac{1}{33}$
e. $\frac{1}{11}$
17. Assume that $\operatorname{Pr}(E)=.2, \operatorname{Pr}(F)=.1$ and E and F are mutually exclusive. Are E and F independent?
a. Yes
b. No
c. The information given is not enough to decide.
18. A bag contains 6 bad apples and two good ones. Apples are taken out one at a time, without replacement, until a good one is found. What is the probability that the procedure will stop at the third pick?
a. $\frac{6}{8} \cdot \frac{5}{7} \cdot \frac{2}{8}$
b. $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
c. $\frac{6}{8} \cdot \frac{6}{8} \cdot \frac{2}{8}$
d. $\frac{6}{8}$. $\frac{5}{7} \quad$ e. $\frac{6}{8} \cdot \frac{5}{7} \cdot \frac{2}{6}$
19. A ballroom dance class, that John and Mary attend, has 25 women and 12 men. The instructor selects at random 4 men and 4 women for a competition. What is the probability that John and Mary will be among the people selected?
a. $\frac{\binom{11}{3}\binom{24}{3}}{\binom{12}{4}\binom{25}{4}}$
b. $1-\frac{\binom{11}{3}\binom{24}{3}}{\binom{12}{4}\binom{25}{4}}$
c. $\frac{1}{\binom{12}{4}\binom{25}{4}}$
d. $\frac{\binom{4}{3}\binom{4}{3}}{\binom{12}{4}\binom{25}{4}}$
e. $1-\frac{1}{\binom{12}{4}\binom{25}{4}}$
20. The weather report says there is a 60% chance of snow tomorrow. If it does not snow tomorrow, then the chances of it snowing on the day after tomorrow are 80%. If it snows tomorrow, there is a 40% chance of snow for the day after. What is the probability that it will snow the day after tomorrow?
a. . 8
b. 1
c. . 56
d. . 32
e. . 24

