The random variable Y has the probability distribution shown. Problems 12 refer to Y .

$$
\begin{array}{llllll}
\mathrm{Y}=\mathrm{k} & -1 & & 0 & & 1 \\
\operatorname{Pr}(\mathrm{Y}=\mathrm{k}) & & .1 & & .3 &
\end{array}
$$

1. What is the expected value of Y ?
a) 0
b) .3
c) .5
d) 1
e) .25
2. Find the probability distribution of Y^{2}.
a) $\begin{array}{llr}Y^{2}=k & 0 & 1 \\ \operatorname{Pr}\left(Y^{2}=k\right) & .09 & .370\end{array}$
b) $\begin{array}{lll}Y^{2}=k & 0 & 1\end{array}$
$\operatorname{Pr}\left(Y^{2}=k\right) \quad .3 \quad .7$
c) $\begin{array}{llrr}Y^{2}=k & -1 & 0 & 1 \\ \operatorname{Pr}\left(Y^{2}=k\right) & .01 & .09 & .36\end{array}$
$\begin{array}{llll}\text { d) } Y^{2}=k & 0 & 1 & 2 \\ \operatorname{Pr}\left(Y^{2}=k\right) & .4 & .9 & .6\end{array}$
e) $\begin{array}{lll}Y^{2}=k & 0 & 1\end{array}$
$\operatorname{Pr}\left(Y^{2}=k\right) \quad .5 \quad .5$
3. The random variable Z has the probability distribution shown

k	0	2	4
$\operatorname{Pr}(Z=k)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$

What is the variance, σ^{2}, of Z ? Hint: The expected value of Z is 1 .
a) 0
b) 1
c) $\frac{5}{3}$
d) $\frac{7}{3}$
e) $\frac{1}{6}$
4. Suppose the variance of a random variable is .25. What is the standard deviation of this random variable?
a) .0625
b) .5
c) .75
d) . 9375 e) not enough information
5. An experiment consists of rolling a six sided die either 3 times or until a toss shows a "one", whichever comes first. Let X count the number of rolls in a trial. What is the expected value of the random variable X ?
a) $1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{4}{6}$
b) $1 \cdot \frac{1}{6}+2 \cdot \frac{5}{36}+3 \cdot \frac{25}{36}$
c) $1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}$
d) $5 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+1 \cdot \frac{4}{6}$
e) $1 \cdot \frac{1}{6}+2 \cdot \frac{1}{36}+3 \cdot \frac{29}{36}$
6. An experiment consists of flipping a coin 8 times and counting the number of heads. What is the probability of getting either 3 or 4 heads?
a) $\binom{8}{3}+\binom{8}{4}$
b) $\binom{8}{3}\binom{8}{4}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5}$
c) $\binom{8}{3} \cdot\binom{1}{2}^{3}+\binom{8}{4}\left(\frac{1}{2}\right)^{4}$
d) $\binom{8}{3} \cdot\binom{1}{8}+\binom{8}{4}\left(\begin{array}{l}\frac{1}{8}\end{array}\right)$
e) $\binom{8}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5}+\binom{8}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{4}$

Problems 7-8 refer to the following:
A famous basketball player decides to switch careers and take up baseball. Each time at bat the probability of him getting a hit is .195. An experiment consists of counting the number of hits he gets in 20 times at bat.
7. What is the variance of this experiment?
a) $20(.195)$
b) $20(.805)$
c) $20(.195)(.805)$
d) $(.195)^{20}$
e) .195
8. What is the expected number of hits?
a) $20(.195)$
b) $20(.805)$
c) $20(.195)(.805)$
d) $(.195)^{20}$
e) .195
9. Suppose that the life span of the Madagascar hissing cockroach is normally distributed with $\mu=3$ years and $\sigma=2$. What is the probability of a Madagascar hissing cockroach having a life span of 4 or more years?
a) .3085
b) .7088
c) .1587
d) .5199
e) .9938
10. Find the area of the shaded region under the given normal curve where $\mu=$ 30 , and $\sigma=4$.
a) .6915
b) .5000
c. .9772
d. . 3085
e. . 0228
11. Suppose that in a particular town people are asked to pick their favorite animal. 45% pick dogs, 40% pick cats, 15% pick Madagascar hissing cockroaches. What is the probability that exactly 3 out of 5 randomly chosen people from this town picked cats as their favorite animal?
a) $(.4)^{4}(.6)^{5}$
b) $\binom{5}{3}(.4)^{3}$
c) $\binom{5}{3}(.4)^{3}(.6)^{2}$
d) $\binom{5}{3}\binom{1}{2}^{5}$
e) $\binom{5}{3}$

Problems 12-14 refer to the following 2 matrices.

$$
\text { Let } M=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right] \quad, \quad N=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

12 Find M.N.
a) $\left[\begin{array}{ll}7 & 1 \\ 3 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]$
c) $\left[\begin{array}{rr}1 & 3 \\ -4 & 2\end{array}\right]$
d) [12]
e) $\left[\begin{array}{ll}4 & 1 \\ 8 & 7\end{array}\right]$
13. Find $M+N$.
a) [12]
b) $\left[\begin{array}{ll}7 & 3 \\ 1 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}4 & 3 \\ 2 & 3\end{array}\right]$
d) $\left[\begin{array}{l}7 \\ 1\end{array}\right]$
e) $[4-2]$
14. Find the first row of M^{-1}. Hint: If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $A^{-1}=\left[\begin{array}{cc}d / \Delta & -b / \Delta \\ -c / \Delta & a / \Delta\end{array}\right]$ where $\Delta=\mathrm{ad}-\mathrm{bc}$.
a) $\left[\begin{array}{ll}\frac{3}{2} & \frac{4}{2}\end{array}\right]$
b) $\left[\begin{array}{ll}\frac{3}{2} & 1\end{array}\right]$
c) [7]
d) $\left[\begin{array}{ll}1 & -2\end{array}\right]$
e)
$\left[\begin{array}{cc}-\frac{1}{2} & \frac{3}{2}\end{array}\right]$
15. Suppose a and b satisfy the two equations

$$
\begin{aligned}
3 a+4 b & =1 \\
a+2 b & =2
\end{aligned}
$$

What is $\mathrm{a}+\mathrm{b}$? Hint: Find a and b then add then together.
a) $-\frac{1}{2}$
b) 5
c) 2
d) $\frac{2}{3}$
e) $\frac{7}{2}$
16. Let X denote the normal random variable with $\mu=8$ and $\sigma=2$. Find $\operatorname{Pr}(x \leq 12)$.
a) .0228
b) .2500
c) .7881
d) .9992
e) .9772
17. Let y denote the normal random variable with $\mu=5$ and $\sigma=2$. Find $\operatorname{Pr}(6 \leq y \leq 7)$.
a) -.8502
b) .8502
c) .1359
d) .8641
e) . 1498
18. Which one of the following systems is equivalent to the system

$$
\left\{\begin{aligned}
x+2 y+5 z & =7 \\
y+3 z & =9
\end{aligned}\right.
$$

a) $\left\{\begin{aligned} x+2 z & =12 \\ y+3 z & =9\end{aligned}\right.$
b) $\left\{\begin{aligned} x & +z=-11 \\ y+z & =9\end{aligned}\right.$
c) $\left\{\begin{aligned} x+5 z & =7 \\ y+3 z & =9\end{aligned}\right.$
d) $\left\{\begin{array}{l}\left.x \quad \begin{array}{rl}z & =-11 \\ y+3 z & =9\end{array}\right]\end{array}\right.$
e) $\left\{\begin{array}{l}x=-11 \\ y=9\end{array}\right.$
19. Let $M=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right], N=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Find $M \cdot N$.
a) [28]
b) $\left[\begin{array}{rrrr}12 & 15 & 18 \\ 8 & 10 & 12 \\ 4 & 5 & 6\end{array}\right]$
c) $\left[\begin{array}{r}12 \\ 10 \\ 6\end{array}\right]$
d) $\left[\begin{array}{lll}12 & 10 & 6\end{array}\right]$
e) they can't be multiplied.
20. Use the normal approximation to the binomial distribution to estimate the probability of getting exactly 50 heads in 100 flips of a coin.
a) .5000
b) .8413
c) .0796
d) .5398
e) .3085

