Formulas:

$$
\begin{gathered}
F=(1+i)^{n} P \quad F=s_{n i} R \\
s_{n i}=\frac{(1+i)^{n}-1}{i} a_{n i}=\frac{(1+i)^{n}-1}{i(1+i)^{n}}
\end{gathered}
$$

$$
P=a_{n i} R
$$

If $A=\left[\begin{array}{ll}1 & S \\ 0 & R\end{array}\right]$ is an absorbing stochastic matrix then the stable matrix of A is $\left[\begin{array}{cc}I & S(I-R)^{-1} \\ 0 & 0\end{array}\right]$. [Note : The identity matrix I in $(I-R)^{-1}$ is chosen to be the same size as R in order to make the matrix subtraction permissible.]

1. Consider the matrix $A=\left[\begin{array}{lll}0.2 & 0.2 & 0.5 \\ 0.3 & 0.3 & 0.3 \\ 0.1 & 0.5 & 0.2\end{array}\right]$. Which of the following statements about A is true?
a. A is stochastic.
b. A is stochastic and regular.
c. A is stochastic and absorbing.
d. A is stochastic, regular but not absorbing.
e. A is not stochastic.
2. Consider the stochastic matrix $A=\left[\begin{array}{ll}1 & 0.2 \\ 0 & 0.8\end{array}\right]$. Then A is:
a. absorbing and regular
b. absorbing but not regular
c. regular but not absorbing
d. stable but not absorbing
e. neither absorbing nor regular
3. Let $A=\left[\begin{array}{lll}\frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3}\end{array}\right]$ be the transition matrix of a Markov process. If the distribution matrix of the current generation is $\left[\begin{array}{c}\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3}\end{array}\right]$. Then the distribution of the next generation is:
a. $\left[\begin{array}{l}\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3}\end{array}\right]$
b. $\left[\begin{array}{l}2 \\ 9 \\ 4 \\ 9 \\ 4 \\ 9\end{array}\right]$
c. $\left[\begin{array}{l}3 \\ 9 \\ 2 \\ 9 \\ 4 \\ 9\end{array}\right]$
d. $\left[\begin{array}{l}2 \\ 9 \\ 3 \\ 9 \\ 4 \\ \hline 9\end{array}\right]$
e. $\left[\begin{array}{l}\frac{1}{9} \\ 2 \\ 9 \\ 4 \\ 9\end{array}\right]$
4. A Markov process with three states has transition matrix

		Current State					
		I		II		III	
Next I		0.2		0.3		0.4	
State III		0.7		0.5		0.6	

The probability of proceeding from (current) state III to (next) state I is:
a. 0.2
b. 0.3
c. 0.4
d. 0.5
e. 0.7
5. The stable distribution $\left[\begin{array}{l}x \\ y\end{array}\right]$ of the matrix $A=\left[\begin{array}{ll}0.5 & 0.6 \\ 0.5 & 0.4\end{array}\right]$ is:
a. $\left[\begin{array}{c}\frac{6}{1 T} \\ \frac{5}{1 T}\end{array}\right]$
b. $\left[\begin{array}{c}\frac{7}{T T} \\ \frac{4}{1 T}\end{array}\right]$
c. $\left[\begin{array}{l}4 \\ 9 \\ \frac{5}{9}\end{array}\right]$
d. $\left[\begin{array}{l}0.6 \\ 0.4\end{array}\right]$
e.
$\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$
6. The stable matrix of the transition matrix $A=\left[\begin{array}{lll}1 & 0 & 0.4 \\ 0 & 1 & 0.5 \\ 0 & 0 & 0.1\end{array}\right]$ is
a. $\left[\begin{array}{lll}1 & 0 & 0.36 \\ 0 & 1 & 0.45 \\ 0 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{lll}1 & 0 & \frac{4}{9} \\ 0 & 1 & \frac{5}{9} \\ 0 & 0 & 0\end{array}\right]$ $\left[\begin{array}{lll}0 & 0 & \frac{4}{9} \\ 0 & 0 & \frac{5}{9} \\ 0 & 0 & 0\end{array}\right]$
e. $\left[\begin{array}{lll}1 & 0 & \frac{5}{9} \\ 0 & 1 & 4 \\ 0 & 0 & 0\end{array}\right]$
e. $\left[\begin{array}{ccc}1 & 0 & \frac{1}{10} \\ 0 & 1 & 9 \\ 0 & 0 & 0\end{array}\right]$
C.
7. A professor's exams are either easy or hard. If the exam was easy last time, it will be easy this time with a 40% probability. If it was hard last time, it will be easy this time with a 70% probability. The matrix of this Markov process is given by:

current	current	current
easy hard	easy hard	easy

a. $\begin{aligned} & \text { easy } \\ & \text { hard }\end{aligned}\left[\begin{array}{ll}0.7 & 0.4 \\ 0.3 & 0.6\end{array}\right]$
easy $\left.h \begin{array}{lll}0.6 & 0.3 \\ 0.4 & 0.7\end{array}\right]$
current
current
d. easy hard $\left[\begin{array}{lll}0.4 & 0.3 \\ 0.6 & 0.7\end{array}\right]{ }^{\text {easy }}$ hard
[0.4 0.7$]^{\text {easy hard }}$
e. hard $\left[\begin{array}{ll}0.4 & 0.7 \\ 0.6 & 0.3\end{array}\right]$
8. Which of the matrices are regular:
$A_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

$$
A_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
A_{3}=\left[\begin{array}{ll}
1 & \frac{1}{2} \\
2 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

$\mathrm{A}_{4}\left[\begin{array}{ll}\frac{1}{2} & 0 \\ \frac{1}{2} & 1\end{array}\right]$
a. A_{1}
b. A_{2}
c. A_{3}
d. A_{4}
e. A_{3} and A_{4}
9. How much money must be deposited now in order to have $\$ 10,000$ after 10 years if interest is paid at a 6% annual rate compounded monthly?
a. $\$ 928.92$
b. $\$ 5,496.33$
c. $\$ 3,029.95$
d. $\$ 7,413.72$
e. $\$ 5,904.50$
10. One thousand dollars is deposited in an account at 8% annual rate compounded quarterly for 2 years. The amount of interest earned during that time is
a. $\$ 60.30$
b. $\$ 90.49$
c. $\$ 171.66$
d. $\$ 214.98$
e. $\$ 306.22$
11. How much should Mary save each month to have $\$ 20,000$ for the down payment to buy a house in 5 years if annual interest rate is 6% compounded monthly?
a. $\$ 692.15$
b. $\$ 511.64$
c. $\$ 399.68$
d. $\$ 286.66$
e. $\$ 201.57$
12. If the annual interest rate is 12% compounded daily, the rate per period i is:
a. 1%
b. $\frac{12}{365} \%$
c. $\frac{1}{2} \%$
d. 3%
e. 12%
13. How much should Jim deposit in an account paying 12% annual rate compounded monthly so that his son can withdraw $\$ 100$ at the end of each month for 9 months?
a. $\$ 900.00$
b. $\$ 890.22$
c. $\$ 856.60$
d. $\$ 1072.36$
e. $\$ 998.53$
14. If you deposit $\$ 10,000$ into an account paying 8% annual interest compounded quarterly. How much can you withdraw at the end of each quarter year for 5 years so that balance is zero at the end of 5 years?
a. $\$ 611.57$
b. $\$ 6,115.67$
c. $\$ 523.72$
d. $\$ 5,237.23$
e. $\$ 557.66$
15. What is the monthly payment on a 30 year $\$ 100,000$ mortgage at 12% annual rate compounded monthly?
a. $\$ 1543.31$
b. $\$ 1507.08$
c. \$1101.08
d. $\$ 1,053.22$
e. $\$ 1,028.61$
16. Dan took a loan to buy a car. If the interest rate is 18% compounded monthly and the monthly payment is $\$ 200$ for 4 years. What is the amount of the loan?
a. $\$ 6,808.51$
b. $\$ 7,808.51$
c. $\$ 5,532.14$
d. $\$ 6,532.14$
e. $\$ 9,172.44$
17. Janet took out a loan in the amount of $\$ 600$. If the annual interest rate is 18% compounded monthly. How much interest did Janet pay at the end of the first month?
a. $\$ 108$
b. $\$ 10.8$
c. $\$ 1.08$
d. $\$ 90$
e. \$9
18. Sam deposits $\$ 1,000$ per month for 3 years at 12% annual interest rate compounded monthly. How much will Sam have at the end of 3 years?
a. $\$ 39,336.10$
b. $\$ 43,076.88$
c. $\$ 36,000$
d. $\$ 36,360$
e. $\$ 47,275.96$
19. If $A=\left[\begin{array}{ll}0.4 & 1 \\ 0.6 & 0\end{array}\right]$ then $A^{2}=$
a. $\left[\begin{array}{cc}0.22 & 0.4 \\ 0 & 0.6\end{array}\right]$
b. $\left[\begin{array}{ll}0.16 & 1 \\ 0.36 & 0\end{array}\right]$
$\left[\begin{array}{ll}1.4 & 1 \\ 0.6 & 0\end{array}\right]$
c.
d. $\left[\begin{array}{ll}0.76 & 0.4 \\ 0.24 & 0.6\end{array}\right]$
e. $\left[\begin{array}{ll}0.8 & 2 \\ 1.2 & 0\end{array}\right]$
20. $1-3+3^{2}-3^{3}+3^{4}-\ldots+3^{98}$
a. $3^{99}-1$
b. $\frac{3^{99}-1}{3}$
c. $\frac{(-3)^{99}-1}{-4}$
d. $(-3)^{99}$
e. 3^{99}

