1. 1.Let

$$
\begin{aligned}
& U=\{2,4,6,8,10,12,14,16\} \\
& A=\{2,4,6,8,10\} \\
& B=\{4,8,12,16\}
\end{aligned}
$$

Find $\left(A \cap B^{\prime}\right)^{\prime}$.
a. $\{12,16\}$ b. $\{2,6,10\}$
c. $\{2,4,6,8,10,12,16\}$
d. $\{4,8,12,14,16\}$
e. U
2. Which of the following sets describes the shaded region in the diagram below:

a. $R \cup\left[(S \cap T) \cap(S \cup T)^{\prime}\right]$
b. $(R \cup S) \cap R \cup T)$
c. $(R \cap S) \cup(R \cap T)$
d. $R \cap(S \cap T)^{\prime}$
e. $R \cap\left[(S \cup T) \cap(S \cap T)^{\prime}\right]$
3. In a certain class, there are 15 female students. Suppose that 30 students in this class like to play basketball, amongst them are 10 females. If 5 males don't like to play basketball, how many students are there in the class? a. 40 b. 35 c. 30 d. 45 e. 25
4. In a group of 34 people 19 like classical music, 15 like folk music, and 20 like jazz.

Moreover, amongst them 9 like folk and classical music, 10 like folk and jazz music, and 8 like jazz and classical. Finally, 4 amongst them like all three categories. How many people in the above group like neither folk, nor classical nor jazz music.
a. 30
b. 7
c. 0
d. 3
e. 5
5. A chess club consisting of 20 members must choose a president, a secretary and a treasurer. If the posts cannot be shared, in how many different ways can this be done?
a. $\mathrm{P}(20,3)$
b. 20^{3}
c. $C(20,18)$
d. 3^{20}
e. $20+19+18$
6. A dance club consisting of 12 pairs must choose a committee of 5 members to write the statute of the club. If only one member can be selected from each pair, in how many ways can this be done?
a. $\mathrm{P}(12,5)$
b. $C(24,5)$
c. $P(12,5) \cdot 5^{2}$
d. $\mathrm{C}(24,5) \cdot 2^{5}$
e. $C(12,5) \cdot 2^{5}$
7. What is the numerical value of $C(9,6)$?
a. 105
b. 252
c. 54
d. 168
e. 84
8. How many five letter words, including nonsense words, use the letter " A " at least once?
a. 25^{5}
b. $5^{26}-5^{25}$
c. $26^{5}-25^{5}$
d. 5^{25}
e. $5 \cdot 25^{4}$
9. A hand consists of 5 cards from a standard deck of 52 cards. How many such hands have exactly two kings?
a. $C(4,2) \cdot C(50,3)$
b. $C(4,2) \cdot C(48,3)$
c. $C(4,2)+C(48,3)$
d. $2 \cdot C(50,3)$
e. 2 .
C $(48,3)$
10. A hand consists of 5 cards from a standard deck of 52 cards. How many such hands have exactly three clubs?
a. $C(13,3)+C(39,2)$ b. $3 \cdot C(39,2)$
c. 13^{3}
d. $\mathrm{C}(13,3) \cdot \mathrm{C}(49,2)$
e. $C(13,3) \cdot$
C $(39,2)$
11. A math test consists of 20 true/false questions. If no answer is left blank, in how many different ways can the test be completed?
a. $C(20,2)$
b. 2^{20}
c. 20^{2}
d. $\frac{1}{2} \cdot P(20,2)$
e. 20 !
12. In the situation of the above problem, how many solutions have 18 or more correct
answers?
a. $P(20,20)+P(20,19)+P(20,18)$
b. $C(20,20)+C(20,19)+C(20,18)$
c. 3
d. $\mathrm{P}(20,18)$
e. $2^{20}+2^{19}+2^{18}$
13. An urn contains balls numbered 1 through 12 , seven of them are green and five are yellow. In how many ways can one choose a sample of 5 balls, all of which are green?
a. $\mathrm{P}(7,5)$
b. $C(7,5)$
c. 12^{5}
d. 5^{12}
e. 7
14. In the situation of the previous problem, how many samples have 3 or more green balls?
a. $C(7,3) \cdot C(5,2) \cdot 3$
b. 6
c. $C(7,3)+C(7,4)+C(7,5)$
d. $C(7,3) \cdot C(5,2)+C(7,4) C(5,1)+C(7,5) \cdot C(5,0)$
e. $C(7,3) \cdot C(5,2)$
15. A coin is thrown 12 times. How many sequences contain 3 or more heads?
a. $12^{2}-[C(12,0)+C(12,1)+C(12,2)]$
b. 3^{2}
c. $C(12,3)$
d. $2^{12}-[C(12.0)+C(12,1)+C(12,2)]$
e. 2^{3}
16. Three dice, colored red, green and blue are thrown. How many possible outcomes are
there?
a. $C(6,4)$
b. $P(6,4)$
c. 6^{3}
d. 18
e. 3^{6}
17. If one can only move East and South, how many different paths from A to D via B and C are there in the diagram below.

a. $\mathrm{P}(11,5)$
b. $C(2,1)+C(6,3)+C(3,1)$
c. $P(2,1) \cdot P(6,3) \cdot P(3,1)$
d. $C(2,1) \cdot C(6,3) \cdot$

$$
C(3,1)
$$

e. $C(11,5)$
18. Determine the first three terms in the expression $(x+y)^{13}$.
a. $x^{13}+13 x^{12} y+78 x^{11} y^{2}$
b. $x^{13}+13 x^{12} y+39 x^{11} y^{2}$
c. $x^{13}+13 x^{12} y+26 x^{11} y^{2}$
d. $x^{13}+13 x^{12}+78 x^{11}$
e. $x^{13}-13 x^{12} y+$ $78 x^{11} y^{2}$
19. In how many ways can 10 players in a tennis tournament be paired up for the first round?
a. $\frac{10!}{2^{5}}$
b. $\frac{10!}{2 \cdot 5!}$
c. $\frac{10!}{5^{2}}$
d. $\frac{10!}{2^{5} \cdot 5!}$
e. $10!\cdot 5^{2}$
20. In how many ways can 18 construction workers be divided into groups of 3,5 and 10 members?
a. $\frac{18!}{3!5!10!}$
b. $\frac{18!}{3!5!10!2^{3}}$
c. $\frac{18!}{3!+5!+10!}$
d. $\frac{3!5!10!}{18!}$
e. $\frac{18!}{3 \cdot 5 \cdot 10}$
answers:

1. d2. e 3. a 4. d 5. a 6. e 7. e 8. c 9. b 10. e
2. b 12. b 13. b 14. d 15. d 16. c 17. d 18. a 19. d 20. a
